
CSCI 2011: Introduction and Basic Logic

Chris Kauffman

Last Updated:
Fri Jun 15 16:55:22 CDT 2018

1

Logistics

Reading: Rosen
▶ Now: Ch 1.1 - 1.3, Skim Ch 12
▶ Next: Ch 1.4 - 1.6

Goals
▶ Motivations for Discrete Math
▶ Propositional Logic
▶ Course Mechanics

2

Exercise: Continuous vs Discrete Mathematics

continuous (adjective) forming an unbroken whole.
discrete (adjective) individually separate and distinct.

▶ Calculus focuses primarily on continuous mathematics
involving the Real and Complex sets of numbers

▶ Computer science gets much more mileage out of discrete
math. Why?

▶ After a year of programming, everyone should be familiar with
two common forms of division.

9 ÷ 2 → 4.5 ÷real a continuous function
9 ÷ 2 → 4 rem 1 ÷integer a discrete function

▶ Aside from the set of Integers, give some other common
discrete objects you’ve seen in computer science

3

Answers: Continuous vs Discrete Mathematics
Computer scientists get much more mileage out of discrete math.
Why?
▶ Discrete math focuses on objects that may be finite or infinite

but are not infinitely divisible.
▶ CS deals with 0’s and 1’s which are inherently discrete.
▶ CS deals with algorithms that have discrete steps and often

operate on discrete objects like…
Common Discrete Objects seen in CS
▶ Memory Cells, Arrays, Strings, Linked Lists, Boolean variables,

Trees, Graphs, algorithms in some language
▶ Sets of any of theses
▶ Maps of one kind to another

name2string : dictionary of string to int
▶ Equivalently Functions which map one set to another:

length : function 'a list -> int

4

First Steps

▶ Start with basic propositional logic with true/false
▶ Learn some notation, build up to predicate logic and proofs
▶ Then move on to consider a wider variety of objects as the

course progresses
▶ Relate the objects to practice of CS
▶ Prove properties of note about them

5

Propositions and Connectives
▶ Propositions are statements about the world
▶ Often they have a variable name associated with them as in

▶ p: Jane is studying Computer Science
▶ q: Jane is taking CSCI 2011 in Summer 2018
▶ r: Jane is in Keller Hall Room 3-115

▶ Variable names allow symbolic manipulation with :
¬p Negation or Inverse, NOT p as in

Jane is NOT studying computer science.
p ∧ q Conjunction, p AND q as in

Jane is studying Computer Science AND is
taking CSCI 2011 in Summer 2018.

p ∨ r Disjunction , p OR r as in
Jane is studying Computer Science OR she is in
Keller Hall Room 3-115.

q → r Implication, if p then q as in
If Jane is taking CSCI 2011 in Summer 2018
then she is in Keller Hall Room 3-115.

6

Exercise: Propositions To and From English
Propositions:
▶ p : Variable x is an even integer.
▶ q : Variable y is an odd integer.
▶ r : The sum of x and y is even.

Symbols to English
In English express
▶ p ∧ q
▶ ¬r
▶ (¬p ∧ q) → r

What about expressing the
statement x is odd in symbols?

English to Symbols
In symbols express
▶ Variable y is NOT an odd

number.
▶ x is even AND y is NOT

odd.
▶ IF the sum of x and y is

even THEN x is even AND y
is NOT odd OR x is NOT
even AND y is odd.

7

Answers: Propositions To and From English
▶ p : Variable x is an even integer.
▶ q : Variable y is an odd integer.
▶ r : The sum of x and y is even

Symbols to English
In English express
▶ p ∧ q

x is even AND y is odd
▶ ¬r

y is not odd
▶ (¬p ∧ q) → ¬r

IF x is NOT even AND y is
odd THEN the sum of x and
y is NOT even.

English to Symbols
In symbols express
▶ Variable y is NOT an odd

integer.
▶ ¬q

▶ x is even AND y is NOT
odd.
▶ p ∧ ¬q

▶ IF the sum of x and y is
even THEN x is even AND y
is NOT odd OR x is NOT
even AND y is odd.
▶ r → (p ∧ ¬q) ∨ (¬p ∧ q)

8

Answers: Propositions To and From English

What about expressing the statement x is odd in symbols?
▶ ¬p: x is NOT even so x must be odd
▶ Assumes x has to be an an integer, the domain x is integers
▶ If x can be real or complex, then this negation doesn’t work

▶ Is 4.53 even or odd?
▶ What about $π = 3.14159…$
▶ How about i =

√
−1?

9

Truth Tables

▶ Propositions are statement, true or false at a given moment.
▶ p : It is raining outside.
▶ q : I have an umbrella.

▶ A truth table for a logical connective shows the value of the
combined statement

▶ Example: Truth table for Implication is defined as follows

p q p → q IF it is raining THEN I have umbrella.
T T T Yes raining, yes umbrella
T F F Yes raining, where’s the umbrella?
F T T Not raining, don’t care about umbrella
F F T Not raining, don’t care about umbrella

▶ Implication is only false when left side premise is True and
right side conclusion is False

10

Exercise: Truth Tables for

Define the truth tables for the following based on your experience
with programming
▶ ∧ : Conjunction (logical … __ ?)
▶ ∨ : Disjunction (logical … __ ?)

11

Answers: Truth Tables

Conjunction Disjunction
AND OR

p q p ∧ q p ∨ q
T T T T
T F F T
F T F T
F F F F

▶ Programming language logical AND (like a && b) and logical
OR (like a || b) are modeled after the mathematical notions
that long preceded them.

▶ There are also usually bitwise and/or operators in
programming languages (C/Java: a & b and a | b). More
on these later.

12

A Couple other Common Logical Connectives
p ↔ q Biconditional, p if and only if q as in

Jane gets 3% bonus credit if and only if she
participates a lot during lectures.

p ⊕ q Exclusive Or, p XOR q
p or q but not both and not neither
Would you like fries or tater tots with that?

p q p ↔ q p ⊕ q
T T T F
T F F T
F T F T
F F T F

▶ Many programming languages have a bitwise XOR operator
C/Java: a ^ b

▶ Few have a logical XOR or any biconditional operator
13

Notation Conventions
Operator Precedence
▶ Like all languages, logic notation has a notion of operator

precedence

Highest:¬, ∧, ∨, ⊕, →, ↔ :Lowest

▶ Means the following are equivalent
p ∨ q ∧ r is p ∨ (q ∧ r)
¬p → q ∨ r is (¬p) → (q ∨ r)
p → q ∧ r ↔ w is (p → (q ∧ r)) ↔ w omg, stop!

Notation Varies by Discipline
Logician: EE/ECE Logician: EE/ECE
¬p is p p ∧ q is pq
p ∨ q is p + q p ∧ (¬q ∨ r) is p(q + r)

▶ Be aware of both but we’ll favor the Logician Notation in
lecture and assignments

14

Exercise: Bitwise Operations
▶ In actual computers,

True/False are usually
represented in bits as 1/0

▶ Often ”variables” are
realized as memory cells
which hold 8, 16, 32, or 64
bits

▶ Most computer hardware
can perform bitwise
operations: logical
operations on all bits

▶ Example with conjunction:
1101 ∧ 1011 which is

1101
∧ 1011

1001

Compute the following results
1 1011 ∨ 0 0010 which is

1 1011
∨ 0 0010

(00 1101 ∧ 11 0101) ⊕ 01 1011
which is

00 1101
∧ 11 0101

⊕ 01 1011

15

Answers: Bitwise Operations
▶ In actual computers,

True/False are usually
represented in bits as 1/0

▶ Often ”variables” are
realized as memory cells
which hold 8, 16, 32, or 64
bits

▶ Most computer hardware
can perform bitwise
operations: logical
operations on all bits

▶ Example with conjunction:
1101 ∧ 1011 which is

1101
∧ 1011

1001

Compute the following results
1 1011 ∨ 0 0010 which is

1 1011
∨ 0 0010

1 1011

(00 1101 ∧ 11 0101) ⊕ 01 1011
which is

00 1101
∧ 11 0101

00 0101
⊕ 01 1011

01 1110

16

Logic Gates
▶ Abstract physical device that implements a logical connectives
▶ May be implemented with a variety of physical devices

including transistors, vacuum tubes, mechanical devices, and
water pressure

▶ Physical implementations have many trade-offs: cost, speed,
difficulty to manufacture, wetness

17

http://www.blikstein.com/paulo/projects/project_water.html

Combinatorial Circuits

▶ Combination of wires/gates with output solely dependent on
input

▶ No storage of information involved / stateless
▶ Distinguished from sequential circuits which involve storage
▶ Can compute any Boolean functions of inputs

▶ Set inputs as 0/1
▶ After a delay, outputs will be set accordingly

▶ Examples: AND, OR, NOT are obvious

18

Exercise: Example Combinatorial Circuit
▶ Fill in the Truth Table for

this circuit with
▶ 0 = False
▶ 1 = True

A B C Out
0 0 0 ?
0 0 1 ?
0 1 0 ?
0 1 1 ?
1 0 0 ?
1 0 1 ?
1 1 0 ?
1 1 1 ?

▶ Write a symbolic expression for the output of the circuit
▶ Speculate on the ”meaning” of this circuit

19

Answer: Example Combinatorial Circuit

A B C Out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

▶ Output is: (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C)
▶ A ”majority” circuit: Out is 1 when two or more of A,B,C are

1

20

Adding with Gates
▶ Gates can be used for

adding multi-bit numbers
▶ Basis for computer

arithmetic
▶ Make use of a chain of

circuits call full adders with
the resulting truth table
A B Out Carry

0000 0000 0000 0
0000 0001 0001 0
0001 0000 0001 0
0001 0001 0010 0
0001 0010 0011 0
0010 0001 0011 0
0001 0011 0100 0
0011 0011 0110 0
0001 1110 1111 0
0001 1111 0000 1

…

Chain of 4-bit Adders

21

Propositional Logic

Logic Type AKA Features
Now Propositional Logic Boolean Logic Truth Vars, Connectives
Later Predicate Logic First Order Predicates, Quantifiers over Vars
Nope Higher Order Logic(s) Brain-breaker Quantifiers over Predicates/Funcs

Will seek to understand some of the techniques and properties of
Propositional Logic, then do some work with First Order Logic
Terminology

Tautology A statement that is true regardless of how truth
values are assigned to propositions/variables
Ex: p ∨ ¬p

Contradiction A statement that is false regardless of how truth
values are assigned to propositions/variables
Ex: p ∧ ¬p

22

Exercsie: Tautology, Contradiction, or Neither

Determine if each of the following symbolic statements is a
Tautology, Contradiction, or Neither

1. ¬p ∨ q ∨ p
2. p → (q ∧ p)
3. p → (q ∨ p)
4. (p → q) ∨ (q → p)
5. ¬(¬p ∨ q) ↔ (p → q)
6. (p ⊕ ¬q) ↔ (¬p ⊕ q)

23

Answers: Tautology, Contradiction, or Neither
Determine if each of the following symbolic statements is a
Tautology, Contradiction, or Neither

1. ¬p ∨ q ∨ p
▶ Tautology: true with any truth assignment, mostly due to

p ∨ ¬p
2. p → (q ∧ p)

▶ Neither: p = T, q = F yields False, p = F yields True
3. p → (q ∨ p)

▶ Tautology: true with any truth assignment
4. (p → q) ∨ (q → p)

▶ Tautology: true with any truth assignment
5. ¬(¬p ∨ q) ↔ (p → q)

▶ Contradiction: false with any truth assignment
6. (p ⊕ ¬q) ↔ (¬p ⊕ q)

▶ Tautology: true with any truth assignment

24

Logical Equivalences

▶ Two statements A and B are logically equivalent if any of
the following hold about them

1. A and B have the same truth table
2. A ↔ B is a tautology (always true)
3. A can be transformed into B using equivalences

Example: Show that p → q is equivalent to ¬p ∨ q
Via truth table equivalence / biconditional tautology

p q ¬p ∨ q p → q (¬p ∨ q) ↔ (p → q)
T T T T T
T F F F T
F T T T T
F F T T T

Tautology

25

Exercise: De Morgan’s Laws

▶ These two are important enough to get their own category
▶ ”Distribution” of a negation to parenthesized terms

Show ¬(p ∧ q) and ¬p ∨ ¬q
are equivalent

p q ¬ (p ∧ q) ¬ p ∨ ¬ q
T T
T F
F T
F F

Show ¬(p ∨ q) and ¬p ∧ ¬q
are equivalent

26

Answers: De Morgan’s Laws
▶ These two are important enough to get their own category
▶ ”Distribution” of a negation to parenthesized terms

Show ¬(p ∧ q) and ¬p ∨ ¬q
are equivalent

p q ¬ (p ∧ q) ¬ p ∨ ¬ q
T T F F
T F T T
F T T T
F F T T

So ¬(p ∧ q) ↔ ¬p ∨ ¬q is a
tautology

Show ¬(p ∨ q) and ¬p ∧ ¬q
are equivalent

p q ¬ (p ∨ q) ¬ p ∧ ¬ q
T T T T
T F F F
F T F F
F F F F

So ¬(p ∨ q) ↔ ¬p ∧ ¬q is a
tautology

27

Logical Equivalences
▶ Large number of

common logical
equivalences

▶ Equivalences denoted by
the ”equivalence” symbol
≡ as in

p ∨ q ≡ q ∨ p

▶ Reads: p ∨ q is
equivalent to q ∨ p

▶ Note that ≡ is NOT a
logical connective itself;
its ”higher level” than
that, outside and above
of the language of
Propositional Logic

28

Derivations with Equivalence
▶ Can show equivalence by deriving one statement from another
▶ Start with one statement
▶ Substitute logically equivalent expressions until the other

expression is found

Show p → (q ∨ ¬p) ≡ ¬p ∨ q

p → (q ∨ ¬p) ≡ (¬p) ∨ (q ∨ ¬p) by A → B ≡ ¬A ∨ B
≡ (¬p) ∨ (¬p ∨ q) by Commutative Laws
≡ (¬p ∨ ¬p) ∨ q by Associative Laws
≡ (¬p) ∨ q by Idempotent Laws
≡ ¬p ∨ q Equivalence Proved ■

There is a convention in mathematical writing to end ”proofs”
with a symbol like ■ or □. This may be because it helps readers
skip past the proofs more easily. 😁

29

Exercise: Equivalence via Derivation

Show: ¬(p → q) ≡ p ∧ ¬q using a derivation

Show: (p ∧ q) → (p ∨ q) is a Tautology
This can be done by showing (p ∧ q) → (p ∨ q) ≡ True

30

Answers: Equivalence via Derivation
Show: ¬(p → q) ≡ p ∧ ¬q using a derivation

¬(p → q) ≡ ¬(¬p ∨ q) by A → B ≡ ¬A ∨ B
≡ ¬¬p ∧ ¬q by De Morgan’s Laws
≡ p ∧ ¬q by Double Negation Law ■

Show: (p ∧ q) → (p ∨ q) is a Tautology
This can be done by showing (p ∧ q) → (p ∨ q) ≡ True

(p ∧ q) → (p ∨ q)
≡ ¬(p ∧ q) ∨ (p ∨ q) by A → B ≡ ¬A ∨ B
≡ (¬p ∨ ¬q) ∨ (p ∨ q) by De Morgan’s Laws
≡ (¬p ∨ p) ∨ (¬q ∨ q) by Associative/Commutative Laws
≡ (True) ∨ (True) by Negation Laws
≡ True by Idempotent Laws ■

31

Proofs in Propositional Logic

▶ A proof is a formal description of why some property is true
(or false, or unknowable)

▶ So far seen several methods to prove two propositional logic
statements are equivalent, prove something is a
tautology/contradiction etc.
▶ Remind me: What are those methods again?

▶ In Propositional Logic, Proofs are relatively easy as some
methods always result in a proof or a counter-example, a
specific situation in which the desired property does NOT hold

▶ Above Propositional Logic, this is no longer true and proofs
become harder

32

Exercise: Prove or Disprove
Prove or Disprove the following statements by any means.
A: p ↔ q ≡ (p → q) ∧ (q → p)

B: ¬(p → q) ≡ p ∧ ¬q

C: p → q ≡ q → ¬p

33

Answers: Prove or Disprove
Prove or Disprove the following statements by any means.
A: p ↔ q ≡ (p → q) ∧ (q → p): Proved by truth tables

p q p ↔ q A ∧ B A : (p → q B : (q → p)
T T T T T T
T F F F F T
F T F F T F
F F T T T T ■

B: ¬(p → q) ≡ p ∧ ¬q: Proved by derivation

¬(p → q) ≡ ¬(¬p ∨ q) by A → B ≡ ¬A ∨ B
≡ p ∧ ¬q) by De Morgan’s ■

C: p → q ≡ q → ¬p: Disproved by counter example

p q p → q q → ¬p
T T T F Not Matching

34

Proofs of Implication

▶ Common properties that are proved involve the implication
and take the following statement structure
Prove that IF so-and-so is true, THEN what-not is also true.

▶ Example:
▶ p: a and b are even numbers
▶ q: sum of a and b is even
▶ p → q : IF a and b are even numbers, THEN their sum is even.
▶ Prove p → q

▶ We’ll prove that implication later
▶ Main point: often proofs have the structure of

▶ Hypotheses/Assumptions (left side of implication)
▶ Conclusion (right side of implication)

35

Converse, Contrapositive, Inverse

Several variants of implication also commonly arise in proofs.
These are as follows.

Converse q → p as in
IF the sum of a and b is even, THEN a and b are
even. (this is not true and can be disproved)

Contrapositive ¬q → ¬p as in
IF the sum of a and b is NOT even, then a and b are
NOT (both) even. (this is true and can be proved)

Inverse ¬p → ¬q as in
If a and b are NOT even, THEN their sum is NOT
even. (not true in the case that a and b are both not
even).

36

Exercise: State in English

Exercise 1.27 c)
IF a positive integer has no divisors other than 1 and itself, THEN
it is a prime.
State in English the

1. Converse: q → p
2. Contrapositive: ¬q → ¬p
3. Inverse: ¬p → ¬q

37

Answers: State in English

Exercise 1.27 c)
IF a positive integer has no divisors other than 1 and itself, THEN
it is a prime.
State in English the

1. Converse: q → p
IF a positive integer is prime, THEN it has no divisors other
than 1 and itself.

2. Contrapositive: ¬q → ¬p
IF a positive integer is NOT prime, THEN it DOES have
divisors other than 1 and itself.

3. Inverse: ¬p → ¬q
IF a positive integer DOES have divisors other than 1 and
itself, THEN it is NOT prime.

38

