
CSCI 1103: Object-Oriented Objects

Chris Kauffman

Last Updated:
Fri Nov 10 10:41:24 CST 2017

1



Logistics

Reading from Eck
Ch 5 on Objects/Classes

Goals
I Finish arrays of objects
I Static fields
I Non-static methods

Lab08: Simple object
definitions

I Stock object
I Methods in same java file

Project
I Spec up
I Due a week from Wed

2



Static/Non-static Stuff so far
I The keyword static in Java roughly translates to "belongs to

the whole class and all objects"
I So far we have written the following

static methods

public class MyClass{
public static

int doSomething(...){
...

}

I Nothing special about them,
invoked with
MyClass.doSomethig(..)

I Must pass in all parameters
to the methods

Non-static fields

public class Thing{
int part1;
double part2;
String part3;

}

I Each Thing has its own
part1, part2, part3

I 4 Things means 12 pieces
of data, 4 ints, 4 doubles,
4 String references

3



Static Class Fields
I A static field indicates there is only 1 memory location for

the entire class, NOT one per object
I Closest thing Java has to a global variable
I Seen examples of static fields from some classes

double pie = Math.PI;
double natbase = Math.E;
PrintStream ps = System.out;

I Syntax static establish a static field is simple
public class Mixed{

public static int e; // static field
public String f; // non-static field

}
I Every instance of a Mixed has its own f
I There is only one integer e, accessible via Mixed.e

4



Demo of Static vs Non-Static Fields
1 class OnlyStatic{
2 public static int a; // both static
3 public static String b;
4 }
5 class OnlyNon{
6 public int c; // both non-static
7 public String d;
8 }
9 class Mixed{

10 public static int e; // one static
11 public String f; // one non-static
12 }
13
14 public class StaticFields{
15 public static void main(String args[]){
16 OnlyStatic.a = 5; OnlyStatic.b = "bb";
17
18 // OnlyNon.c = 4; // ERROR: non-static field
19 // OnlyNon.d = "ddd"; // ERROR: non-static field
20 OnlyNon x = new OnlyNon();
21 x.c = 10; x.d = "dd";
22 OnlyNon y = new OnlyNon();
23 y.c = 15; y.d = "dddd";
24
25 Mixed.e = 20;
26 // Mixed.f = "ff"; // ERROR: non-static field
27
28 Mixed z = new Mixed();
29 z.f = "ff";
30 Mixed w = new Mixed();
31 w.f = "ffff";
32 }
33 }

5



Exercise: Recap what we learned about static fields
1. What’s the difference between a static and a non-static

field?
2. How many of each kind of field are gotten when calling new
3. Draw a quick diagram of the following.

public class Thing{
public int red;
public double blue;
public static int green;

public static void main(String args[]){
Thing x = new Thing();
Thing y = new Thing();

x.red = 5;
y.blue = 7.0;

///////// DRAW HERE ////////////

// which works / doesn’t?
Thing.green = 9;
Thing.red = 10;

}
}

6



Non-static Methods

I static roughly means class-level, as in belonging to the
entire class

I Non static roughly means instance-level, as in associated
with a specific instance/object

I Non-static methods are ALWAYS invoked with a specific
object/instance
String s = "hello";
String t = "goodbye";

int len1 = s.length(); // 5
int len2 = t.length(); // 7

I During a the execution of a non-static method, the keyword
this refers to the object on which the method is running

7



Compare: Static vs Non-static Method Defs/Calls
Static

1 public class Omelet{
2 int eggs;
3 int cheese;
4 double cookedFor;
5 String extras;
6
7 static void cookFor(Omelet om,
8 double time){
9 om.cookedFor += time;

10 }
11 static void addEgg(Omelet om){
12 om.eggs++;
13 }
14 }
15 main(){
16 Omelet standard = new Omelet();
17 int x = 5;
18 Omelet.addEgg(standard);
19 Omelet.cookFor(standard, 2.5);
20 }

Non-static

1 public class OOOmelet{
2 int eggs;
3 int cheese;
4 double cookedFor;
5 String extras;
6
7 void cookFor(double time){
8 this.cookedFor += time;
9 }

10
11 void addEgg(){
12 this.eggs++;
13 }
14 }
15 main(){
16 OOOmelet standard = new OOOmelet();
17 int x = 5;
18 standard.addEgg();
19 standard.cookFor(2.5);
20 }

Examine OOOmelet.java to see full implementation 8



this variable: reference to current object
I Variable this is automatically created in non-static methods
I Gets filled in with the value of the object being operated on

standard.addEgg(); coronary.addEgg()
^^^^^^^^ ^^^^^^^^
during addEgg(), this will during addEgg(), this will
refer to OOOmelet standard refer to OOOmelet coronary

9



Constructors
I Objects usually have necessary fields initialized at creation
I Special method called a constrctor
I Method name is always identical to class name, return type is

omitted
I CK commonly uses this.field = param; to initialize fields

public class OOOmelet{
...
// Constructor to initialize fields to given values. cookedFor is
// always initialized to 0.0.
public OOOmelet(int eggs, int cheese, String extras){

this.eggs = eggs; // set field eggs to parameter eggs
this.cheese = cheese; // set field cheese to parameter cheese
this.extras = extras; // set field extras to parameter extras
this.cookedFor = 0.0; // always set cookedFor to 0.0

}
...

}
public class OOOmeletMain{

public static void main(String args[]){
OOOmelet small = new OOOmelet(2,5,"ham"); // smallish OOOmelet
OOOmelet large = new OOOmelet(5,8,"bacon"); // largeish OOOmelet
...

}
}

10



Exercise: Draw a Memory Diagram

I Show the OOOMeletMain.java and
OOOMelet.java.exercise

I Running the main() method, trace execution
I Draw memory diagrams of what things look like at the

numbered locations
I Note: May hit some locations more than once
I Important: Don’t forget the automatic this variable in

non-static methods

11



Easy Printing: toString() method
I Most complex objects provide a toString() method to

produce nice output
I Compare

OOOmelet small = new OOOmelet(2,5,"ham");
System.out.println(small);

I NO toString() method:
OOOmelet@2a139a55

I WITH toString() method:
3 eggs, 5 oz cheese, cooked for 1.5 mins, extras: ham

public class OOOmelet{
private int eggs; private int cheese;
private double cookedFor; private String extras;

// Create a pretty string version of the OOOmelet.
public String toString(){

return
String.format("%d eggs, %d oz cheese, cooked for %.1f mins, extras: %s",

this.eggs, this.cheese, this.cookedFor, this.extras);
}

12



String.format() for toString()

I Extremely useful method static method of String class
I Works like printf() but instead of printing to the screen,

creates a string and returns it
I Example:

String s =
String.format("apples: %d weight: %.1f kind: %s",

5, 1.27, "Honeycrisp");

System.out.println(s);
// apples: 5 weight: 1.3 kind: Honeycrisp

I Often used in toString() methods to format info on object
for display

I Also used in testing files to produce error messages containing
data for debugging

13



Exercise: Dog Constructor and toString()

I Define constructor for
Dog class to the right

I Infer arguments/defaults
from use in main()

I Define toString()
method

I Infer format from use in
main()

I Make use of
String.format()

public class Dog{
public String name;
public int age;
public boolean hasBone;

// CONSTRUCTOR

// toString()

public static void main(String args[]){
Dog s = new Dog("Stout",3);
Dog r = new Dog("Rufus",1);
r.hasBone = true;
System.out.println(s.toString());
System.out.println(r.toString());

}
}

> javac Dog.java
> java Dog
Name: Stout Age: 3 Bone? false
Name: Rufus Age: 1 Bone? true

14



Access Modifiers
Access Levels for Fields/Methods by other stuff

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

I Mostly concerned with public and private, read about
others on your own

I Most projects will specify required public methods, maybe
public fields

I Most of the time you are free to create additional private
methods and fields to accomplish your task

Official docs on access modifiers
http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

15

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html


Accessor, Mutator, Class Invariant

I Common Java convention is
to make all fields private

I private fields are only
visible within on .java file
accessor and mutator
methods provided to work
with object data

I Accessor often referred to as
"getter" as in getEggs()

I Mutator sometimes called a
"setters" but often have
other names, intended to
change object data

I Important: changing object
data preserves any invariants
of the class: related fields

public class OOOmelet{
public int eggs;
public int cheese;

// Retrieve number of eggs
public int getEggs(){

return this.eggs;
}

// Add an egg to the omelet
// if cooking hasn’t begun
public void addEgg(){

if(this.cookedFor > 0){
System.out.println("Yuck");

}
else{

this.eggs++;
}

}
}

16



Invariants in Classes

OOOmelets (In-class)

I Once cooking starts, cannot
add eggs

I Can only add time to
cooking, not subtract

I Extra ingredients must be
specified up front

Linear Equations (Lab09)

I y = m · x + b
I Left and right sides of

equation are always equal
I Changing x updates y, vice

versa

Portfolio (Proj4)

I Adding a stock increases the
stockCount

I Buying stocks deducts from
cash

I Selling stocks adds to cash
I Cannot withdraw() more

cash than is available
I Cannot sell more shares than

available

17



Why Getters vs. Public Fields
I Simple objects can probably have public fields, direct access

I Don’t do this as you’ll be penalized on manual inspection
I Slightly more complex objects like OOOmelet might get away

with public fields but would allow ..
I "Uncooking" of omelets: o.cookedFor = 0.0;
I Add eggs after being cooked
I Using private fields prevents this

I Complex objects like Printstream from System.out must
preserve invariants: different parts must agree with each
other.

I Changing one field might screw up another one
I Deny direct access via private fields
I Mutation methods like println() keep all fields synchronized

Abstraction Up and Down
Break a problem into smaller parts. Define public methods
between those parts. Think about internal details for one part at a
time. Recurse for subparts as needed.

18



private Fields / public methods
OOOmelet.java

public class OOOmelet{
private int eggs;
private int cheese;
private double cookedFor;
private String extras;

public double getEggs(){
return this.eggs;

}
public double getCookTime(){

return this.cookedFor;
}
public void addEgg(){

...
}
...

}

Must access fields through public
methods

UseOOOmelet.java

public class UseOOOmelet{
public static

void main(String args[]){
OOOmelet om =

new OOOmelet(2,4,"ham");

// CORRECT: public methods
int eggs = om.getEggs();
om.addEgg();

// INCORRECT: No such symbol
om.eggs = 5; // compile error

// CORRECT: public method
om.cookeFor(1.0);

// INCORRECT: No such symbol
om.cookedFor=0.0; // compile error

}
}

19



private Fields Visible only in One Java File

I private means
visible in current Java
File only

I Within
OOOmelet.java, the
name eggs is visible
for all OOOmelets

I Even if that name is
associated with "some
other" OOOmelet

I See moreEggs()
method: accessing
that.eggs despite it
being a private
variable

// OOOmelet.java
public class OOOmelet{

private int eggs;
// Return true if this omelet has more
// eggs than the parameter omelet
public boolean moreEggsThan(OOOmelet that){

if(this.eggs > that.eggs){ // OK!!!
return true;

}
else{

return false;
}

}
}
// OOOmeletMain.java
public class OOOmeletMain{

public static void main(String args[]){
OOOmelet small = new OOOmelet(2,5,"ham");
OOOmelet large = new OOOmelet(5,8,"bacon");
boolean moreEggs = small.moreEggsThan(large);

}
}

20



Name Binding Resolution Mechanics

I Java follows rules to determine where names are defined:
name binding

I Resolution matters for bare names: no class/object association
om.eggs = 5; // specific object’s field
this.cookedFor = 5; // specific object’s field
int c = om.getCalories(); // specific object’s method
this.addEgg); // specific object’s method
Omelet.egg_cals = 123; // specific class (static)
cookedFor = 1.23; // BARE NAME for field
addEgg(); // BARE NAME for method

I To determine where name var binds look at
1. Local variables
2. Parameters to method
3. Fields of class
4. Potentially outside class (won’t do this in CS 1103)

21



Exercise: Binding Resolution
I NUMBERS declare a

name
I LETTERS are bare

name references
I Match LETTERS to

NUMBERS to match
bare name to where it
is defined

To determine where name
var binds look at
1. Local variables
2. Parameters to

method
3. Fields of class

1 public class OOOmelet{
2 private int eggs; // 1
3 private int cheese; // 2
4 private double cookedFor; // 3
5 private String extras; // 4
6
7 public int getEggs(){ // 5
8 return eggs; //// A
9 }

10
11 public void cookFor(double time){
12 double cookedFor = // 6
13 this.cookedFor; //// B
14 cookedFor += time; //// C
15 }
16
17 public void addCheese(int cheese){ // 7
18 cheese += cheese;
19 //// D and E
20 }
21
22 public boolean foodPoisoningIminent(){
23 return cookedFor < (1.0 * getEggs());
24 //// F G
25 }
26 } 22



Answers: Binding Resolution

Let Num Note
A 1 field eggs
B 2 field cookedFor
C 6 local cookedFor
D 7 param cheese
E 7 param cheese
F 3 field cookedFor
G 5 this.getEggs()

1 public class OOOmelet{
2 private int eggs; // 1
3 private int cheese; // 2
4 private double cookedFor; // 3
5 private String extras; // 4
6
7 public int getEggs(){ // 5
8 return eggs; //// A
9 }

10
11 public void cookFor(double time){
12 double cookedFor = // 6
13 this.cookedFor; //// B
14 cookedFor += time; //// C
15 }
16
17 public void addCheese(int cheese){ // 7
18 cheese += cheese;
19 //// D and E
20 }
21
22 public boolean foodPoisoningIminent(){
23 return cookedFor < (1.0 * getEggs());
24 //// F G
25 }
26 }

23



Exercise: Gotchya’s with Constructor Name Binding
I Common to initialize fields in constructors
I Determine what’s wrong with these constructors
I Give a correct constructor

public class OOOmelet{
public int eggs;
public int cheese;
public double cookedFor;
public String extras;

// BAD CONSTRUCTOR 1
public OOOmelet(int eggs,

int cheese,
String extras)

{
eggs = eggs;
cheese = cheese;
extras = extras;
cookedFor = 0.0;

}

public class OOOmelet{
public int eggs;
public int cheese;
public double cookedFor;
public String extras;

// BAD CONSTRUCTOR 2
public OOOmelet(int eg,

int ch,
String ex)

{
int eggs = eg;
int cheese = ch;
String extras = ex;
double cookedFor = 0.0;

}

24



Answer: Gotchya’s with Constructor Name Binding
I The names of parameters like eggs or local variable int eggs

can shadow fields
I Fields never get modified as shadows receive assignments
I Use this.name = name; or change names of parameters

public class OOOmelet{
public int eggs;
public int cheese;
public double cookedFor;
public String extras;

// CORRECT CONSTRUCTOR 1
// Use this.field to specify
// field initialization
public OOOmelet(int eggs,

int cheese,
String extras)

{
this.eggs = eggs;
this.cheese = cheese;
this.extras = extras;
this.cookedFor = 0.0;

}

public class OOOmelet{
public int eggs;
public int cheese;
public double cookedFor;
public String extras;

// CORRECT CONSTRUCTOR 2
// Vary names of parameters to
// avoid conflicts
public OOOmelet(int eg,

int ch,
String ex)

{
eggs = eg;
cheese = ch;
extras = ex;
cookedFor = 0.0;

} 25



Multiple Methods: Overloading
I In Java, several methods can share the same name SO LONG

as each has a distinct a number and/or type of arguments
I Called overloading a method

public class OOOmelet{

// Constructor to initialize fields to
// given values. cookedFor is always
// initialized to 0.0.
public OOOmelet(int eggs,

int cheese,
String extras) {

this.eggs = eggs;
this.cheese = cheese;
this.extras = extras;
this.cookedFor = 0.0;

}

// Constructor to initialize fields to
// given values. extras is blank and
// cookedFor is 0.0.
public OOOmelet(int eggs,

int cheese) {
this.eggs = eggs;
this.cheese = cheese;
this.extras = "";
this.cookedFor = 0.0;

}

// Add an egg to the omelet
public void addEgg(){

if(this.cookedFor > 0){
System.out.println("Yuck");

}
else{

this.eggs++;
}

}
// Add multiple eggs to the omelet
public void addEgg(int nEggs){

for(int i=0; i<nEggs; i++){
addEgg();

}
}
public static void main(String args[]){

OOOmelet omA = new OOOMelet(3,2,"ham");
OOOmelet omB = new OOOMelet(4,6);
omA.addEgg(2);
omB.addEgg();

}

26



Exercise: Review Questions on Object-Oriented Objects
1. Describe the difference between a static field and a

non-static field. How many of each exit when a class is used?
2. The class Foo has a static method called

double bar(int x, String s). Describe how to
invoke/call this method.

3. What is a constructor? How are they named? Give an
example of how they are called.

4. The class Flurbo has a non-static method named
int schmeckle(double z). Describe how to invoke/call
it.

5. In what context can the keyword this be used? Where can it
not be used?

6. What does the keyword this refer to? Can it ever be null?
7. What order does the Java compiler search for bindings of bare

variable names to variable declarations?
8. Why would one choose to make fields of a class private?
9. What are accessor methods? What are mutator methods?

27


