
CSCI 1103: Arrays

Chris Kauffman

Last Updated:
Fri Oct 13 09:18:58 CDT 2017

1

Logistics

Reading from Eck
I Ch 3.8 Intro to Arrays
I Ch 2.3.2-3 Classes, Objects,

Strings

Goals
I Referece vs Primitive
I Arrays

Project 2
I Due Sunday
I Conditionals, loops arrays

Lab04: Loops
Will cover what we’ve been up to
with while and for

Exam 1: Wed 10/11
Review Mon 10/9

2

Aggregate Types in Programming

I All programming languages provide some basic types like
numbers and booleans

I Variable name refers to one of value of this kind, e.g.
int i = 1;
double x = 5.6;

I Most problems require more than this giving rise to aggregate
types: a single name with multiple values

I Aggregate data can be
I Homogeneous: groups of all the same
I Heterogeneous: groups where some are different

3

Latin for: All the same VS Potentially Different

Homogeneous Data
I All same data type
I Single name, multiple ints,

multiple doubles, etc.
I Usually indexed by element

number (4th elem, 9th elem)
I Example: arrays, collection

of the same thing
(homogeneous)

I Elements accessed via
array[index]

Heterogeneous Data
I Data types different
I Single name, multiple values

in an combination
I Example: need 1 int, 1

double, 2 booleans
I Usually indexed by field

name as in
myStudent.gpa = 3.91;
myStudent.name = "Sam";

I Example: classes/objects in
Java, grouped dataNow and Later

I Will discuss arrays and Strings now (homogeneous)
I Deal with classes/objects later (heterogeneous)

4

Two Kinds of types: Primitive and References
Primitives

I Little types are primitives
I int, double, char,

boolean, long, short,
float...

I Live directly inside a
memory cell

I Each primitive type has its
own notion of a zero value:
know what they are as all
arrays are initialized to these
values

I Only a small number of
primitive types, can’t make
new ones

References
I Big types including types

you’ll create
I String, Scanner, File,

Sauce, Exception, . . .
And all arrays

I Contents of memory cell
refer to another spot in
memory where the thing
actually resides

I Usually refer to a heap
location

I Identical to a pointer but
operations are limited

I Have a single zero-value:
null which points nowhere 5

Arrays: Lots of the Same Kind
I Declared with the square braces

int arr[];
I Initially null: zero value for reference types

if(arr1 == null) { ... }
I A fixed hunk of memory: must be explicitly allocated, state number of

elements desired
arr = new int[5];

I Each element or slot holds one of the same type of data
I Each element referred to by index, 0-indexed (first element is at index 0)
I Elements can be assigned with square brace notation

arr[0] = 10;
arr[1] = 15;

I Tracks length as a field
int size = arr.length;

I Last element is at arr.length-1

arr[arr.length-1] = 35;
I Elements can be retrieved using square brace notation

int elem = arr[1]; 6

Exercise: Array Pictures
1 {
2 int arr1[];
3 double arr2[];
4 int idx;
5 arr1 = new int[2];
6 idx = 1;
7 arr1[idx] = 15;
8 arr2 = new double[3];
9 ...

Draw these changes
1 ...
2 arr1[0] = 25;
3 arr2[2] = 1.234;
4 arr1[1]++;
5 arr2 = new double[2];
6 ...
7 }

7

Answer: Array Pictures
1 {
2 int arr1[];
3 double arr2[];
4 int idx;
5 arr1 = new int[2];
6 idx = 1;
7 arr1[idx] = 15;
8 arr2 = new double[3];
9 ...

Draw these changes
10 ...
11 arr1[0] = 25;
12 arr2[2] = 1.234;
13 arr1[1]++;
14 arr2 = new double[2];
15 ...
16 }

8

Memory Allocation and Garbage Collection

I Variables are either
I Primitives: values in the box directly
I References: value in box points to elsewhere

I Memory that is referenced from elsewhere must usually be
allocated

I In Java, new keyword indicates an allocation
int a[] = new int[4]; // find me space for 5 ints

I Can stop referring to an area of memory
a = null; // stop pointing at that area

I Memory that was allocated but no longer referenced is subject
to garbage collection

I Occasionally, program pauses and unloved memory is
reclaimed, recycled for other uses

9

Array Initialization

I Initializing arrays can be
tedious

I Java provides special syntax
to ease this

I Will often use lines like
int arr[] = new int[]{

5, 10, 15, 20
};

to set up problems
I Equivalent syntax

int arrA[];
int [] arrB;

Some prefer 2nd for
readablness:
integer array arrB

1 // All these create roughly equivalent
2 // arrays with 3 elements: 15, 25, 35
3 public class ArrayInit{
4 public static
5 void main(String args[]) {
6 int arrA[];
7 arrA = new int[3];
8 arrA[0] = 15;
9 arrA[1] = 25;

10 arrA[2] = 35;
11
12 int arrB[] = new int[3];
13 arrB[0] = 15;
14 arrB[1] = 25;
15 arrB[2] = 35;
16
17 int arrC[] = {15, 25, 35};
18
19 int arrD[];
20 arrD = new int[]{15, 25, 35};
21
22 int arrE[];
23 // DOESN’T WORK
24 // arrE = {15, 25, 35};
25 }
26 }

10

Exercise: Exceptional Behavior

Examine the two short programs below and determine their output.

1 public class ArrayOOB{
2 public static void main(String args[]) {
3 int arrA[] = new int[]{15, 25, 35};
4 System.out.printf("arrA[3] = %d\n",arrA[3]);
5 }
6 }

1 public class ArrayNPE{
2 public static void main(String args[]) {
3 int arrA[] = new int[]{15, 25, 35};
4 arrA = null;
5 System.out.printf("arrA[0] = %d\n",arrA[0]);
6 }
7 }

Hint: Things may go sideways. . .

11

Answer: Exceptional Behavior
I Exceptions occur during runtime when problems occur
I Exceptions indicate line number but source may be elsewhere

Index out of Bounds
1 // Throws an ArrayIndexOutOfBoundsException
2 public class ArrayOOB{
3 public static void main(String args[]) {
4 int arrA[] = new int[]{15, 25, 35};
5 System.out.printf("arrA[3] = %d\n",arrA[3]);
6 }
7 }

> java ArrayOOB
Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 3
at ArrayOOB.main(ArrayOOB.java:5)

I Attempt to access index beyond
array size

I Usually a logic bug, check
arr.length carefully

NullPointerException

1 // Throws a NullPointerException
2 public class ArrayNPE{
3 public static void main(String args[]) {
4 int arrA[] = new int[]{15, 25, 35};
5 arrA = null;
6 System.out.printf("arrA[0] = %d\n",arrA[0]);
7 }
8 }

> java ArrayNPE
Exception in thread "main"

java.lang.NullPointerException
at ArrayNPE.main(ArrayNPE.java:6)

I Attempt to dereference a pointer to
nowhere

I All references, including arrays,
subject to this one

12

Exercise: Arrays and Loops Go Hand-in-Hand
I Loops typically used to iterate over elements of arrays
I Loop bounds tied to arr.length

1 // Typical loop to print all elements of an array
2 public class ArrayPrinting{
3 public static
4 void main(String args[]) {
5 int arr[] = {15, 25, 35, 45, 55, 65};
6
7 System.out.printf("Length of array is %d\n",arr.length);
8 for(int i=0; i<arr.length; i++){
9 System.out.printf("[%d] = %d\n",i,arr[i]);

10 }
11 }
12 }

Questions: ArrayPrintingVariants.java
I What is the output of this program?
I Can the array be changed without altering the loop?
I Change the loop to print out only odd indices 1,3,5 etc
I Change the loop to print out only elements larger than 30
I Change the loop to print even indices in reverse (!)

13

Answers: Arrays and Loops Go Hand-in-Hand
1 // Typical loop to print all elements of an array
2 public class ArrayPrintingVariants{
3 public static
4 void main(String args[]) {
5 int arr[] = {15, 25, 35, 45, 55, 65};
6 // int arr[] = {15, 25, 35, 22, 55, 65, 17}; // ALL INDICES
7 // [0] = 15
8 System.out.printf("Length of array is %d\n",arr.length); // [1] = 25
9 // [2] = 35

10 System.out.printf("ALL INDICES\n"); // Print everything // [3] = 45
11 for(int i=0; i<arr.length; i++){ // [4] = 55
12 System.out.printf("[%d] = %d\n",i,arr[i]); // [5] = 65
13 } // [6] = 13
14
15 System.out.printf("ODD INDICES\n");
16 for(int i=1; i<arr.length; i+=2){ // Print only odd indices
17 System.out.printf("[%d] = %d\n",i,arr[i]);
18 }
19
20 System.out.printf("ELEMENTS > 30\n");
21 for(int i=0; i<arr.length; i++){ // Print elements > 30
22 if(arr[i] > 30){
23 System.out.printf("[%d] = %d\n",i,arr[i]);
24 }
25 }
26
27 System.out.printf("EVEN INDICES IN REVERSE\n");
28 int start = arr.length-1; // Find starting point
29 if(arr.length % 2 == 0){ // odd/even length differences
30 start--;
31 }
32 for(int i=start; i>=0; i-=2){ // Print even indices in reverse
33 System.out.printf("[%d] = %d\n",i,arr[i]);
34 }
35 }
36 }

14

Exercise: Sequence Reversal

A program to. . .
I Prompt for input size

(positive integer)
I Allocate array of integers of

given size
I In loop, read into array
I Print back in reverse order

Notes
I 4 to 5 different solution

variants for this
I NOT possible to do this

without an aggregate data
type like arrays

> javac ReverseSequence.java

> java ReverseSequence
Enter sequence length:
8
Enter 8 integers: (ex: 13)
10 20 30 40 50 60 70 80
Sequence in reverse:
80 70 60 50 40 30 20 10

> java ReverseSequence
Enter sequence length:
5
Enter 5 integers: (ex: 13)
15 14 13 12 11
Sequence in reverse:
11 12 13 14 15

> java ReverseSequence
Enter sequence length:
3
Enter 3 integers: (ex: 13)
6 1 2
Sequence in reverse:
2 1 6

15

Answer: Sequence Reversal
1 public class ReverseSequence{
2 public static void main(String args[]) {
3 System.out.println("Enter sequence length:");
4 int seqLength = TextIO.getInt(); // get size from user
5 int sequence[] = new int[seqLength]; // allocate space for sequence
6 System.out.printf("Enter %d integers: (ex: 13)\n",
7 seqLength);
8
9 for(int i=0; i<seqLength; i++){ // input loop: read all

10 sequence[i] = TextIO.getInt(); // integers from user
11 }
12
13 System.out.println("Sequence in reverse:");
14 for(int i=seqLength-1; i>=0; i--){ // print out sequence in
15 System.out.printf("%d ",sequence[i]); // reverse order
16 }
17 System.out.println();
18 }
19 }

Common Solution Variants
I Read sequence into array from last to first, print in forward order
I Allocate second array, copy over in reverse order, print copy from front
I Reverse array in place, print from front

16

Exercise: Guessing Game with History PLAN
I Consider Code Demo to the right
I Guess up to 5 times
I Print high/low on incorrect guess
I Print history of guesses if correct

Answer the Following
I How many times to loop?
I What must be done every

iteration unconditionally?
I How will history be tracked?
I Conditions inside loop?
I Conditions after loop?
I How to print history?

Form Your Plan (no code yet)

> javac GuessingHistory.java
> java GuessingHistory
Guess between 1 and 100: (Max 5 guesses)
50
Too big
30
Too small
40
Too small
48
Too big
44
Too big
Loser!
> java GuessingHistory
Guess between 1 and 100: (Max 5 guesses)
41
Too small
43
Too big
42
Correct! It took you 3 guesses which were:
41 43 42
> java GuessingHistory
Guess between 1 and 100: (Max 5 guesses)
98
Too big
17
Too small
31
Too small
42
Correct! It took you 4 guesses which were:
98 17 31 42

17

Exercise: Guessing Game with History CODE
I Consider Code Demo to the right
I Guess up to 5 times
I Print high/low on incorrect guess
I Print history of guesses if correct

Write Code for Game
I Will need an array, number of

guesses
I Input loop with conditions in it
I Loop to print history for correct

guess

> javac GuessingHistory.java
> java GuessingHistory
Guess between 1 and 100: (Max 5 guesses)
50
Too big
30
Too small
40
Too small
48
Too big
44
Too big
Loser!
> java GuessingHistory
Guess between 1 and 100: (Max 5 guesses)
41
Too small
43
Too big
42
Correct! It took you 3 guesses which were:
41 43 42
> java GuessingHistory
Guess between 1 and 100: (Max 5 guesses)
98
Too big
17
Too small
31
Too small
42
Correct! It took you 4 guesses which were:
98 17 31 42

18

Answer: Guessing Game with History CODE
1 // Guessing game with history staored in an array
2 public class GuessingHistory{
3 public static void main(String args[]) {
4 int secret = 42; // secret num for guessing
5 int maxGuesses = 5; // limit guesses
6 int history[] = new int[maxGuesses]; // array for history
7 int nGuesses = 0; // current total guesses
8 int guess = -1; // current guess
9 System.out.printf("Guess between 1 and 100: (Max %d guesses)\n", maxGuesses);

10
11 // Get guesses from user, store in array, break out on correct guess
12 for(int i=0; i<maxGuesses; i++){
13 guess = TextIO.getInt();
14 history[nGuesses] = guess; // Update history
15 nGuesses++;
16 if(guess == secret){ // Check for correct guess
17 break; // break from loop
18 }
19 else if(guess > secret){ // Hint if not correct
20 System.out.println("Too big");
21 }
22 else if(guess < secret){
23 System.out.println("Too small");
24 }
25 }
26
27 // Could end loop with either a correct guess or running out of
28 // guesses, need to figure out which it is
29 if(guess == secret){ // Correct guess
30 System.out.printf("Correct! It took you %d guesses which were:\n", nGuesses);
31 for(int i=0; i<nGuesses; i++){ // Print history
32 System.out.printf("%d ",history[i]);
33 }
34 System.out.println();
35 }
36 else{ // Ran out of guesses
37 System.out.println("Loser!");
38 }
39 }
40 } 19

Exercise: Arrays are a Reference Type

I Consider code to right
I Interesting assignment:

int arrB[] = arrA;
I Has a MAJOR effect on

remaining program
I Predict output of this

program

1 public class ArrayAlias{
2 public static
3 void main(String args[]) {
4 int arrA[] = new int[]{15, 25, 35};
5 int arrB[] = arrA; // !!!
6
7 arrA[0] = 65;
8 arrB[2] = 90;
9

10 for(int i=0; i<arrA.length; i++){
11 System.out.printf("%d ",arrA[i]);
12 }
13 System.out.println();
14 for(int i=0; i<arrB.length; i++){
15 System.out.printf("%d ",arrB[i]);
16 }
17 System.out.println();
18
19 boolean arrsEqual = arrA == arrB;
20 System.out.println(arrsEqual);
21 }
22 }

20

Answer: Arrays are a Reference Type (Pictures)

I Assignment operation x = y; always copies a box value of y
to box x in Java

I Effect for arrays is to create an alias: both variables refer to
same area of memory
> javac ArrayAlias.java
> java ArrayAlias
65 25 90
65 25 90
true

21

Distinct Arrays

I To get distinct arrays, must
allocate memory twice

I The new keyword will appear
twice for 2 arrays (roughly)

I Typical to use a loop copy from
one array to the other

1 public class ArraysDistinct{
2 public static void main(String args[]) {
3 int arrA[] = new int[]{15, 25, 35};
4 int arrB[] = new int[arrA.length]; // same size as arrA
5 for(int i=0; i<arrA.length; i++){ // copy arrA elements
6 arrB[i] = arrA[i]; // to arrB
7 }
8
9 arrA[0] = 65; // only arrA changed

10 arrB[2] = 90; // only arrB changed
11
12 // arrA is {65, 25, 35}
13 // arrB is {15, 25, 90}
14 for(int i=0; i<arrA.length; i++){
15 System.out.printf("%d ",arrA[i]);
16 }
17 System.out.println();
18 for(int i=0; i<arrB.length; i++){
19 System.out.printf("%d ",arrB[i]);
20 }
21 System.out.println();
22
23 boolean arrsEqual = arrA == arrB; // different locations
24 System.out.println(arrsEqual); // false
25 }
26 }

22

Meaning of Shallow Equality ==

I Operator == works for all kinds of things
in Java: int, double, boolean, arrays. . .

I Compares contents of one box to another
I Only single boxes compared
I Common misconception

int arrA[] = new int[]{5,7,9};
int arrB[] = new int[]{5,7,9};
if(arrA == arrB){

System.out.println("Equal");
}
else{

System.out.println("Not Equal");
}

I For arrays, must use a loop to compare
entire contents to one another

23

Exercise: Read two Arrays and Compare

Basic Behavior
> java CompareSequences > java CompareSequences > java CompareSequences
Enter sequence length: Enter sequence length: Enter sequence length:
3 5 4
Enter First 3 integers: Enter First 5 integers: Enter First 4 integers:
1 3 5 10 20 30 40 50 199 22 8 1011
Enter Second 3 integers: Enter Second 5 integers: Enter Second 4 integers:
1 3 5 10 22 30 44 50 199 22 8 1101
seq1 seq2 # seq1 seq2 # seq1 seq2
0 1 1 0 10 10 0 199 199
1 3 3 1 20 22 1 22 22
2 5 5 2 30 30 2 8 8
Sequences equal: true 3 40 44 3 1011 1101

4 50 50 Sequences equal: false
Sequences equal: false

Implementation Notes
I Use a printf() to get nicely aligned

columns
1 char #/index, 4 chars seq1, 4 chars seq2

I Read both sequences first, then print both

I Use a loop to compare all elements
I Start with areEqual = true;
I If any differences found, flip to false

24

Answer: Read two Arrays and Compare
1 public class CompareSequences{
2 public static void main(String args[]) {
3 System.out.println("Enter sequence length:");
4 int seqLength = TextIO.getInt(); // get size from user
5 int seq1[] = new int[seqLength]; // allocate space for seq 1
6
7 System.out.printf("Enter First %d integers:\n", seqLength);
8 for(int i=0; i<seqLength; i++){ // input loop: read seq 1
9 seq1[i] = TextIO.getInt(); // integers from user

10 }
11
12 int seq2[] = new int[seqLength]; // allocate space for sequence 2
13 System.out.printf("Enter Second %d integers:\n",seqLength);
14 for(int i=0; i<seqLength; i++){ // input loop: read all
15 seq2[i] = TextIO.getInt(); // integers from user
16 }
17
18 System.out.printf("%2s %4s %4s\n", // print table header
19 "#","seq1","seq2");
20
21 for(int i=0; i<seqLength; i++){ // print out sequence table
22 System.out.printf("%2d %4d %4d\n",
23 i,seq1[i],seq2[i]);
24 }
25
26 // Check for equality of all elements
27 boolean areEqual = true; // assume equal
28 for(int i=0; i<seqLength; i++){
29 if(seq1[i] != seq2[i]){ // detect differences
30 areEqual = false; // change equal to not
31 }
32 }
33 System.out.printf("Sequences equal: %b\n",areEqual);
34 }
35 }

25

