CSCI 2011: Introduction and Basic Logic

Chris Kauffman

Last Updated: Fri Jun 15 16:55:22 CDT 2018

Logistics

Reading: Rosen

Now: Ch 1.1 - 1.3, Skim Ch 12

Next: Ch 1.4 - 1.6

Goals

- Motivations for Discrete Math
- Propositional Logic
- Course Mechanics

Exercise: Continuous vs Discrete Mathematics

continuous (adjective) forming an unbroken whole.

discrete (adjective) individually separate and distinct.

- Calculus focuses primarily on continuous mathematics involving the Real and Complex sets of numbers
- Computer science gets much more mileage out of discrete math. Why?
- After a year of programming, everyone should be familiar with two common forms of division.
 - $9 \div 2 \rightarrow 4.5$ \div_{real} a continuous function $9 \div 2 \rightarrow 4$ rem $1 \div_{integer}$ a discrete function
- ► Aside from the set of Integers, give some other common discrete objects you've seen in computer science

Answers: Continuous vs Discrete Mathematics

Computer scientists get much more mileage out of discrete math. Why?

- Discrete math focuses on objects that may be finite or infinite but are not infinitely divisible.
- ► CS deals with 0's and 1's which are inherently discrete.
- CS deals with algorithms that have discrete steps and often operate on discrete objects like...

Common Discrete Objects seen in CS

- Memory Cells, Arrays, Strings, Linked Lists, Boolean variables, Trees, Graphs, algorithms in some language
- Sets of any of theses
- Maps of one kind to another name2string : dictionary of string to int
- Equivalently Functions which map one set to another: length : function 'a list -> int

First Steps

- Start with basic propositional logic with true/false
- Learn some notation, build up to predicate logic and proofs
- ► Then move on to consider a wider variety of objects as the course progresses
- Relate the objects to practice of CS
- Prove properties of note about them

Propositions and Connectives

- Propositions are statements about the world
- Often they have a variable name associated with them as in
 - p: Jane is studying Computer Science
 - q: Jane is taking CSCI 2011 in Summer 2018
 - r: Jane is in Keller Hall Room 3-115
- Variable names allow symbolic manipulation with :
 - ¬p **Negation or Inverse**, NOT p as in Jane is NOT studying computer science.
 - $p \land q$ Conjunction, p AND q as in Jane is studying Computer Science AND is taking CSCI 2011 in Summer 2018.
 - $p \lor r$ **Disjunction**, p OR r as in Jane is studying Computer Science OR she is in Keller Hall Room 3-115.
 - $q \rightarrow r$ Implication, if p then q as in
 If Jane is taking CSCI 2011 in Summer 2018
 then she is in Keller Hall Room 3-115.

Exercise: Propositions To and From English

Propositions:

- p : Variable x is an even integer.
- ightharpoonup q: Variable y is an odd integer.
- ightharpoonup r: The sum of x and y is even.

Symbols to English

In English express

- $\triangleright p \land q$
- $ightharpoonup \neg r$
- $(\neg p \land q) \to r$

What about expressing the statement *x* is odd in symbols?

English to Symbols

In symbols express

- Variable y is NOT an odd number.
- x is even AND y is NOT odd.
- ► IF the sum of x and y is even THEN x is even AND y is NOT odd OR x is NOT even AND y is odd.

Answers: Propositions To and From English

- p : Variable x is an even integer.
- ightharpoonup q: Variable y is an odd integer.
- ightharpoonup r: The sum of x and y is even

Symbols to English

In English express

- $p \land q$ x is even AND y is odd
- → r
 y is not odd
- (¬p ∧ q) → ¬r IF x is NOT even AND y is odd THEN the sum of x and y is NOT even.

English to Symbols

In symbols express

- Variable y is NOT an odd integer.
 - ¬q
- x is even AND y is NOT odd.
 - ▶ p ∧ ¬q
- ► IF the sum of x and y is even THEN x is even AND y is NOT odd OR x is NOT even AND y is odd.
 - $r \to (p \land \neg q) \lor (\neg p \land q)$

Answers: Propositions To and From English

What about expressing the statement *x* is odd in symbols?

- ightharpoonup $\neg p$: x is NOT even so x must be odd
- ► **Assumes** *x* has to be an an integer, the **domain** *x* is integers
- ▶ If x can be real or complex, then this negation doesn't work
 - ► Is 4.53 even or odd?
 - What about $$\pi = 3.14159...$$
 - ▶ How about $i = \sqrt{-1}$?

Truth Tables

- ▶ Propositions are statement, **true or false** at a given moment.
 - p: It is raining outside.
 - p q : I have an umbrella.
- ► A **truth table** for a logical connective shows the value of the combined statement
- Example: Truth table for Implication is defined as follows

p	q	p o q	IF it is raining THEN I have umbrella.
Т	Т	Т	Yes raining, yes umbrella
T	F	F	Yes raining, where's the umbrella?
F	Т	Т	Not raining, don't care about umbrella
F	F	Т	Not raining, don't care about umbrella

Implication is only false when left side premise is True and right side conclusion is False Exercise: Truth Tables for

Define the truth tables for the following based on your experience with programming

- ► ∧ : Conjunction (logical ... ___ ?)
- ▶ ∨ : Disjunction (logical ... ___ ?)

Answers: Truth Tables

		Conjunction	Disjunction
		AND	OR
р	q	$p \wedge q$	$p \lor q$
Т	Т	Т	Т
Т	F	F	T
F	Т	F	T
F	F	F	F

- Programming language logical AND (like a && b) and logical OR (like a || b) are modeled after the mathematical notions that long preceded them.
- ► There are also usually bitwise and/or operators in programming languages (C/Java: a & b and a | b). More on these later.

A Couple other Common Logical Connectives

- $p \leftrightarrow q$ **Biconditional**, p if and only if q as in Jane gets 3% bonus credit if and only if she participates a lot during lectures.
- $p \oplus q$ Exclusive Or, p XOR q p or q but not both and not neither

 Would you like fries or tater tots with that?

р	q	$p \leftrightarrow q$	$p \oplus q$
Т	Т	Т	F
Т	F	F	Т
F	Т	F	T
F	F	Т	F

- Many programming languages have a bitwise XOR operator C/Java: a ^ b
- Few have a logical XOR or any biconditional operator

Notation Conventions

Operator Precedence

 Like all languages, logic notation has a notion of operator precedence

$$Highest: \neg, \land, \lor, \oplus, \rightarrow, \leftrightarrow :Lowest$$

Means the following are equivalent

$$p \lor q \land r$$
 is $p \lor (q \land r)$
 $\neg p \to q \lor r$ is $(\neg p) \to (q \lor r)$
 $p \to q \land r \leftrightarrow w$ is $(p \to (q \land r)) \leftrightarrow w$ omg, stop!

Notation Varies by Discipline

Logician:		EE/ECE	Logician:		EE/ECE
$\neg p$	is	\overline{p}	$p \wedge q$	is	pq
$p \lor q$	is	p+q	$p \wedge (\neg q \vee r)$	is	$p(\overline{q}+r)$

▶ Be aware of both but we'll favor the Logician Notation in

Exercise: Bitwise Operations

- ► In actual computers, True/False are usually represented in **bits** as 1/0
- Often "variables" are realized as memory cells which hold 8, 16, 32, or 64 bits
- Most computer hardware can perform bitwise operations: logical operations on all bits
- Example with **conjunction**: $1101 \land 1011$ which is

Compute the following results $1\ 1011 \lor 0\ 0010$ which is

1 1011 V 0 0010

 $(00\ 1101 \land 11\ 0101) \oplus 01\ 1011$ which is

00 1101 \(\) 11 0101

⊕ 01 1011

Answers: Bitwise Operations

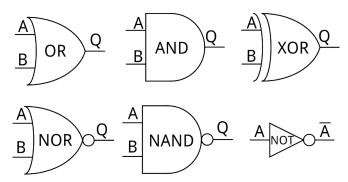
- ► In actual computers, True/False are usually represented in **bits** as 1/0
- ➤ Often "variables" are realized as memory cells which hold 8, 16, 32, or 64 bits
- Most computer hardware can perform bitwise operations: logical operations on all bits
- Example with **conjunction**: $1101 \land 1011$ which is

Compute the following results $1\ 1011 \lor 0\ 0010$ which is

 $(00\ 1101 \land 11\ 0101) \oplus 01\ 1011$ which is

Logic Gates

- Abstract physical device that implements a logical connectives
- May be implemented with a variety of physical devices including transistors, vacuum tubes, mechanical devices, and water pressure
- Physical implementations have many trade-offs: cost, speed, difficulty to manufacture, wetness



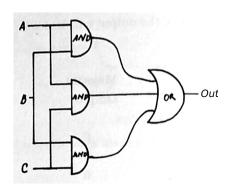
Combinatorial Circuits

- Combination of wires/gates with output solely dependent on input
- No storage of information involved / stateless
- Distinguished from sequential circuits which involve storage
- Can compute any Boolean functions of inputs
 - ▶ Set inputs as 0/1
 - After a delay, outputs will be set accordingly
- Examples: AND, OR, NOT are obvious

Exercise: Example Combinatorial Circuit

- Fill in the Truth Table for this circuit with
 - ightharpoonup 0 = False
 - ▶ 1 = True

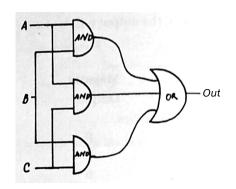
Α	В	С	Out
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?



- Write a symbolic expression for the output of the circuit
- ▶ Speculate on the "meaning" of this circuit

Answer: Example Combinatorial Circuit

Α	В	C	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1



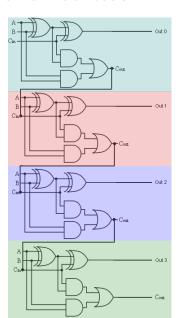
- ▶ Output is: $(A \land B) \lor (A \land C) \lor (B \land C)$
- ► A "majority" circuit: Out is 1 when two or more of A,B,C are 1

Adding with Gates

- Gates can be used for adding multi-bit numbers
- Basis for computer arithmetic
- Make use of a chain of circuits call **full adders** with the resulting truth table

Α	В	Out	Carry
0000	0000	0000	0
0000	0001	0001	0
0001	0000	0001	0
0001	0001	0010	0
0001	0010	0011	0
0010	0001	0011	0
0001	0011	0100	0
0011	0011	0110	0
0001	1110	1111	0
0001	1111	0000	1

Chain of 4-bit Adders



Propositional Logic

	Logic Type	AKA	Features
Now	Propositional Logic	Boolean Logic	Truth Vars, Connectives
Later	Predicate Logic	First Order	Predicates, Quantifiers over Vars
Nope	Higher Order Logic(s)	Brain-breaker	Quantifiers over Predicates/Funcs

Will seek to understand some of the techniques and properties of Propositional Logic, then do some work with First Order Logic

Terminology

Tautology A statement that is true regardless of how truth values are assigned to propositions/variables Ex: $p \lor \neg p$

Contradiction A statement that is false regardless of how truth values are assigned to propositions/variables Ex: $p \land \neg p$

Exercsie: Tautology, Contradiction, or Neither

Determine if each of the following symbolic statements is a Tautology, Contradiction, or Neither

- 1. $\neg p \lor q \lor p$
- 2. $p \rightarrow (q \land p)$
- 3. $p \rightarrow (q \lor p)$
- 4. $(p \rightarrow q) \lor (q \rightarrow p)$
- 5. $\neg(\neg p \lor q) \leftrightarrow (p \rightarrow q)$
- 6. $(p \oplus \neg q) \leftrightarrow (\neg p \oplus q)$

Answers: Tautology, Contradiction, or Neither

Determine if each of the following symbolic statements is a Tautology, Contradiction, or Neither

- 1. $\neg p \lor q \lor p$
 - ► Tautology: true with any truth assignment, mostly due to $p \lor \neg p$
- 2. $p \rightarrow (q \land p)$
 - Neither: p = T, q = F yields False, p = F yields True
- 3. $p \rightarrow (q \lor p)$
 - ► Tautology: true with any truth assignment
- 4. $(p \rightarrow q) \lor (q \rightarrow p)$
 - ► Tautology: true with any truth assignment
- 5. $\neg(\neg p \lor q) \leftrightarrow (p \rightarrow q)$
 - ► Contradiction: false with any truth assignment
- 6. $(p \oplus \neg q) \leftrightarrow (\neg p \oplus q)$
 - Tautology: true with any truth assignment

Logical Equivalences

- ► Two statements A and B are **logically equivalent** if any of the following hold about them
 - 1. A and B have the same truth table
 - 2. $A \leftrightarrow B$ is a tautology (always true)
 - 3. A can be transformed into B using equivalences

Example: Show that $p \to q$ is equivalent to $\neg p \lor q$

Via truth table equivalence / biconditional tautology

p	q	$\neg p \lor q$	p o q	$(\neg p \lor q) \leftrightarrow (p \to q)$
Т	Т	Т	T	Т
Т	F	F	F	Т
F	Т	T	Т	Т
F	F	Т	T	Т
				Tautology

Exercise: De Morgan's Laws

- ► These two are important enough to get their own category
- "Distribution" of a negation to parenthesized terms

Show
$$\neg(p \land q)$$
 and $\neg p \lor \neg q$ are equivalent

Show
$$\neg(p \lor q)$$
 and $\neg p \land \neg q$ are equivalent

Answers: De Morgan's Laws

- ▶ These two are important enough to get their own category
- "Distribution" of a negation to parenthesized terms

Show $\neg(p \land q)$ and $\neg p \lor \neg q$ are equivalent

Show $\neg(p \lor q)$ and $\neg p \land \neg q$ are equivalent

р	q	¬ (p ∧ q)	$\neg p \lor \neg q$
Т	Т	F	F
T	F	T	Т
F	Т	Т	Т
F	F	Т	Т

So
$$\neg(p \land q) \leftrightarrow \neg p \lor \neg q$$
 is a tautology

So
$$\neg(p \lor q) \leftrightarrow \neg p \land \neg q$$
 is a tautology

Logical Equivalences

- Large number of common logical equivalences
- ► Equivalences denoted by the "equivalence" symbol ≡ as in

$$p \lor q \equiv q \lor p$$

- Reads: $p \lor q$ is equivalent to $q \lor p$
- Note that ≡ is NOT a logical connective itself; its "higher level" than that, outside and above of the language of Propositional Logic

TABLE 6 Logical Equivalences.	
Equivalence	Name
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \vee p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \vee q) \vee r \equiv p \vee (q \vee r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg(p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \wedge (p \vee q) \equiv p$	
$p \vee \neg p \equiv \mathbf{T}$	Negation laws
$p \land \neg p \equiv \mathbf{F}$	

Derivations with Equivalence

- Can show equivalence by deriving one statement from another
- Start with one statement
- Substitute logically equivalent expressions until the other expression is found

Show
$$p o (q \lor \neg p) \equiv \neg p \lor q$$

$$p o (q \lor \neg p) \equiv (\neg p) \lor (q \lor \neg p) \qquad \text{by}$$

$$p o (q \lor \neg p) \equiv (\neg p) \lor (q \lor \neg p)$$
 by $A \to B \equiv \neg A \lor B$
 $\equiv (\neg p) \lor (\neg p \lor q)$ by Commutative Laws
 $\equiv (\neg p \lor \neg p) \lor q$ by Associative Laws
 $\equiv (\neg p) \lor q$ by Idempotent Laws
 $\equiv \neg p \lor q$ Equivalence Proved

There is a convention in mathematical writing to end "proofs" with a symbol like \blacksquare or \square . This may be because it *helps readers* skip past the proofs more easily. $\textcircled{\blacksquare}$

Exercise: Equivalence via Derivation

Show:
$$\neg(p \rightarrow q) \equiv p \land \neg q$$
 using a derivation

Show: $(p \land q) \to (p \lor q)$ is a Tautology This can be done by showing $(p \land q) \to (p \lor q) \equiv \mathit{True}$

Answers: Equivalence via Derivation

Show:
$$\neg(p \rightarrow q) \equiv p \land \neg q$$
 using a derivation

$$\neg(p \to q) \quad \equiv \quad \neg(\neg p \lor q) \qquad \text{by } A \to B \equiv \neg A \lor B$$

$$\equiv \quad \neg \neg p \land \neg q \qquad \text{by De Morgan's Laws}$$

$$\equiv \quad p \land \neg q \qquad \text{by Double Negation Law} \blacksquare$$

Show:
$$(p \land q) \rightarrow (p \lor q)$$
 is a Tautology

This can be done by showing $(p \land q) \rightarrow (p \lor q) \equiv True$
 $(p \land q) \rightarrow (p \lor q)$
 $\equiv \neg (p \land q) \lor (p \lor q)$ by $A \rightarrow B \equiv \neg A \lor B$
 $\equiv (\neg p \lor \neg q) \lor (p \lor q)$ by De Morgan's Laws

 $\equiv (\neg p \lor p) \lor (\neg q \lor q)$ by Associative/Commutative Laws

 $\equiv (True) \lor (True)$ by Negation Laws

 $\equiv True$ by Idempotent Laws

Proofs in Propositional Logic

- ▶ A **proof** is a formal description of why some property is true (or false, or unknowable)
- So far seen several methods to prove two propositional logic statements are equivalent, prove something is a tautology/contradiction etc.
 - Remind me: What are those methods again?
- In Propositional Logic, Proofs are relatively easy as some methods always result in a proof or a counter-example, a specific situation in which the desired property does NOT hold
- ► Above Propositional Logic, this is no longer true and proofs become harder

Exercise: Prove or Disprove

Prove or Disprove the following statements by any means.

A:
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

B:
$$\neg(p \rightarrow q) \equiv p \land \neg q$$

C:
$$p \rightarrow q \equiv q \rightarrow \neg p$$

Answers: Prove or Disprove

Prove or Disprove the following statements by any means.

A:
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$
: Proved by truth tables

р	q	$p \leftrightarrow q$	$A \wedge B$	A:(p o q	B:(q o p)	
Т	Т	Т	T	Т	Т	
T	F	F	F	F	Т	
F	Т	F	F	Т	F	
F	F	T	Т	Т	Т	

B:
$$\neg(p \rightarrow q) \equiv p \land \neg q$$
: Proved by derivation

$$\neg(p \to q) \equiv \neg(\neg p \lor q)$$
 by $A \to B \equiv \neg A \lor B$
 $\equiv p \land \neg q)$ by De Morgan's \blacksquare

C: $p \rightarrow q \equiv q \rightarrow \neg p$: Disproved by counter example

р	q	p o q	q ightarrow eg p	
Т	Т	T	F	Not Matching

Proofs of Implication

- Common properties that are proved involve the implication and take the following statement structure Prove that IF so-and-so is true, THEN what-not is also true.
- Example:
 - p: a and b are even numbers
 - q: sum of a and b is even
 - ightharpoonup p
 ightarrow q : IF a and b are even numbers, THEN their sum is even.
 - ▶ Prove $p \rightarrow q$
- We'll prove that implication later
- Main point: often proofs have the structure of
 - Hypotheses/Assumptions (left side of implication)
 - Conclusion (right side of implication)

Converse, Contrapositive, Inverse

Several variants of implication also commonly arise in proofs. These are as follows.

Converse $q \rightarrow p$ as in IF the sum of a and b is even, THEN a and b are even. (this is not true and can be disproved)

Contrapositive $\neg q \rightarrow \neg p$ as in IF the sum of a and b is NOT even, then a and b are NOT (both) even. (this is true and can be proved)

Inverse $\neg p \rightarrow \neg q$ as in

If a and b are NOT even, THEN their sum is NOT even. (not true in the case that a and b are both not even).

Exercise: State in English

Exercise 1.27 c)

IF a positive integer has no divisors other than 1 and itself, THEN it is a prime.

State in English the

- 1. Converse: $q \rightarrow p$
- 2. Contrapositive: $\neg q \rightarrow \neg p$
- 3. Inverse: $\neg p \rightarrow \neg q$

Answers: State in English

Exercise 1.27 c)

IF a positive integer has no divisors other than 1 and itself, THEN it is a prime.

State in English the

- 1. Converse: $q \rightarrow p$ IF a positive integer is prime, THEN it has no divisors other than 1 and itself.
- 2. Contrapositive: $\neg q \rightarrow \neg p$ IF a positive integer is NOT prime, THEN it DOES have divisors other than 1 and itself.
- 3. Inverse: $\neg p \rightarrow \neg q$ IF a positive integer DOES have divisors other than 1 and itself, THEN it is NOT prime.