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Logistics

Reading: Rosen
▶ Now: Ch 1.4 - 1.5
▶ Next: Ch 1.6 - 1.8

Assignments
▶ A01 due tonight
▶ A02 posted tomorrow, due next Tue

Goals
▶ Finish up Propositional Logic
▶ Predicate Logic (First-order Logic)
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What one can’t do in Propositional Logic

▶ Propositional logic is simple and neat but has major limits
▶ Example: The following ideas cannot be expressed and

manipulated in propositional logic
1. All integers that can be written 2× n for some integer n are

called Even.
2. 14 can be written as 2× 7.
3. 14 is therefore Even.

▶ Point of trouble: (1) is a ”general” statement while (2) is a
”specific case” of (1) which allows (3) as a conclusion

▶ Propositions in their current form have no notion of ”general”
or ”specific”

▶ So we need a bigger, badder, logic
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First Order ”Logic”

Source: 800poundproductions

▶ The old logic could blow up one planet at a time; that failed.
▶ The First Order blows up whole sets of planets at a time.

That’s gotta work better, right?
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Predicate Logic Adds the following to Propositional Logic
Predicates / Propositional Functions
Rather than propositions which are true/false, use Predicates,
a.k.a. Propositional Functions which are true / false

Logic Notation Defined to be Truthiness
Propos. p 2 is positive. true but rigid: 2 always positive
Predicate P(x) x is positive. Don’t know yet, need x
Predicate P(2) 2 is positive. True
Predicate P(-7) -7 is positive. False

Quantifiers
New notation that makes a statement about All objects in a set or
the Existence of objects in a set. Used to introduce variables
▶ ∀xP(x): For All x, x is positive (Every x is positive)
▶ ∃xE(x): There Exists x such that x is positive.

Quantifying is always over some domain such as integers
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Aside: Functions in First-Order Logic

▶ Proper 1st order logic includes functions on objects such as
▶ +(x, y) : x + y (arithmetic sum)
▶ f(s) : size of set s

▶ Allows statements about functional relationships between
objects such as

∀x∃y(x = y + 1)

For all x, there exists a y such x equals y+1.
▶ Not covered in our text or class: we are just dipping our toes

in the water of first order logic
▶ Would be covered in deep dive Mathematical Logic course

such as MATH 5165/5166
▶ Higher-order logic allows quantifiers over functions which gets

even more crazy
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Predicates

▶ Asserts true / false about a specific object
▶ Define E(x) : x is even (don’t know x yet)

▶ E(2): true, E(3): false, E(10100101): false
▶ E(apple) : wait, what?

▶ Predicates usually have an intended domain, which should be
honored, the kind of object expected

▶ Used in combination with Logical Connectives

Symbols English Truthiness
E(2) ∧ E(4) 2 is even AND 4 is even true
E(2) ∧ E(7) 2 is even AND 7 is even false
¬(E(9) ∨ E(7)) NOT the case that 7 OR 9 is even true
E(x) → E(y) IF x is even THEN y is even unknown
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Exercise: Use some Predicates

▶ Define E(x) : x is even (don’t know x yet)
▶ Define S(x, y) : the sum of x and y is 5
▶ Fill in the blanks in the table below
▶ Truthiness can be: True / False / Unknown

Symbols English Truthiness
E(2) → E(4)
S(2, 4)

The sum of 4 and 1 is 5 OR 3 is even
x is even

¬E(5)
The sum of x and 1 is 5 OR 7 is NOT even
IF the sum of x an y is 5 THEN the sum
of y and z is NOT 5
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Answers: Use some Predicates
▶ Define E(x) : x is even (don’t know x yet)
▶ Define S(x, y) : the sum of x and y is 5
▶ Fill in the blanks in the table below
▶ Truthiness can be: True / False / Unknown

Symbols English Truthiness
E(2) → E(4) IF 2 is even THEN 4 is even true
S(2, 4) The sum of 2 and 4 is 5 false
S(4, 1) ∨ E(3) The sum of 4 and 1 is 5 OR 3 is even true
E(x) x is even unknown
¬E(5) 5 is NOT even true
S(x, 1) ∨ ¬E(7) The sum of x and 1 is 5 OR 7 is NOT even true
S(x, y) → ¬S(y, z) IF the sum of x an y is 5 THEN the sum unknown

of y and z is NOT 5
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Quantifiers and Variables
▶ Quantifiers allow statements about all objects in a particular

universe (mathematical set)
▶ Introduce a variable to represent object instances as in

∀x(some statements about x)
▶ Variables without quantifiers are unbound and considered

syntactically incorrect
▶ Quantifiers have very high operator precedence and may

require parentheses:
∀xA(x) ∨ B(x) bad syntax, reads: (∀xA(x))∨ B(x)
∀x(A(x) ∨ B(x)) kosher

Example
▶ Define C(x) : x is a comedian, F(x) : x is funny
▶ Assume quantifying over the universe of people
▶ ∀x(C(x) → F(x)):

FOR ALL people, IF person x is a comedian, THEN person x
is funny. 10



Exercise: To and From English in Predicate Logic

▶ ∀x: universal quantifier, ”For all…”
▶ ∃x: existential quantifier, ”There exists…”
▶ Define C(x) : x is a comedian, F(x) : x is funny
▶ Assume quantifying over the universe of people

Symbols to English
▶ ∀x(C(x) ∧ F(x))
▶ ∃x(C(x) → F(X))

English to Symbols
▶ Among people, there exists

a person who is a comedian
and is funny.

▶ For all people, if a person is
not funny, that person is not
a comedian.
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Answers: To and From English in Predicate Logic
▶ ∀x: universal quantifier, ”For all…”
▶ ∃x: existential quantifier, ”There exists…”
▶ Define C(x) : x is a comedian, F(x) : x is funny
▶ Assume quantifying over the universe of people

Symbols to English
▶ ∀x(C(x) ∧ F(x))

▶ All people are comedians
and are funny.

▶ ∃x(C(x) → F(x))
▶ There exists a person

that, if that person is a
comedian, they are funny.

English to Symbols
▶ Among people, there exists

a person who is a comedian
and is funny.
▶ ∃x(C(x) ∧ F(x))

▶ For all people, if a person is
not funny, that person is not
a comedian.
▶ ∀x(¬F(x) → ¬C(x))
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Logical Equivalence in Predicate Logic

▶ In Propositional Logic, two statements equivalent (≡) if they
had the same truth values for any truth assignment; could
construct a table of these

▶ Predicate Logic is similar: two statements are equivalent if
they have the same truth values but must account for
▶ Any Predicate definition: P(x) might be x is odd or x is > 0
▶ Any universe/set over quantifiers including a universe of

infinite objects
▶ Result: can’t use truth tables anymore
▶ Need a formal proof of equivalence
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Proof that ∀x(P(x) ∧ Q(x)) ≡ (∀xP(x)) ∧ (∀xQ(x))
▶ Makes intuitive sense but need a more formal description to

qualify as a proof
▶ Recall A ≡ B is identical to A ↔ B being a tautology
▶ Showing A ↔ B ≡ (A → B) ∧ (B → A) gets us there

A: ∀x(P(x) ∧ Q(x)) B: (∀xP(x)) ∧ (∀xQ(x))

A → B
Assume A true: ∀x(P(x) ∧ Q(x))
(Implication: don’t care if it’s false)

▶ That means for any specific value
v, both P(v) and Q(v) are true.

▶ Since P(v) is true for all elements,
have ∀xP(x)

▶ Since Q(v) is true for all
elements, have ∀xQ(x)

▶ Then have desired result
B : (∀xP(x)) ∧ (∀xQ(x))

B → A
Assume B true: (∀xP(x)) ∧ (∀xQ(x))

▶ Means that any specific value v,
P(v) is true

▶ AND means that any specific
value v, Q(v) is true

▶ So for any v, P(v) ∧ Q(v) true
▶ Means that this statement is true

for all specific values so..
▶ Have desired result:

A : ∀x(P(x) ∧ Q(x))

Since A ↔ B is a tautology, property holds ■ 14



First Example of a ”Proper” Proof
▶ Symbols helped determine the structure of the proof
▶ Gave some insight into the plan of attack

▶ Show A and B are true/false at the same time
▶ Used the fact that A ↔ B ≡ (A → B) ∧ (B → A)
▶ Allows showing two ”smaller” things are true, very common

proof structure

By relieving the brain of all unnecessary work, a good nota-
tion sets it free to concentrate on more advanced problems,
and in effect increases… mental power
– Alfred North Whitehead, (1911)

▶ Ultimately part of the proof was not in symbols but was
based on reasoning outside of the notation
The difficulty that attends mathematical symbolism is the
accompanying tendency to take the symbol as exhaustively
descriptive of reality.
– Charles Nordmann (1922)
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Exercise: What about the or?

▶ These two statements are NOT logically equivalent
A: ∀x(P(x) ∨ Q(x)) ̸≡ B: (∀xP(x)) ∨ (∀xQ(x))

▶ To see why not, find a counter example as follows
▶ Pick a universe of discourse (like the integers)
▶ Define predicates P() and Q() such that one of the above is

true while the other is false
▶ Will need to find two predicates where one or the other or

both are true about all integers…

16



Answer: What about the or?

▶ These two statements are NOT logically equivalent
A: ∀x(P(x) ∨ Q(x)) ̸≡ B: (∀xP(x)) ∨ (∀xQ(x))

▶ Pick a universe of discourse (like the integers)
▶ I pick the Integers, as in For all integers, …

▶ Define predicates P() and Q()
▶ P(x): x is even
▶ Q(x): x is odd

▶ A: ∀x(P(x) ∨ Q(x)) : For all x where x is an integers, x is even
OR x is odd. True

▶ B: (∀xP(x)) ∨ (∀xQ(x)) : All integers are even OR all integers
are odd. False

Disproved by counter example. ■
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Good Practice

▶ Showed equivalences for the Universal Quantifier ∀ with
Conjunction/Disjunction

▶ Good practice to do the same for the Existential Quantifier ∃:

And? A: ∃x(P(x) ∧ Q(x)) ? ≡? B: (∃xP(x)) ∧ (∃xQ(x))
Or? C: ∃x(P(x) ∨ Q(x)) ? ≡? D: (∃xP(x)) ∨ (∃xQ(x))

This is the kind of thing that might come up on a quiz…
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Negating Quantified Expressions

Negation Equivalent English
¬∃P(x) ≡ ∀x¬P(x) For all x, P(x) is false.
¬∀xP(x) ≡ ∃x¬P(x) There exists an x for which P(x) is false.

▶ DeMorgan’s Laws for Quantifiers in Predicate Logic
▶ An example of logical equivalence in PredLog
▶ Can’t prove this one with truth tables
▶ A formal proof would do it
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English and Negated Quantifiers
Leads to several ways to phrase the same idea
There is an honest politician
▶ H(x) : x is honest, quantifying over politicians.
▶ ∃xH(x) : There is an honest politician
▶ ¬∃xH(x) : There is NOT and honest politician.
▶ ∀x¬H(x) : All politicians are DISHONEST.

All Americans eat cheeseburgers.
▶ C(x) : x eats cheeseburgers honest, quantifying over

Americans.
▶ ∀xC(x) : All Americans eat cheeseburgers.
▶ ¬∀xC(x) : NOT all Americans eat cheeseburgers.
▶ ∃x¬C(x) : There exists an American that does NOT eat

cheeseburgers.
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Nested Quantifiers
▶ Introduce multiple variables using multiple quantifiers
▶ Creates nesting of variables and scopes

Examples
▶ Domain is integers
▶ Define: F(x, y, z) : x = y × z
▶ ∀x∃y∃z F(x, y, z) : For all x, there exists a y and z such a that

x = y× z
▶ ∃z∀yF(0, z, y) : There exists an integer z such that for all

integers y, z× y = 0.
▶ Define: G(x) : x is even
▶ ∀x(G(x) → ∃nF(x, n, 2)) : For all x, IF x is even, THEN there

exists an n such that x = n× 2
▶ Note: also common to use math operators rather than

external predicates as in: ∃z∀y(z × y = 0)
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Exercise: Nested quantifier Translation

To Symbols
▶ The sum of two negative

integers is negative.
▶ There exists an integer i

such that for all integer x,
i × x = x

To English
▶ ∃x∃y((x2 > y) ∧ (x < y))
▶ ∀x∃y((x + y = 0))
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Answers: Nested quantifier Translation

To Symbols
The sum of two negative integers
is negative.
▶ ∀x∀y((x < 0 ∧ y < 0) →

(x + y < 0))
There exists an integer i such
that for all integer x, i × x = x
▶ ∃i∀x(i × x = x)

To English
∃x∃y((x2 > y) ∧ (x < y))
▶ There exist integers x and y

such that x2 is greater than
y AND x is less than y.

∀x∃y((x + y = 0))
▶ For every integer x there

exists an integer y such that
x + y = 0.
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