CSCI 2011: Introduction and Basic Logic

Chris Kauffman

Last Updated:
Fri Jun 15 16:55:22 CDT 2018

Logistics

Reading: Rosen

» Now: Ch 1.1- 1.3, Skim Ch 12
» Next: Ch14-16

Goals
» Motivations for Discrete Math
» Propositional Logic
» Course Mechanics

Exercise: Continuous vs Discrete Mathematics

continuous (adjective) forming an unbroken whole.

discrete (adjective) individually separate and distinct.

» Calculus focuses primarily on continuous mathematics
involving the Real and Complex sets of numbers

» Computer science gets much more mileage out of discrete
math. Why?

> After a year of programming, everyone should be familiar with
two common forms of division.
9+-2 —45 ~+real @ continuous function
9+2 —4rem1 jjreger a discrete function

> Aside from the set of Integers, give some other common
discrete objects you've seen in computer science

Answers: Continuous vs Discrete Mathematics
Computer scientists get much more mileage out of discrete math.
Why?

» Discrete math focuses on objects that may be finite or infinite
but are not infinitely divisible.

» CS deals with 0's and 1's which are inherently discrete.

» CS deals with algorithms that have discrete steps and often
operate on discrete objects like...

Common Discrete Objects seen in CS

» Memory Cells, Arrays, Strings, Linked Lists, Boolean variables,
Trees, Graphs, algorithms in some language

» Sets of any of theses

» Maps of one kind to another
name2string : dictionary of string to int

» Equivalently Functions which map one set to another:
length : function 'a list -> int

First Steps

v

Start with basic propositional logic with true/false
Learn some notation, build up to predicate logic and proofs

Then move on to consider a wider variety of objects as the
course progresses

Relate the objects to practice of CS

Prove properties of note about them

Propositions and Connectives

> Propositions are statements about the world
» Often they have a variable name associated with them as in
» p: Jane is studying Computer Science
» q: Jane is taking CSCI 2011 in Summer 2018
» r: Jane is in Keller Hall Room 3-115
» Variable names allow symbolic manipulation with :
—p Negation or Inverse, NOT p as in
Jane is NOT studying computer science.
p A g Conjunction, p AND g as in
Jane is studying Computer Science AND is
taking CSCI 2011 in Summer 2018.
pV r Disjunction , p OR r as in
Jane is studying Computer Science OR she is in
Keller Hall Room 3-115.
g — r Implication, if p then g as in
If Jane is taking CSCI 2011 in Summer 2018
then she is in Keller Hall Room 3-115.

Exercise: Propositions To and From English

Propositions:

» p: Variable x is an even integer.

» g : Variable y is an odd integer.

» r: The sum of x and y is even.

Symbols to English
In English express
> pAg
» —r
> (~pAq) =1

What about expressing the
statement x is odd in symbols?

English to Symbols

In symbols express

>

Variable y is NOT an odd
number.

> x s even AND y is NOT

| 2

odd.

IF the sum of x and y is
even THEN x is even AND y
is NOT odd OR x is NOT
even AND y is odd.

Answers: Propositions To and From English

» p : Variable x is an even integer.
» g : Variable y is an odd integer.
» r: The sum of x and y is even

Symbols to English English to Symbols
In English express In symbols express
> pAg » Variable y is NOT an odd
x is even AND y is odd integer.
» —r > g
y is not odd > x is even AND y is NOT
odd.
> (mpAgq)— r > pA—q

II;; iIS_H/VE(I?VT;Ve” AN? y ’Sd » IF the sum of x and y is
o) the sum or x an even THEN x is even AND y

y is NOT even. is NOT odd OR x is NOT
even AND y is odd.

> r—(pA—q)V(=pAQq)

Answers: Propositions To and From English

What about expressing the statement x is odd in symbols?
» —p: x is NOT even so x must be odd
> Assumes x has to be an an integer, the domain x is integers

» If x can be real or complex, then this negation doesn’t work

» |s 4.53 even or odd?
» What about $7 = 3.14159..%
» How about i = +—17

Truth Tables

» Propositions are statement, true or false at a given moment.
» p : It is raining outside.
» q : | have an umbrella.
> A truth table for a logical connective shows the value of the
combined statement

» Example: Truth table for Implication is defined as follows

p q p—q IFitisraining THEN | have umbrella.
T T T Yes raining, yes umbrella

T F F Yes raining, where's the umbrella?

F T T Not raining, don’t care about umbrella
F F T Not raining, don’t care about umbrella

» Implication is only false when left side premise is True and
right side conclusion is False

Exercise: Truth Tables for

Define the truth tables for the following based on your experience
with programming

» A : Conjunction (logical .. __?)

» V : Disjunction (logical .. ___7?)

11

Answers: Truth Tables

Conjunction Disjunction

AND OR
P 4 pAg pVg
T T T T
T F F T
F T F T
F F F F

» Programming language logical AND (like a && b) and logical
OR (like 2 || b) are modeled after the mathematical notions
that long preceded them.

» There are also usually bitwise and/or operators in
programming languages (C/Java: a & b and a | b). More
on these later.

12

A Couple other Common Logical Connectives

p <> q Biconditional, p if and only if g as in
Jane gets 3% bonus credit if and only if she
participates a lot during lectures.

p ® q Exclusive Or, p XOR ¢
p or g but not both and not neither
Would you like fries or tater tots with that?

psq pdgq

P
T
T
F
F

n 4 mHle
4T
m =T

» Many programming languages have a bitwise XOR operator
C/Java:a = b

» Few have a logical XOR or any biconditional operator

13

Notation Conventions
Operator Precedence
> Like all languages, logic notation has a notion of operator

precedence

Highest:—, A, V, @, —, <> :Lowest

> Means the following are equivalent
pVgAr is pV(gAr)
p—=q\Vr is (-p) > (qVr)
p—=gAr<w is (p—(gAr) < w omg, stop!

Notation Varies by Discipline
Logician: EE/ECE Logician: EE/ECE

-p is p pPAQq is pq
pVaq is p+tgq pA(—qVr) is p(g+r)

» Be aware of both but we'll favor the Logician Notation in

14

Exercise: Bitwise Operations

» In actual computers,
True/False are usually
represented in bits as 1/0

» Often "variables” are
realized as memory cells
which hold 8, 16, 32, or 64
bits

» Most computer hardware
can perform bitwise
operations: logical
operations on all bits

» Example with conjunction:
1101 A 1011 which is

1101
A 1011
1001

Compute the following results
11011 v 0 0010 which is

11011
v 00010

(001101 A 11 0101) ¢ 01 1011
which is

00 1101
A 110101
¢ 011011

15

Answers: Bitwise Operations

» In actual computers,

True/False are usually Compute the following results
represented in bits as 1/0 11011V 0 0010 which is
» Often "variables” are
realized as memory cells 1 1011
which hold 8, 16, 32, or 64 _v 00010
bits 11011
» Most computer hardware (001101 A 11 0101) @ 01 1011
can perform bitwise which is
operations: logical
operations on all bits A 2? é}gi
» Example with conjunction: 00 0101
1101 01 1110

A 1011
1001

16

Logic Gates

P Abstract physical device that implements a logical connectives

» May be implemented with a variety of physical devices
including transistors, vacuum tubes, mechanical devices, and
water pressure

» Physical implementations have many trade-offs: cost, speed,
difficulty to manufacture, wetness

A _A 9 A Q
- Q | AND .

A _
. o 5| NaND <

>

17

http://www.blikstein.com/paulo/projects/project_water.html

Combinatorial Circuits

» Combination of wires/gates with output solely dependent on
input
» No storage of information involved / stateless

» Distinguished from sequential circuits which involve storage
» Can compute any Boolean functions of inputs

» Set inputs as 0/1

P After a delay, outputs will be set accordingly

» Examples: AND, OR, NOT are obvious

18

Exercise: Example Combinatorial Circuit

» Fill in the Truth Table for
this circuit with

» 0 = False A
> 1= True ' AN,
A B C Out
0O 0 0 7
0 0 1 ? b o oA
0o 1 0 7
o 1 1 7
1 0 0 7
1 0 1 7 [
1 1 0 7
1 1 1 7

» Write a symbolic expression for the output of the circuit

» Speculate on the "meaning” of this circuit

Out

19

Answer: Example Combinatorial Circuit

A B C Out A

0 0 O 0 i

0 0 1 0

0 1 0 0

0 1 1 1 e N on | Out
1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1 c

» Outputis: (AANB)V(AANC)V (BACQ)

» A "majority” circuit: Out is 1 when two or more of A,B,C are
1

20

Adding with Gates
> Gates can be used for Chain of 4-bit Adders

adding multi-bit numbers ::ji> ji: "
Cin

» Basis for computer
arithmetic

Cou

» Make use of a chain of

circuits call full adders with ﬁ m—om
G

the resulting truth table
A B Out Carry Cou
0000 0000 0000 0

0000 0001 0001
0001 0000 0001
0001 0001 0010
0001 0010 0011
0010 0001 0011
0001 0011 0100
0011 0011 0110
0001 1110 1111
0001 1111 0000

Ale
BH+ out3
C;

HOOOOOOOoOOo

Propositional Logic

Logic Type AKA Features
Now Propositional Logic Boolean Logic Truth Vars, Connectives
Later Predicate Logic First Order Predicates, Quantifiers over Vars

Nope Higher Order Logic(s) Brain-breaker = Quantifiers over Predicates/Funcs

Will seek to understand some of the techniques and properties of
Propositional Logic, then do some work with First Order Logic

Terminology

Tautology A statement that is true regardless of how truth
values are assigned to propositions/variables
Ex: pV—p

Contradiction A statement that is false regardless of how truth
values are assigned to propositions/variables
Ex: pA—p

22

Exercsie: Tautology, Contradiction, or Neither

Determine if each of the following symbolic statements is a
Tautology, Contradiction, or Neither

1. .pVgVp

p— (qAp)
p—(qVp)
(p—q)V(qg—p)
—(=pVq) < (p—q)
(P& —q) < (-pdq)

I T

Answers: Tautology, Contradiction, or Neither

Determine if each of the following symbolic statements is a
Tautology, Contradiction, or Neither
1. .pVgqgVp
» Tautology: true with any truth assignment, mostly due to
pV-p
2. p—=(qnp)
» Neither: p= T, q = F yields False, p = F yields True
3. p—(qVp)
» Tautology: true with any truth assignment
4. (p—q)V(g—p)
» Tautology: true with any truth assignment
5 =(-pVv@q) < (p—q)
» Contradiction: false with any truth assignment
6. (P®—q) < (—p®q)
» Tautology: true with any truth assignment

24

Logical Equivalences

» Two statements A and B are logically equivalent if any of
the following hold about them

1. A and B have the same truth table
2. A<+ Bis a tautology (always true)
3. A can be transformed into B using equivalences

Example: Show that p — g is equivalent to —pV g
Via truth table equivalence / biconditional tautology

P 4 —-pVqg p—gq (=pVg) < (pP—q)
T T T T T
T F F F T
F T T T T
FF T T T

Tautology

25

Exercise: De Morgan's Laws

» These two are important enough to get their own category

» "Distribution” of a negation to parenthesized terms

Show =(p A q) and —pV —q Show —=(pV q) and —=p A =g
are equivalent are equivalent

- (pAg) —~pV-q

Mmoo

q
T
F
T
F

26

Answers: De Morgan's Laws

» These two are important enough to get their own category

» "Distribution” of a negation to parenthesized terms

Show —(p A q) and —pV —q
are equivalent

Show —=(pV q) and —=p A —q
are equivalent

-(pAq) —~pV-q

nThm 44T

q
T
F
T
F

o B B M|
44

p g —-(pVg -~pA-q
T T T T
T F F F
F T F F
F F F F

So ~(pAq) <> —pV—qis a
tautology

So—(pVq)«—pA-gisa
tautology

27

Logical Equivalences

» Large number of

common logical
equivalences

Equivalences denoted by
the "equivalence” symbol

= asin

pVqg=qVp

Reads: pV g is
equivalent to qV p

Note that = is NOT a
logical connective itself;
its "higher level” than
that, outside and above

of the language of

Propositional Logic

TABLE 6 Logical Equivalences.

Equivalence Name

pANT=p Identity laws
pVvF=p

pvT=T Domination laws
pAF=F

pPVp=p Idempotent laws
PApP=p

—(=p)=p Double negation law
pPNg=qVp Commutative laws
PAG=qAp

(pvg)Vr=pvi(gVvr)
(pAqyAr=pA(gAT)

Associative laws

PV@GAD = (VO APV
PAGVI=(PAQV (pAT)

Distributive laws

—~(prg)=—pV—yq
—(pvq) =-pA—q

De Morgan’s laws

pV(pAg)=p
PA(PVO =p

Absorption laws

pv—-p=T
pn-p=F

Negation laws

28

Derivations with Equivalence

» Can show equivalence by deriving one statement from another
» Start with one statement

» Substitute logically equivalent expressions until the other
expression is found

Show p— (gV —p) =—-pV g

p—(qv-p) = (-p)V(gv-p) byA—=B=-AVB
= (-p)V(-pVa) by Commutative Laws
= (-pV-p)Vg by Associative Laws
= (—-p)Vg by Idempotent Laws
= -pVgq Equivalence Proved B

There is a convention in mathematical writing to end "proofs”
with a symbol like B or (. This may be because it helps readers
skip past the proofs more easily.

29

Exercise: Equivalence via Derivation

Show: —(p — q) = p A —q using a derivation

Show: (pAq) — (pV q) is a Tautology
This can be done by showing (pA q) — (pV q) = True

30

Answers: Equivalence via Derivation

Show: =(p — g

~—

= p /A —q using a derivation

=(=pVQq) by A—» B=-AVB
——p A g by De Morgan's Laws
pA—q by Double Negation Law B

—(p— q)

Show: (pA q) — (pV q) is a Tautology
This can be done by showing (pA q) — (pV q) = True

(pAG) = (pVa)

-(pAq)V(pVaQ) by A—- B=-AVB

(=pV —q)V(pVQ) by De Morgan's Laws
(=pVp)V(-qVQq) by Associative/Commutative Laws
(True) V (True) by Negation Laws

True by ldempotent Laws W

S
>
e o

31

Proofs in Propositional Logic

| 2

| 2

A proof is a formal description of why some property is true
(or false, or unknowable)
So far seen several methods to prove two propositional logic

statements are equivalent, prove something is a
tautology/contradiction etc.

» Remind me: What are those methods again?
In Propositional Logic, Proofs are relatively easy as some
methods always result in a proof or a counter-example, a
specific situation in which the desired property does NOT hold
Above Propositional Logic, this is no longer true and proofs
become harder

32

Exercise: Prove or Disprove

Prove or Disprove the following statements by any means.

Arpcrq=(p— q A(g—p)

B:=(p—q)=pA—gq

Cp—>qg=qg——p

33

Answers: Prove or Disprove
Prove or Disprove the following statements by any means.

A:p+ qg=(p— q) A(g— p): Proved by truth tables

P 4 p&gq ANB A:(p—~gq B:(q—p)
T T 7T T T T
T F F F F T
F T F F T F
FF T T T T

B: =(p — q) = p A —q: Proved by derivation

-(p—q)

—|(—|p \/ q)
pA—q)

by A—- B=-AVBEB
by De Morgan's B

C: p— g= g — —p: Disproved by counter example

P 9
T T

p—q
T

q— -p

F

Not Matching

34

Proofs of Implication

» Common properties that are proved involve the implication
and take the following statement structure
Prove that IF so-and-so is true, THEN what-not is also true.
> Example:
» p: aand b are even numbers
» q: sum of a and b is even
» p— q: IFaand b are even numbers, THEN their sum is even.
> Prove p— ¢
> We'll prove that implication later
» Main point: often proofs have the structure of

» Hypotheses/Assumptions (left side of implication)
» Conclusion (right side of implication)

35

Converse, Contrapositive, Inverse

Several variants of implication also commonly arise in proofs.
These are as follows.

Converse g — p as in
IF the sum of a and b is even, THEN a and b are
even. (this is not true and can be disproved)
Contrapositive =q — —p as in
IF the sum of a and b is NOT even, then a and b are
NOT (both) even. (this is true and can be proved)

Inverse -p — —q as in
If a and b are NOT even, THEN their sum is NOT
even. (not true in the case that a and b are both not
even).

36

Exercise: State in English

Exercise 1.27 c)
IF a positive integer has no divisors other than 1 and itself, THEN
it is a prime.
State in English the
1. Converse: g — p
2. Contrapositive: ~g — —p

3. Inverse: -p — —q

37

Answers: State in English

Exercise 1.27 c)
IF a positive integer has no divisors other than 1 and itself, THEN
it is a prime.
State in English the
1. Converse: g — p
IF a positive integer is prime, THEN it has no divisors other
than 1 and itself.
2. Contrapositive: ~g — —p
IF a positive integer is NOT prime, THEN it DOES have
divisors other than 1 and itself.
3. Inverse: —=p — —q

IF a positive integer DOES have divisors other than 1 and
itself, THEN it is NOT prime.

38

