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Logistics

Reading: Rosen
▶ Now: Ch 1.1 - 1.3, Skim Ch 12
▶ Next: Ch 1.4 - 1.6

Goals
▶ Motivations for Discrete Math
▶ Propositional Logic
▶ Course Mechanics
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Exercise: Continuous vs Discrete Mathematics

continuous (adjective) forming an unbroken whole.
discrete (adjective) individually separate and distinct.

▶ Calculus focuses primarily on continuous mathematics
involving the Real and Complex sets of numbers

▶ Computer science gets much more mileage out of discrete
math. Why?

▶ After a year of programming, everyone should be familiar with
two common forms of division.

9 ÷ 2 → 4.5 ÷real a continuous function
9 ÷ 2 → 4 rem 1 ÷integer a discrete function

▶ Aside from the set of Integers, give some other common
discrete objects you’ve seen in computer science
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Answers: Continuous vs Discrete Mathematics
Computer scientists get much more mileage out of discrete math.
Why?
▶ Discrete math focuses on objects that may be finite or infinite

but are not infinitely divisible.
▶ CS deals with 0’s and 1’s which are inherently discrete.
▶ CS deals with algorithms that have discrete steps and often

operate on discrete objects like…
Common Discrete Objects seen in CS
▶ Memory Cells, Arrays, Strings, Linked Lists, Boolean variables,

Trees, Graphs, algorithms in some language
▶ Sets of any of theses
▶ Maps of one kind to another

name2string : dictionary of string to int
▶ Equivalently Functions which map one set to another:

length : function 'a list -> int
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First Steps

▶ Start with basic propositional logic with true/false
▶ Learn some notation, build up to predicate logic and proofs
▶ Then move on to consider a wider variety of objects as the

course progresses
▶ Relate the objects to practice of CS
▶ Prove properties of note about them
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Propositions and Connectives
▶ Propositions are statements about the world
▶ Often they have a variable name associated with them as in

▶ p: Jane is studying Computer Science
▶ q: Jane is taking CSCI 2011 in Summer 2018
▶ r: Jane is in Keller Hall Room 3-115

▶ Variable names allow symbolic manipulation with :
¬p Negation or Inverse, NOT p as in

Jane is NOT studying computer science.
p ∧ q Conjunction, p AND q as in

Jane is studying Computer Science AND is
taking CSCI 2011 in Summer 2018.

p ∨ r Disjunction , p OR r as in
Jane is studying Computer Science OR she is in
Keller Hall Room 3-115.

q → r Implication, if p then q as in
If Jane is taking CSCI 2011 in Summer 2018
then she is in Keller Hall Room 3-115.
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Exercise: Propositions To and From English
Propositions:
▶ p : Variable x is an even integer.
▶ q : Variable y is an odd integer.
▶ r : The sum of x and y is even.

Symbols to English
In English express
▶ p ∧ q
▶ ¬r
▶ (¬p ∧ q) → r

What about expressing the
statement x is odd in symbols?

English to Symbols
In symbols express
▶ Variable y is NOT an odd

number.
▶ x is even AND y is NOT

odd.
▶ IF the sum of x and y is

even THEN x is even AND y
is NOT odd OR x is NOT
even AND y is odd.
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Answers: Propositions To and From English
▶ p : Variable x is an even integer.
▶ q : Variable y is an odd integer.
▶ r : The sum of x and y is even

Symbols to English
In English express
▶ p ∧ q

x is even AND y is odd
▶ ¬r

y is not odd
▶ (¬p ∧ q) → ¬r

IF x is NOT even AND y is
odd THEN the sum of x and
y is NOT even.

English to Symbols
In symbols express
▶ Variable y is NOT an odd

integer.
▶ ¬q

▶ x is even AND y is NOT
odd.
▶ p ∧ ¬q

▶ IF the sum of x and y is
even THEN x is even AND y
is NOT odd OR x is NOT
even AND y is odd.
▶ r → (p ∧ ¬q) ∨ (¬p ∧ q)

8



Answers: Propositions To and From English

What about expressing the statement x is odd in symbols?
▶ ¬p: x is NOT even so x must be odd
▶ Assumes x has to be an an integer, the domain x is integers
▶ If x can be real or complex, then this negation doesn’t work

▶ Is 4.53 even or odd?
▶ What about $π = 3.14159…$
▶ How about i =

√
−1?
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Truth Tables

▶ Propositions are statement, true or false at a given moment.
▶ p : It is raining outside.
▶ q : I have an umbrella.

▶ A truth table for a logical connective shows the value of the
combined statement

▶ Example: Truth table for Implication is defined as follows

p q p → q IF it is raining THEN I have umbrella.
T T T Yes raining, yes umbrella
T F F Yes raining, where’s the umbrella?
F T T Not raining, don’t care about umbrella
F F T Not raining, don’t care about umbrella

▶ Implication is only false when left side premise is True and
right side conclusion is False
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Exercise: Truth Tables for

Define the truth tables for the following based on your experience
with programming
▶ ∧ : Conjunction (logical … __ ?)
▶ ∨ : Disjunction (logical … __ ?)
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Answers: Truth Tables

Conjunction Disjunction
AND OR

p q p ∧ q p ∨ q
T T T T
T F F T
F T F T
F F F F

▶ Programming language logical AND (like a && b) and logical
OR (like a || b) are modeled after the mathematical notions
that long preceded them.

▶ There are also usually bitwise and/or operators in
programming languages (C/Java: a & b and a | b). More
on these later.
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A Couple other Common Logical Connectives
p ↔ q Biconditional, p if and only if q as in

Jane gets 3% bonus credit if and only if she
participates a lot during lectures.

p ⊕ q Exclusive Or, p XOR q
p or q but not both and not neither
Would you like fries or tater tots with that?

p q p ↔ q p ⊕ q
T T T F
T F F T
F T F T
F F T F

▶ Many programming languages have a bitwise XOR operator
C/Java: a ^ b

▶ Few have a logical XOR or any biconditional operator
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Notation Conventions
Operator Precedence
▶ Like all languages, logic notation has a notion of operator

precedence

Highest:¬, ∧, ∨, ⊕, →, ↔ :Lowest

▶ Means the following are equivalent
p ∨ q ∧ r is p ∨ (q ∧ r)
¬p → q ∨ r is (¬p) → (q ∨ r)
p → q ∧ r ↔ w is (p → (q ∧ r)) ↔ w omg, stop!

Notation Varies by Discipline
Logician: EE/ECE Logician: EE/ECE
¬p is p p ∧ q is pq
p ∨ q is p + q p ∧ (¬q ∨ r) is p(q + r)

▶ Be aware of both but we’ll favor the Logician Notation in
lecture and assignments
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Exercise: Bitwise Operations
▶ In actual computers,

True/False are usually
represented in bits as 1/0

▶ Often ”variables” are
realized as memory cells
which hold 8, 16, 32, or 64
bits

▶ Most computer hardware
can perform bitwise
operations: logical
operations on all bits

▶ Example with conjunction:
1101 ∧ 1011 which is

1101
∧ 1011

1001

Compute the following results
1 1011 ∨ 0 0010 which is

1 1011
∨ 0 0010

(00 1101 ∧ 11 0101) ⊕ 01 1011
which is

00 1101
∧ 11 0101

⊕ 01 1011
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Answers: Bitwise Operations
▶ In actual computers,

True/False are usually
represented in bits as 1/0

▶ Often ”variables” are
realized as memory cells
which hold 8, 16, 32, or 64
bits

▶ Most computer hardware
can perform bitwise
operations: logical
operations on all bits

▶ Example with conjunction:
1101 ∧ 1011 which is

1101
∧ 1011

1001

Compute the following results
1 1011 ∨ 0 0010 which is

1 1011
∨ 0 0010

1 1011

(00 1101 ∧ 11 0101) ⊕ 01 1011
which is

00 1101
∧ 11 0101

00 0101
⊕ 01 1011

01 1110
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Logic Gates
▶ Abstract physical device that implements a logical connectives
▶ May be implemented with a variety of physical devices

including transistors, vacuum tubes, mechanical devices, and
water pressure

▶ Physical implementations have many trade-offs: cost, speed,
difficulty to manufacture, wetness
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Combinatorial Circuits

▶ Combination of wires/gates with output solely dependent on
input

▶ No storage of information involved / stateless
▶ Distinguished from sequential circuits which involve storage
▶ Can compute any Boolean functions of inputs

▶ Set inputs as 0/1
▶ After a delay, outputs will be set accordingly

▶ Examples: AND, OR, NOT are obvious
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Exercise: Example Combinatorial Circuit
▶ Fill in the Truth Table for

this circuit with
▶ 0 = False
▶ 1 = True

A B C Out
0 0 0 ?
0 0 1 ?
0 1 0 ?
0 1 1 ?
1 0 0 ?
1 0 1 ?
1 1 0 ?
1 1 1 ?

▶ Write a symbolic expression for the output of the circuit
▶ Speculate on the ”meaning” of this circuit
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Answer: Example Combinatorial Circuit

A B C Out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

▶ Output is: (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C)
▶ A ”majority” circuit: Out is 1 when two or more of A,B,C are

1
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Adding with Gates
▶ Gates can be used for

adding multi-bit numbers
▶ Basis for computer

arithmetic
▶ Make use of a chain of

circuits call full adders with
the resulting truth table
A B Out Carry

0000 0000 0000 0
0000 0001 0001 0
0001 0000 0001 0
0001 0001 0010 0
0001 0010 0011 0
0010 0001 0011 0
0001 0011 0100 0
0011 0011 0110 0
0001 1110 1111 0
0001 1111 0000 1

…

Chain of 4-bit Adders
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Propositional Logic

Logic Type AKA Features
Now Propositional Logic Boolean Logic Truth Vars, Connectives
Later Predicate Logic First Order Predicates, Quantifiers over Vars
Nope Higher Order Logic(s) Brain-breaker Quantifiers over Predicates/Funcs

Will seek to understand some of the techniques and properties of
Propositional Logic, then do some work with First Order Logic
Terminology

Tautology A statement that is true regardless of how truth
values are assigned to propositions/variables
Ex: p ∨ ¬p

Contradiction A statement that is false regardless of how truth
values are assigned to propositions/variables
Ex: p ∧ ¬p
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Exercsie: Tautology, Contradiction, or Neither

Determine if each of the following symbolic statements is a
Tautology, Contradiction, or Neither

1. ¬p ∨ q ∨ p
2. p → (q ∧ p)
3. p → (q ∨ p)
4. (p → q) ∨ (q → p)
5. ¬(¬p ∨ q) ↔ (p → q)
6. (p ⊕ ¬q) ↔ (¬p ⊕ q)
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Answers: Tautology, Contradiction, or Neither
Determine if each of the following symbolic statements is a
Tautology, Contradiction, or Neither

1. ¬p ∨ q ∨ p
▶ Tautology: true with any truth assignment, mostly due to

p ∨ ¬p
2. p → (q ∧ p)

▶ Neither: p = T, q = F yields False, p = F yields True
3. p → (q ∨ p)

▶ Tautology: true with any truth assignment
4. (p → q) ∨ (q → p)

▶ Tautology: true with any truth assignment
5. ¬(¬p ∨ q) ↔ (p → q)

▶ Contradiction: false with any truth assignment
6. (p ⊕ ¬q) ↔ (¬p ⊕ q)

▶ Tautology: true with any truth assignment
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Logical Equivalences

▶ Two statements A and B are logically equivalent if any of
the following hold about them

1. A and B have the same truth table
2. A ↔ B is a tautology (always true)
3. A can be transformed into B using equivalences

Example: Show that p → q is equivalent to ¬p ∨ q
Via truth table equivalence / biconditional tautology

p q ¬p ∨ q p → q (¬p ∨ q) ↔ (p → q)
T T T T T
T F F F T
F T T T T
F F T T T

Tautology
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Exercise: De Morgan’s Laws

▶ These two are important enough to get their own category
▶ ”Distribution” of a negation to parenthesized terms

Show ¬(p ∧ q) and ¬p ∨ ¬q
are equivalent

p q ¬ (p ∧ q) ¬ p ∨ ¬ q
T T
T F
F T
F F

Show ¬(p ∨ q) and ¬p ∧ ¬q
are equivalent
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Answers: De Morgan’s Laws
▶ These two are important enough to get their own category
▶ ”Distribution” of a negation to parenthesized terms

Show ¬(p ∧ q) and ¬p ∨ ¬q
are equivalent

p q ¬ (p ∧ q) ¬ p ∨ ¬ q
T T F F
T F T T
F T T T
F F T T

So ¬(p ∧ q) ↔ ¬p ∨ ¬q is a
tautology

Show ¬(p ∨ q) and ¬p ∧ ¬q
are equivalent

p q ¬ (p ∨ q) ¬ p ∧ ¬ q
T T T T
T F F F
F T F F
F F F F

So ¬(p ∨ q) ↔ ¬p ∧ ¬q is a
tautology
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Logical Equivalences
▶ Large number of

common logical
equivalences

▶ Equivalences denoted by
the ”equivalence” symbol
≡ as in

p ∨ q ≡ q ∨ p

▶ Reads: p ∨ q is
equivalent to q ∨ p

▶ Note that ≡ is NOT a
logical connective itself;
its ”higher level” than
that, outside and above
of the language of
Propositional Logic
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Derivations with Equivalence
▶ Can show equivalence by deriving one statement from another
▶ Start with one statement
▶ Substitute logically equivalent expressions until the other

expression is found

Show p → (q ∨ ¬p) ≡ ¬p ∨ q

p → (q ∨ ¬p) ≡ (¬p) ∨ (q ∨ ¬p) by A → B ≡ ¬A ∨ B
≡ (¬p) ∨ (¬p ∨ q) by Commutative Laws
≡ (¬p ∨ ¬p) ∨ q by Associative Laws
≡ (¬p) ∨ q by Idempotent Laws
≡ ¬p ∨ q Equivalence Proved ■

There is a convention in mathematical writing to end ”proofs”
with a symbol like ■ or □. This may be because it helps readers
skip past the proofs more easily. 😁
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Exercise: Equivalence via Derivation

Show: ¬(p → q) ≡ p ∧ ¬q using a derivation

Show: (p ∧ q) → (p ∨ q) is a Tautology
This can be done by showing (p ∧ q) → (p ∨ q) ≡ True
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Answers: Equivalence via Derivation
Show: ¬(p → q) ≡ p ∧ ¬q using a derivation

¬(p → q) ≡ ¬(¬p ∨ q) by A → B ≡ ¬A ∨ B
≡ ¬¬p ∧ ¬q by De Morgan’s Laws
≡ p ∧ ¬q by Double Negation Law ■

Show: (p ∧ q) → (p ∨ q) is a Tautology
This can be done by showing (p ∧ q) → (p ∨ q) ≡ True

(p ∧ q) → (p ∨ q)
≡ ¬(p ∧ q) ∨ (p ∨ q) by A → B ≡ ¬A ∨ B
≡ (¬p ∨ ¬q) ∨ (p ∨ q) by De Morgan’s Laws
≡ (¬p ∨ p) ∨ (¬q ∨ q) by Associative/Commutative Laws
≡ (True) ∨ (True) by Negation Laws
≡ True by Idempotent Laws ■
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Proofs in Propositional Logic

▶ A proof is a formal description of why some property is true
(or false, or unknowable)

▶ So far seen several methods to prove two propositional logic
statements are equivalent, prove something is a
tautology/contradiction etc.
▶ Remind me: What are those methods again?

▶ In Propositional Logic, Proofs are relatively easy as some
methods always result in a proof or a counter-example, a
specific situation in which the desired property does NOT hold

▶ Above Propositional Logic, this is no longer true and proofs
become harder
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Exercise: Prove or Disprove
Prove or Disprove the following statements by any means.
A: p ↔ q ≡ (p → q) ∧ (q → p)

B: ¬(p → q) ≡ p ∧ ¬q

C: p → q ≡ q → ¬p

33



Answers: Prove or Disprove
Prove or Disprove the following statements by any means.
A: p ↔ q ≡ (p → q) ∧ (q → p): Proved by truth tables

p q p ↔ q A ∧ B A : (p → q B : (q → p)
T T T T T T
T F F F F T
F T F F T F
F F T T T T ■

B: ¬(p → q) ≡ p ∧ ¬q: Proved by derivation

¬(p → q) ≡ ¬(¬p ∨ q) by A → B ≡ ¬A ∨ B
≡ p ∧ ¬q) by De Morgan’s ■

C: p → q ≡ q → ¬p: Disproved by counter example

p q p → q q → ¬p
T T T F Not Matching
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Proofs of Implication

▶ Common properties that are proved involve the implication
and take the following statement structure
Prove that IF so-and-so is true, THEN what-not is also true.

▶ Example:
▶ p: a and b are even numbers
▶ q: sum of a and b is even
▶ p → q : IF a and b are even numbers, THEN their sum is even.
▶ Prove p → q

▶ We’ll prove that implication later
▶ Main point: often proofs have the structure of

▶ Hypotheses/Assumptions (left side of implication)
▶ Conclusion (right side of implication)
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Converse, Contrapositive, Inverse

Several variants of implication also commonly arise in proofs.
These are as follows.

Converse q → p as in
IF the sum of a and b is even, THEN a and b are
even. (this is not true and can be disproved)

Contrapositive ¬q → ¬p as in
IF the sum of a and b is NOT even, then a and b are
NOT (both) even. (this is true and can be proved)

Inverse ¬p → ¬q as in
If a and b are NOT even, THEN their sum is NOT
even. (not true in the case that a and b are both not
even).
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Exercise: State in English

Exercise 1.27 c)
IF a positive integer has no divisors other than 1 and itself, THEN
it is a prime.
State in English the

1. Converse: q → p
2. Contrapositive: ¬q → ¬p
3. Inverse: ¬p → ¬q
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Answers: State in English

Exercise 1.27 c)
IF a positive integer has no divisors other than 1 and itself, THEN
it is a prime.
State in English the

1. Converse: q → p
IF a positive integer is prime, THEN it has no divisors other
than 1 and itself.

2. Contrapositive: ¬q → ¬p
IF a positive integer is NOT prime, THEN it DOES have
divisors other than 1 and itself.

3. Inverse: ¬p → ¬q
IF a positive integer DOES have divisors other than 1 and
itself, THEN it is NOT prime.
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