CSCI 1103: Arrays

Chris Kauffman

Last Updated:
Fri Oct 13 09:18:58 CDT 2017

Logistics

Reading from Eck

» Ch 3.8 Intro to Arrays

» Ch 2.3.2-3 Classes, Objects,

Strings

Goals

> Referece vs Primitive

> Arrays

Project 2

» Due Sunday

» Conditionals, loops arrays

Lab04: Loops

Will cover what we've been up to
with while and for

Exam 1: Wed 10/11
Review Mon 10/9

Aggregate Types in Programming

> All programming languages provide some basic types like
numbers and booleans

» Variable name refers to one of value of this kind, e.g.
int i = 1;
double x = 5.6;

» Most problems require more than this giving rise to aggregate
types: a single name with multiple values

» Aggregate data can be

» Homogeneous: groups of all the same
» Heterogeneous: groups where some are different

Latin for: All the same VS Potentially Different

Homogeneous Data

>

>

All same data type

Single name, multiple ints,
multiple doubles, etc.
Usually indexed by element
number (4th elem, 9th elem)
Example: arrays, collection
of the same thing
(homogeneous)

Elements accessed via
array[index]

Now and Later

Heterogeneous Data

>

>

Data types different

Single name, multiple values
in an combination

Example: need 1 int, 1
double, 2 booleans

Usually indexed by field
name as in

3.91;
llSam“ ;

myStudent.gpa
myStudent .name =

Example: classes/objects in
Java, grouped data

» Will discuss arrays and Strings now (homogeneous)

» Deal with classes/objects later (heterogeneous)

Two Kinds of types: Primitive and References

Primitives

>

>

Little types are primitives

int, double, char,
boolean, long, short,
float...

Live directly inside a
memory cell

Each primitive type has its
own notion of a zero value:
know what they are as all
arrays are initialized to these
values

Only a small number of
primitive types, can't make
new ones

References

>

Big types including types
you'll create

String, Scanner, File,
Sauce, Exception, ...
And all arrays

Contents of memory cell
refer to another spot in
memory where the thing
actually resides

Usually refer to a heap
location

Identical to a pointer but
operations are limited

Have a single zero-value:
null which points nowhere

Arrays:

>

Lots of the Same Kind

Declared with the square braces

int arr([];

Initially null: zero value for reference types
if(arrl == null) { ... }

A fixed hunk of memory: must be explicitly allocated, state number of
elements desired

arr = new int[5];

Each element or slot holds one of the same type of data

Each element referred to by index, O-indexed (first element is at index 0)
Elements can be assigned with square brace notation

arr[0] = 10;
arr[1] = 15;

Tracks length as a field

int size = arr.length;

Last element is at arr.length-1

arr[arr.length-1] = 35;

Elements can be retrieved using square brace notation

int elem = arr[1];

{

L 1 ...
2 int arri[]; 2 arri[0] = 25;
3 double arr2(]; 3 arr2[2] = 1.234;
4 int idx; 4 arri[1]++;
5 arrl = new int[2]; 5 arr2 = new double[2];
6 idx = 1; 6 .
7 arri[idx] = 15; 7 3
8 arr2 = new double[3];
9 Ce
Initial arrl = new int[2]; idx = 1; arrfidx] = 15; arr2 = new double[3];
#1024 arrl m #1024 arrl |#2048 #1024 arrl |#2048 #1024 arrl |#2048
#1028 a2 #1028 arr2 | null | #1028 arr2 | null | #1028 arr2 [#3032—
#1032 idx “ #1032 idx o #1032 idx 1 #1032 idx 1
- #2044 length 2 #2044 length 2 #2044 length 2
#2048 [0] 0 #2048 [0] o #2048 [0] <
#2052 [1] 0 #2052 [1] 42 #2052 [1] 15
- o #3028 length | 3
#3032 [0] | 0.0 <
#3040 [1] | 0.0
#3048 [21 | 00

Answer: Array Pictures Draw these changes

14 0 ...

2 int arri[]; 11 arr1[0] = 25;

3 double arr2[]; 12 arr2[2] = 1.234;

4 int idx; 13 arri[1]++;

5 arrl = new int[2]; 14 arr2 = new double[2];

6 idx = 1; 15 .

7 arri[idx] = 15; 16 3}

8 arr2 = new double[3];

9 .
arr2 = new double[3]; arr1[0] = 25; arr2[2] = 1.234; arrl[1]++; arr2 = new double[2];
#1024 arrl |#2048 #1024 arrl [r20ue] #1024 arrl [r20ue] #1024 arrl |#2048 #1024 a1 |#20481
#1028 arr2 |#3032) #1028 arr2 |#3032) #1028 arr2 |#3032] #1028 arr2 |#3032] #1028 arr2
#1032 idx #1032 idx | 1 #1032 idx | 1 #1032 idx | 1 #1032 idx

#2044 length | 2 #2044 length | 2 #2044 length | 2 #2044 length | 2 #2044 length | 2
#2048 [0] 0 #2048 (0] | 25 #2048 [0] | 25 #2048 (0] | 25 #2048 [0] | 25 <
#2052 (11 | 15 #2052 [| 15 #2052 (1] | 15 #2052 (1] | 16 #2052 [1] | 16
#3028 length ; #3028 length ; #3028 length ; #3028 length ; #3028 length ;
#3032 [0] | 0.0 #3032 [0] | 00 #3032 (0] | 00 #3032 (0] | 00 #3032 (0] | 0.0
#3040 [11 | 0.0 #3040 [11 | 00 #3040 [11 | 00 #3040 (11 | 00 #3040 [11 | 00
#3048 [21 | 00 #3048 [21 | 00 #3048 [2) [1.234 #3048 [2] |1234 #3048 [2] |1234

#4012 length | 2

#4016 [0] | 00 1<

#4028 [11 | 0.0

Memory Allocation and Garbage Collection

» Variables are either

» Primitives: values in the box directly
» References: value in box points to elsewhere

» Memory that is referenced from elsewhere must usually be
allocated

» In Java, new keyword indicates an allocation

int al[] = new int[4]; // find me space for 5 ints
» Can stop referring to an area of memory

a = null; // stop pointing at that area

» Memory that was allocated but no longer referenced is subject
to garbage collection

» Occasionally, program pauses and unloved memory is
reclaimed, recycled for other uses

Array Initialization

> |n|t|a||z|ng arrays can be 1 // All these create roughly equivalent
i 2 // arrays with 3 elements: 15, 25, 35
tedious 3 public class ArrayInit{

public static
void main(String args[]) {

4
» Java provides special syntax 5
6 int arrA[];
;
8

to ease this arrA = new int[3];
))) arrA[0] = 15;
» Will often use lines like 9 arrA[1] = 25;
10 arrA[2] = 35;
int arr[] = new int[]{ 11
5, 10, 15, 20 12 int arrB[] = new int[3];
}; 13 arrB[0] = 15;
’ 14 arrB[1] = 25;
15 arrB[2] = 35;
to set up problems 16
i 17 int arrC[] = {15, 25, 35};
» Equivalent syntax 18
. . 19 int arrD[];
:!'nt arrA(]; 20 arrD = new int[]1{15, 25, 35};
int [] arrB; 21
22 int arrE[];
Some prefer 2nd for 23 // DOESN’T WORK
readablness: o N /{ arzE = {15, 25, 35};

integer array arrB 26 }

Exercise: Exceptional Behavior

Examine the two short programs below and determine their output.

1 public class Array00B{

2 public static void main(String args[]) {

3 int arrA[] = new int[]{15, 25, 35};

4 System.out.printf("arrA[3] = %d\n",arrA[3]);
5 }

6

1 public class ArrayNPE{

2 public static void main(String args[]) {

3 int arrA[] = new int[]{15, 25, 35};

4 arrA = null;

5 System.out.printf ("arrA[0] = %d\n",arrA[0]);
6

7%}

Hint: Things may go sideways. . .

11

Answer: Exceptional Behavior

» Exceptions occur during runtime when problems occur

» Exceptions indicate line number but source may be elsewhere

Index out of Bounds

// Throws an ArrayIndexOutOfBoundsException
public class Array00B{
public static void main(String args[]) {
int arrA[] = new int[]1{15, 25, 35};
System.out.printf ("arrA[3] = %d\n",arrA[3]);
}
}

N oS WwN R

> java Array00B

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 3

at Array00B.main(Array0OB.java:5)

> Attempt to access index beyond
array size

» Usually a logic bug, check
arr.length carefully

NullPointerException

// Throws a NullPointerException
public class ArrayNPE{
public static void main(String args[]) {
int arrA[] = new int[]{15, 25, 35};
arrA = null;
System.out.printf("arrA[0] = %d\n",arrA[0]);
}

0N WN

}

> java ArrayNPE

Exception in thread "main"
java.lang.NullPointerException

at ArrayNPE.main(ArrayNPE.java:6)

» Attempt to dereference a pointer to
nowhere

» All references, including arrays,
subject to this one

12

Exercise: Arrays and Loops Go Hand-in-Hand

1
2
3
4
5
6
7
8

9
10
11

>
>

Loops typically used to iterate over elements of arrays
Loop bounds tied to arr.length

// Typical loop to print all elements of an array
public class ArrayPrinting{
public static
void main(String args([]) {
int arr[] = {15, 25, 35, 45, 55, 65};

System.out.printf ("Length of array is %d\n",arr.length);
for(int i=0; i<arr.length; i++){
System.out.printf ("[%d] = %d\n",i,arr[il);
}
}

12}

Questions: ArrayPrintingVariants.java

vyVvyvyyvyy

What is the output of this program?

Can the array be changed without altering the loop?
Change the loop to print out only odd indices 1,3,5 etc
Change the loop to print out only elements larger than 30

Change the loop to print even indices in reverse (!)

13

Answers: Arrays and Loops Go Hand-in-Hand

1 // Typical loop to print all elements of an array

2 public class ArrayPrintingVariants{

3 public static

4 void main(String args[]) {

5 int arr[] = {15, 25, 35, 45, 55, 65};

6 // int arr[] = {15, 25, 35, 22, 55, 65, 17}; // ALL INDICES
7 // [0] = 15
8 System.out.printf("Length of array is %d\n",arr.length); // 11 = 25
9 /7 [2] = 35
10 System.out.printf ("ALL INDICES\n"); // Print everything // [3] = 45
11 for(int i=0; i<arr.length; i++){ // [4] = 55
12 System.out.printf (" [%d] = %d\n",i,arr[il); // [8]1 = 65
13 Y // 161 = 13
14

15 System.out.printf("0DD INDICES\n");

16 for(int i=1; i<arr.length; i+=2){ // Print only odd indices

17 System.out.printf (" [%d] = %d\n",i,arr[i]);

18

19

20 System.out.printf ("ELEMENTS > 30\n");

21 for(int i=0; i<arr.length; i++){ // Print elements > 30

22 if(arr[i] > 30){

23 System.out.printf("[%d] = %d\n",i,arr[il);

24

25 }

26

27 System.out.printf ("EVEN INDICES IN REVERSE\n");

28 int start = arr.length-1; // Find starting point

29 if (arr.length % 2 == 0){ // odd/even length differences
30 start--;

31

32 for(int i=start; i>=0; i-=2){ // Print even indices in reverse
33 System.out.printf("[%d] = %d\n",i,arr[il);

34

3)

Exercise: Sequence Reversal

A program to. ..

» Prompt for input size
(positive integer)

> Allocate array of integers of
given size

> In loop, read into array

» Print back in reverse order

Notes

> 4 to 5 different solution
variants for this

» NOT possible to do this
without an aggregate data
type like arrays

> javac ReverseSequence.java

> java ReverseSequence
Enter sequence length:

8

Enter 8 integers: (ex: 13)
10 20 30 40 50 60 70 80
Sequence in reverse:

80 70 60 50 40 30 20 10

> java ReverseSequence
Enter sequence length:

5

Enter 5 integers: (ex: 13)
15 14 13 12 11

Sequence in reverse:

11 12 13 14 15

> java ReverseSequence
Enter sequence length:

3

Enter 3 integers: (ex: 13)
612

Sequence in reverse:

216

15

Answer: Sequence Reversal

1 public class ReverseSequenceq{

2 public static void main(String args[]) {

3 System.out.println("Enter sequence length:");

4 int seqlength = TextIO.getInt(); // get size from user

5 int sequence[] = new int[seqlength]; // allocate space for sequence
6 System.out.printf ("Enter %d integers: (ex: 13)\n",

7 seqLength) ;

8

9 for(int i=0; i<seqlength; i++){ // input loop: read all
10 sequence[i] = TextIO.getInt(); // integers from user
11 X
12
13 System.out.println("Sequence in reverse:");
14 for(int i=seqlength-1; i>=0; i--){ // print out sequence in
15 System.out.printf("%d ",sequence[il); // reverse order
16 }
17 System.out.println();
18 }
19 }

Common Solution Variants

> Read sequence into array from last to first, print in forward order
> Allocate second array, copy over in reverse order, print copy from front

» Reverse array in place, print from front

Exercise: Guessing Game with History PLAN

» Consider Code Demo to the right
> Guess up to 5 times

> Print high/low on incorrect guess
> Print history of guesses if correct

Answer the Following

How many times to loop?

» What must be done every
iteration unconditionally?

How will history be tracked?
Conditions inside loop?

Conditions after loop?

vV v. vy

How to print history?

Form Your Plan (no code yet)

> javac GuessingHistory.java

> java GuessingHistory

Guess between 1 and 100: (Max 5 guesses)
50

Too big

30

Too small
40
Too small

> java GuessingHistory

Guess between 1 and 100: (Max 5 guesses)
41

Too small

Correct! It took you 3 guesses which were:
41 43 42

> java GuessingHistory

Guess between 1 and 100: (Max 5 guesses)

Too small
31
Too small
42
Correct! It took you 4 guesses which were:
98 17 31 42
17

Exercise: Guessing Game with History CODE

» Consider Code Demo to the right
> Guess up to 5 times

> Print high/low on incorrect guess
> Print history of guesses if correct

Write Code for Game
» Will need an array, number of
guesses
» Input loop with conditions in it

» Loop to print history for correct
guess

> javac GuessingHistory.java

> java GuessingHistory

Guess between 1 and 100: (Max 5 guesses)
50

Too big

30

Too small
40
Too small

> java GuessingHistory

Guess between 1 and 100: (Max 5 guesses)
41

Too small

43

Too big

42

Correct! It took you 3 guesses which were:
41 43 42

> java GuessingHistory

Guess between 1 and 100: (Max 5 guesses)

Too small

31

Too small

42

Correct! It took you 4 guesses which were:
98 17 31 42

18

Answer: Guessing Game with History CODE

1
2
3
4
5
6
7
8
9

11

// Guessing game with history staored in an array
public class GuessingHistory{
public static void main(String args[]) {

int secret = 42; // secret num for guessing
int maxGuesses = 5; // limit guesses

int history[] = new int[maxGuesses]; // array for history

int nGuesses = 0; // current total guesses
int guess = -1; // current guess

System.out.printf("Guess between 1 and 100: (Max %d guesses)\n", maxGuesses);

// Get guesses from user, store in array, break out on correct guess
for(int i=0; i<maxGuesses; i++){
guess = TextIO.getInt();

history[nGuesses] = guess; // Update history

nGuesses++;

if (guess == secret){ // Check for correct guess
break; // break from loop

else if(guess > secret){ // Hint if not correct

System.out.println("Too big");

else if(guess < secret){
System.out.println("Too small");

¥

// Could end loop with either a correct guess or running out of
// guesses, need to figure out which it is

if (guess == secret){ // Correct guess
System.out.printf("Correct! It took you %d guesses which were:\n", nGuesses);
for(int i=0; i<nGuesses; i++){ // Print history
System.out.printf("%d ",history[il);
¥

System.out.println();

else{ // Ran out of guesses
System.out.println("Loser!");

19

Exercise: Arrays are a Reference Type

» Consider code to right
> Interesting assignment:

int arrB[] = arrA;

» Has a MAJOR effect on
remaining program

» Predict output of this
program

public class ArrayAlias{
public static
void main(String args[]) {

int arrA[] = new int[]{15, 25, 35};
int arrB[] = arrA; //

arrA[0] = 65;
arrB[2] = 90;

for(int i=0; i<arrA.length; i++){
System.out.printf("%d ",arrA[i]);

}

System.out.println();

for(int i=0; i<arrB.length; i++){
System.out.printf("%d ",arrB[il);

¥

System.out.println();

boolean arrsEqual = arrA == arrB;
System.out.println(arrsEqual) ;

20

Answer: Arrays are a Reference Type (Pictures)

intarrA = ... int arrB[] = arrA; arrA[0] = 65; arrB[2] = 90;

#1024 arrA |#2048 #1024 arrA #2048 #1024 arrA |#2048 #1024 arrA |#2048
#1028 arrB #2048 #1028 arr |#2048 #1028 arrB [#2048

#1028 arrB

#2044 length #2044 length | 3 #2044 length #2044 length
#2048 [0] #2048 [0] 15 #2048 (0] #2048 [0]
#2052 [1] #2052 [1] #2052 [1] #2052 [1]
#2056 [1] #2056 [1] #2056 [1] #2056 [1]

» Assignment operation x = y; always copies a box value of y
to box x in Java

» Effect for arrays is to create an alias: both variables refer to
same area of memory
> javac ArrayAlias.java
> java ArrayAlias
65 25 90
65 25 90

true
21

Distinct Arrays

1 public class ArraysDistinct{
2 public static void main(String args[]) {
3 int arrA[] = new int[]{15, 25, 35};
4 int arrB[] = new int[arrA.length]; // same size as arrA
5 for(int i=0; i<arrA.length; i++){ // copy arrA elements
6 arrB[i] = arrA[il; // to arrB
P 7 3
» To get distinct arrays, must .
. 9 arrA[0] = 65; // only arrA changed
allocate memory twice 10 arB[2] = 90; // only arrB changed
11
. 12 // arrh is {65, 25, 35}
> The new keyword will appear 13 77 wed ie {15, 25, 90}
. 14 for(int i=0; i<arrA.length; i++){
twice for 2 arrays (roughly) 15 Systen.out.printf("%d ",arcA[i]);
16
. 17 System.out.println();
» Typical to use a loop copy from is i ivo; s<ares.tengen; i+
19 System.out.printf("%d ",arrB[il);
one array to the other 0 3
21 System.out.println();
22
23 boolean arrsEqual = arrA == arrB; // different locations
24 System.out.println(arrsEqual); // false
25 ¥
26 }

22

Meaning of Shallow Equality ==

» Operator == works for all kinds of things
in Java: int, double, boolean, arrays. ..

» Compares contents of one box to another
» Only single boxes compared

» Common misconception

int arrA[] = new int[]{5,7,9};

int arrB[] = new int[]{5,7,9};

if (arrA == arrB){
System.out.println("Equal");

}

else{
System.out.println("Not Equal");

}

» For arrays, must use a loop to compare
entire contents to one another

#1024

#1028

#2044

#2048

#2052

#2056

#3028

#3032

#3040

#3048

arrA

arrB

length
[o1
[1]
[2]

length
[o1
[1]
[2]

#2048

#3032

23

Exercise: Read two Arrays and Compare

Basic Behavior

> java CompareSequences > java CompareSequences > java CompareSequences
Enter sequence length: Enter sequence length: Enter sequence length:
3 5 4
Enter First 3 integers: Enter First 5 integers: Enter First 4 integers:
135 10 20 30 40 50 199 22 8 1011
Enter Second 3 integers: Enter Second 5 integers: Enter Second 4 integers:
135 10 22 30 44 50 199 22 8 1101
seql seq2 # seql seq2 # seql seq2
o 1 1 0o 10 10 0 199 199
13 3 120 22 122 22
2 5 5 2 30 30 2 8 8
Sequences equal: true 3 40 44 3 1011 1101
4 50 50 Sequences equal: false
Sequences equal: false
Implementation Notes
> Use a printf() to get nicely aligned P Use a loop to compare all elements
columns P Start with areEqual = true;
1 char index, 4 chars seql, 4 chars seq2 . .
#/ at q P If any differences found, flip to false

P Read both sequences first, then print both

Answer: Read two Arrays and Compare

1
2
3
4
5
6
7
8
9

public class CompareSequences{
public static void main(String args[]) {
System.out.println("Enter sequence length:");
int seqlength = TextIO.getInt(); // get size from user
int seql[] = new int[seqLength]; // allocate space for seq 1

System.out.printf ("Enter First %d integers:\n", seqLength);

for(int i=0; i<seqlength; i++){ // input loop: read seq 1
seqi[i] = TextIO.getInt(); // integers from user

¥

int seq2[] = new int[seqlength]; // allocate space for sequence 2

System.out.printf ("Enter Second %d integers:\n",seqLength);

for(int i=0; i<seqLength; i++){ // input loop: read all
seq2[i] = TextIO.getInt(); // integers from user

¥

System.out.printf("%2s %4s %4s\n", // print table header

g iseql”, "seq2") ;
for(int i=0; i<segLength; i++){ // print out sequence table

System.out.printf("%2d %4d %4d\n",
i,seq1lil,seq2[il);

b
// Check for equality of all elements
boolean areEqual = true; // assume equal
for(int i=0; i<segLength; i++){
if (seql[i] != seq2[il){ // detect differences
areEqual = false; // change equal to not
3

System.out.printf ("Sequences equal: %b\n",areEqual);

25

