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Logistics

Reading: Rosen
▶ Now: Ch 1.6 - 1.8
▶ Next: 2.1 - 2.5

Assignments
▶ A02 due tonight
▶ A03 posted tomorrow, due

next Tue

Quizzes
▶ Quiz 01 on Thu
▶ Practice Today

Goals
▶ Logic and Inference
▶ Proof Techniques
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Formalizing Arguments

▶ A mathematical proof is a
formalized argument

▶ Must start with some given
facts
▶ Axioms, premises,

hypotheses, assumptions,
knowns

▶ Makes use of valid logical
steps to produce new facts
▶ Rules of inference

▶ Arrives at some logical
conclusion

1. All humans are mortal Fact
2. Socrates is a human Fact
3. Socrates is mortal. Inferred

1. Max is a cat with no hair Fact
2. Not all cat’s have hair Inferred

3



Rules of Inference
▶ Formal argument uses rules to go from established facts to

new facts
▶ Stated referred to as rules of inference as they allow new

facts to be inferred from existing ones
▶ Equivalents in both Propositional and Predicate/First Order

Logic
▶ Example in Prop Logic

p Fact (p is True)
p→ q Fact (p→ q is True)

∴ q Inferred by Modus Ponens
▶ ”∴” The ”therefore” symbol, used to denote new fact based

on application of rule of inference
▶ Modus Ponens: Latin for ”method of affirming”, based on the

following tautology

(p ∧ (p→ q))→ q
4



Common Rules of Inference

▶ There are a
variety of rules
of inference

▶ All are based
on a tautology

▶ Not all of them
are strictly
”needed”

▶ Variety can
make ”proofs”
shorter
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Example Proof through Inference

Definitions
p It’s sunny
q It’s cold
r We’re going swimming
s We’re going canoeing
t We’ll be home by sunset

Facts In English
¬p ∧ q It’s not sunny and it’s cold.
r → p If we’re swimming, it must be sunny.
¬r → s If we’re not swimming, we’ll be canoeing.
s → t If we’re canoeing, we’ll be home by sunset.

Prove t: We’ll be home by sunset

Symbols Rule
1 ¬p ∧ q Fact
2 ¬p Simplification of (1)
3 r → p Fact
4 ¬r Modus tollens of (2) / (3)
5 ¬r → s Fact
6 s Modus ponens of (4) / (5)
7 s → t Fact
8 t ■ Modus ponens of (6) / (7)
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Exercise: Use Rules of Inference

Definitions
p It’s sunny
q It’s cold
r We’re going swimming
s We’re going canoeing
t We’ll be home by sunset

Facts In English
r → p If we’re swimming, it must be sunny.
¬s → r If we’re not canoeing, we’ll be swimming.
s → t If we’re canoeing, we’ll be home by sunset.
¬t We’re not home by sunset.

Prove p: It’s sunny
Note: Facts given above a somewhat different from previous example.
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Answers: Use Rules of Inference

Definitions
p It’s sunny
q It’s cold
r We’re going swimming
s We’re going canoeing
t We’ll be home by sunset

Facts In English
r → p If we’re swimming, it must be sunny.
r ∨ s We’re swimming or canoeing.
s → t If we’re canoeing, we’ll be home by sunset.
¬t We’re not home by sunset.

Prove p: It’s sunny

1 ¬t Fact
2 s → t Fact
3 ¬s Modus tollens of (1) / (2)
4 r ∨ s Fact
5 r Disjunctive Syllogism of (3) / (4)
6 r → p Fact
7 p ■ Modus ponens of (5) / (6)
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A Special Note on Resolution

p ∨ q Fact
¬p ∨ r Fact

∴ q ∨ r Resolution

▶ Along with a search algorithm, Resolution leads to a sound
and complete proving system
▶ Sound: no false conclusion can be derived
▶ Complete: all true conclusions can be derived
▶ Search Algorithm: a way to produce new facts from prior

facts using resolution
▶ Resolution is often used in computer logic systems like Prolog
▶ Will overview Prolog later
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Exercise: Another Inference Example
Definitions Facts In English

p The assignment gets posted. p → q If the assignment gets posted,
q Dylan finishes the assignment. Dylan to finishes it.
r Dylan goes to bed early. ¬p → r If the assignment doesn’t get posted,
s Dylan wakes up feeling great. Dylan goes to bed early.

r → s If Dylan goes to bed early,
Dylan wakes up feeling great.

Prove ¬q→ s

If Dylan doesn’t finish the assignment, Dylan wakes up feeling great.

1 p → q Fact
2 ¬q → ¬p Contrapositive of (1)
3 ¬p → r Fact
4 ¬q → r Hypothetical Syllogism of (2)/(3)
5 r → s Fact
6 ¬q → s ■ Hypothetical Syllogism of (4)/(5)

▶ Step 2 converts to the
Contrapositive

▶ How would one show this
is valid?

▶ What property would
need to be established
about p → q and its
contrapositive ¬q → ¬p?
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Answer: Another Inference Example

What property would need to be established about p→ q and its
contrapositive ¬q→ ¬p?
▶ Show that p→ q and ¬q→ ¬p are logically equivalent
▶ By truth table equivalence:

p q p→ q ¬q→ ¬p
T T T T
T F F F
F T T T
F F T T

▶ Gives another nice proof strategy: Prove the Contrapositive
▶ Rather than directly showing p→ q show ¬q→ ¬p
▶ More on this in a bit
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Fallacies
fallacy (noun) a failure in reasoning that renders an argument invalid.

Mistakenly made by beginners and often used by expert lawyers
and politicians.

Affirming the Conclusion

Fact IF George does every practice problem, p → q
THEN George will learn discrete math.

Fact George learned discrete math. q
Conclusion? George did every practice problem. p

Statement ((p → q) ∧ q) → p is NOT a tautology so this is NOT a valid Rule
of Inference.

Denying the Hypothesis

Fact IF George does every practice problem, p → q
THEN George will learn discrete math.

Fact George did NOT do every practice problem. ¬p
Conclusion? George did NOT learn discrete math. ¬q

Statement ((p → q) ∧ ¬p) → ¬q is NOT a tautology so this is NOT a valid
Rule of Inference.
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Exercise: Identify the Flaw

Identify a fallacy in the reasoning below.
1. If an animal is a cat, it has hair. Rolf has hair. Therefore,

Rolf must be a cat.
2. If an animal lives in a burrow and digs holes, it is chipmunk.

Alvin does not live in a burrow and does not dig holes.
Therefore Alvin is not a chipmunk.
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Answers: Identify the Flaw

Identify a fallacy in the reasoning below.
1. If an animal lives in a burrow and digs

holes, it is chipmunk. Alvin does not live
in a burrow and does not dig holes.
Therefore Alvin is not a chipmunk.
▶ Denying the Hypothesis: Chipmunks do

not necessarily live in burrows and dig
holes.

2. If an animal is a cat, it has hair. Rowlf is
a hairy animal. Therefore, Rolf must be a
cat.
▶ Affirming the Conclusion: Rowlf may be

some other kind of animal that has hair.
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Additional Inference Rules in Predicate Logic

▶ Quantifiers and Predicates
in 1st Order Logic have
additional rules of inference

▶ Come in pairs that allow a
quantifier to be
▶ Discarded: Instantiation
▶ Introduced:

Generalization

1 ∀x(H(x) → M(x)) All humans are mortal. Fact
2 H(Socrates) → M(Socrates) If Socrates is a human, he is mortal. Univ Inst
3 H(Socrates) Socrates is a human. Fact
4 M(Socrates) Socrates is mortal. M.P. 2/3

1 C(Max) ∧ ¬H(Max) Max is a Cat and has No Hair Fact
2 ∃x(C(x) ∧ ¬H(x)) There exists a hairless cat. Exist. Gen.
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Exercise: Inference with Quantifiers

Definitions Facts English
C(x) x is in this Class. ∃x(C(x) ∧ ¬B(x)) ??
B(x) x read the Book. ∀x(C(x)→ P(x)) ??
P(x) x passed the Quiz.

Show: ∃x(P(x) ∧ ¬B(x))
There someone who passed the quiz did not read the book.
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Answer: Inference with Quantifiers
Definitions Facts

C(x) x is in this Class. ∃x(C(x) ∧ ¬B(x))
B(x) x read the Book. There is someone in the class who
P(x) x passed the Quiz. didn’t read the book.

∀x(C(x)→ P(x))
Everyone in the class passed the quiz.

Show ∃x(P(x) ∧ ¬B(x)):
There someone who passed the quiz did not read the book.

1 ∃x(C(x) ∧ ¬B(x)) Fact
2 C(a) ∧ ¬B(a) Exist. Inst. (1)
3 C(a) Simplification (2)
4 ∀x(C(x)→ P(x)) Fact
5 (C(a)→ P(a)) Univ. Inst. (4)
6 P(a) Modus Ponens of (3/4)
7 ¬B(a) Simplification (2)
8 P(a) ∧ ¬B(a) Conjunction of (6/7)
9 ∃x(P(x) ∧ ¬B(x)) ■ Exist. Gen. (8)
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Logic Programming: Prolog

▶ Prolog is a programming language/system developed in the
1970’s

▶ General Purpose but focused on logic programming
specifically
▶ Stores Facts about the world (true Predicates)
▶ Facts may be Relations between items (multi-arg Predicate)
▶ Allows Inference about those facts via a search algorithm
▶ Search algorithm is based on resolution refutation

▶ Premise is to write program as a search problem
▶ Can solve problem by searching for a ”proof” that the

facts/relations resolve to some conclusion
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A Brief Prolog Example
Input file

> cat dog.pl
dog(rex) :- true. % states fact: rex is a dog
dog(fly). % shorthand for a fact
pig(babe). % different predicate

%% statement of true two-item relations
barksat(rex,fly). barksat(rex,babe). barksat(rex,sheep).
barksat(fly,sheep). barksat(fly,babe).

Interactive Session
> swipl
Welcome to SWI-Prolog
1 ?- consult('dog.pl'). % load facts
true.

2 ?- dog(rex). % is rex a dog
true.

3 ?- dog(fly). % is fly a dog
true.

4 ?- dog(babe). % is babe NOT a dog
false.

5 ?- dog(X). % find a dog
X = rex.

4 ?- dog(X). % find all dogs
X = rex ;
X = fly.

6 ?- barksat(rex,Z). % rex
Z = fly ; % barks
Z = babe ; % at...
Z = sheep.
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Logic Programming these Days
▶ Prolog is not particular popular as a general coding language
▶ However, has had influence in many areas

▶ Database query languages like SQL
▶ Natural language processing (English to Computer) including

use in Watson, IBM’s Jeopardy AI
▶ Some branches of Artificial Intelligence with discrete search

problems
▶ Still many usable implementations out there today and for

some kinds of problems makes life much easier

Proof Assistants
▶ Related are Proof Assistants: programs that are meant to

help humans keep track of mathematical facts as they
construct proofs

▶ Have led to influential inventions
▶ The Coq Proof Assistant is old and solid example of this
▶ The ML programming language was developed internally for

use in a theorem prover but now has generally usable
implementations such as OCaml which is used in some of our
CSCI classes
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Proofs, Theorems, Lemmas
Vocabulary
▶ A proof is a formal argument that some statement is true. It

does not need to be in symbols and use rules of inference
explicitly but it should be readily apparent that this can be
done.

▶ A theorem is a fancy name for a true statement. Usually it is
somehow significant potentially because it requires a lot of
work to prove.

▶ A lemma is a fancy name for a little theorem. Often
theorems are proved by first proving one or more lemmas then
using their validity to show the theorem is true.

Since proving theorems is a search process, get acquainted with
the common structures and strategies associated with the proofs.
▶ The first few times is very difficult
▶ After gaining experience, re-use structure of related proofs
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Proof Strategies and Tactics in the Large
The following tactics show up in proofs often enough to have
specific names associated.
Direct Proof Show directly that some properties lead to the given

conclusion; e.g. p→ q and p leads to q
Proof By Contraposition Rather than proving p→ q directly, prove

the contrapositive: ¬q→ ¬p and ¬q leads to ¬p
Proof By Contradiction Prove that if p→ q and p did NOT lead

to q, then something false is provable.
Proof by Cases/Exhaustion Break the proof into discrete pieces

and show properties true/false in each case.
Construction Prove something exists by creating it or showing its

structure
Counterexamples Show some property doesn’t hold by

constructing something that disobeys the property.
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Direct Proofs
▶ A good first strategy to attempt when starting
▶ Go straight from properties to conclusion

Example: Show If n is odd then n2 is odd

∀x(Odd(n)→ Odd(n2)

▶ Odd defined as
▶ n = 2a + 1 for some a and
▶ n2 = 2b + 1 for some b

▶ Do some arithmetic on n2 to see what comes out

n2 = (2a + 1)2

= 4a2 + 4a + 1
= 2(2a2 + 2a) + 1
= 2b + 1 with b = 2a2 + 2a

Since n2 can be written in the form of an odd number, it is odd. ■
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Exercise: n2 is Even

▶ Use a direct proof to show that if n is an Even integer, n2 is
also Even.

▶ Fact: Even integers can be written n = 2a for some integer a.
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Answers: n2 is Even

▶ Use a direct proof to show that if n is an Even integer, n2 is
also Even.

▶ Fact: Even integers can be written n = 2a for some integer a.

n2 = (2a)2

= 4a2

= 2(2a2)
2b with b = 2a2

Since n2 can be written in the form of an even number, it is even.
■
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Exercise: Proof by Contraposition

Prove if 3n + 2 is odd, then n is odd
p 3n + 2 is odd
q n is odd

p → q IF 3n + 2 is odd, THEN n is odd
¬q → ¬p IF n is NOT odd, THEN 3n + 2 is NOT odd

IF n is EVEN, THEN 3n + 2 is EVEN
n even means n = 2k for some k
3(2k) + 2 = 6k + 2 = 2(3k + 1) which is EVEN
Assuming ¬q, have shown ¬p. Completes proof by Contraposition.■

Prove IF n = ab THEN a ≤ √n OR b ≤ √n
▶ Assume a, b are positive integers
▶ Use a proof by contraposition
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Answers: Proof by Contraposition

Prove IF n = ab THEN a ≤ √n OR b ≤ √n
▶ Assume a, b are positive integers
▶ Use a proof by contraposition

p n = ab
q ∨ r a ≤ √n OR b ≤ √n

p→ (q ∨ r) IF n = ab THEN a ≤ √n OR b ≤ √n
¬(q ∨ r)→ ¬p Contrapositive

(¬q ∧ ¬r)→ ¬p De Morgan’s Law on left side of implication
In English: IF a >

√n AND b >
√n THEN n ̸= ab

Multiply: ab > n so clearly ab ̸= n
Assuming ¬q, have shown ¬p.
Completes proof by Contraposition.■

27



Proof by Contradiction

▶ To show that p is true, assume ¬p and show that some
contradictory result arises result arises.

▶ Common tactic which indirectly shows that p is true
▶ Usually involves specific tricks to the domain as Direct Proofs

and Proof by Contraposition did
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Example: Proof by Contradiction
Definition: rational number is one that can be written as the
quotient of two integers without common factors; i.e. n rational
means n = a/b. Some important numbers are irrational in that
they are not the quotient of two integers.
Show

√
2 is Irrational by Contradiction

1. Assume
√

2 is NOT irrational; so√
2 IS rational

2. Thus
√

2 = a/b
3. Squaring (2) gives 2 = a2/b2

4. Re-arrange (3) to get 2b2 = a2

5. Equality in (4) shows a2 is even
6. By an earlier proof and (5), a

must be even
7. a even means a = 2c for some c
8. Substitute a = 2c into (4) to get

b2 = (2c)2

9. Rearrange (8) to get b2 = 2(2c2)
10. (9) means b2 is even so b is also

even
11. So a and b are even so they have

a common factor
12. Contradicts the no common

factors property of rational
numbers

13. Assumption that
√

2 is rational
14. Therefore

√
2 must be irrational.

■
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Exercise: Proof by Contradiction

Show that IF 3n + 2 is Odd THEN n is Odd by Contradiction
▶ Structure your argument to prove p→ q
▶ Start by assuming the opposite,

(¬(p→ q)) ≡ (¬(¬p ∨ q)) ≡ (p ∧ ¬q)
▶ Show this leads to a contradiction
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Answers: Proof by Contradiction

Show that IF 3n + 2 is Odd THEN n is Odd by Contradiction

1. Assume is Odd(3n + 2) ∧ ¬Odd(n)
2. (1) means Odd(3n + 2) ∧ Even(n)
3. By (2), have that n = 2k for some k
4. Substitute (3) into LHS of (1): Odd(3(2k) + 2)
5. Rearrange to get Odd(2(3k + 1))
6. Contradiction: (5) cannot be Odd with factor of 2
7. Original assumption leads to a contradiction
8. Must be that Odd(3n + 2)→ Odd(n) ■

A good exercise would be to do this as a Direct Proof as well.
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Exercise: Debugging Proofs

Consider the following and identify a subtle but significant flaw.
Show that if n2 is Even, n is Even
Proved Directly.

1. Assume n2 is Even
2. By (1), n2 = 2a for some a
3. Let n = 2b for some integer b
4. (3) shows n can be written in the form of an Even number
5. This shows Even(n2)→ Even(n). □
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Exercise: Debugging Proofs
Flawed: Show that if n2 is Even, n is Even

1. Assume n2 is Even
2. By (1), n2 = 2a for some a
3. Let n = 2b for some integer b : Why can I do that again?
4. (3) shows n can be written in the form of an Even number
5. This shows Even(n2)→ Even(n). □

Begging the Question / Circular Arguments
▶ Step (3) assumes that n can be written as an Even number
▶ Evenness of n is not a Fact, it’s the target of the proof
▶ Assuming the conclusion is true makes proofs pointless
▶ Begging the Question: Any form of argument where the

conclusion is assumed in one of the premises (given facts).1
1Logically Falacious (dot com): Begging the Question
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Proof by Cases

▶ Break the space of possibilities into distinct categories
▶ Apply separate arguments to each category as needed

Example: Prove the Triangle Inequality
Show for all real numbers x, y the inequality |x|+ |y| ≥ |x + y|
holds where |a| denotes the absolute value of a.
Case 1: x ≥ 0, y ≥ 0. This leads to the inequality x + y ≥ x + y
which is equal and therefore holds.
Case 2: x < 0, y < 0. This again leads to the inequality
x + y ≥ x + y which is equal and therefore holds.
Case 3: x ≥ 0, y < 0. The inequality becomes x + |y| ≥ x− |y|
which holds.
Case 4: x < 0, y ≥ 0. The inequality becomes |x|+ y ≥ y− |x|
which holds.
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Exercise: Prove using Cases

Show that the following equality holds for all real numbers

max(x, y) + min(x, y) = x + y

where max() and min() become the maximum or minimum of their
arguments.
Use a Proof by Cases.
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Answers: Prove using Cases

Show that the following equality holds for all real numbers x, y

max(x, y) + min(x, y) = x + y

where max() and min() become the maximum or minimum of their
arguments.
Cases are based on the relative magnitudes of x, y
Case 1: x = y. In this case the equality becomes
x + y = x + x = y + y = x + y which holds.
Case 2: x > y. In this case the equality becomes x + y = x + y
which holds.
Case 3: x < y. In this case the equality becomes y + x = x + y
which holds.
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”Without Loss of Generality”

▶ A technical phrase for ”here’s a small additional assumption
that could be discarded but it would make the proof longer”

▶ Often employed when there would be symmetric cases
▶ Case 1: x > y, Case 2: x < y

where the same reasoning would apply
▶ Introduces a new fact like Assume x > y
▶ Use with care as it is easy to actually lose generality if the

same reasoning does not apply in both cases
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Exercise: Combining Several Proof Techniques 1

▶ Show that if sum and product of integers x, y are Even, then
both x and y Even

∀x∀y((Even(x · y) ∧ Even(x + y))→ (Even(x) ∧ Even(y)))

▶ Proof by contraposition: if at least one of x, y is Odd, then
sum or product is Odd

▶ Give a symbolic version of the contrapositive
▶ Do not need to change the quantifiers, just the implication

from p→ q to ¬q→ ¬p
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Answers: Combining Several Proof Techniques 1

▶ Show that if sum and product of integers x, y are Even, then
both x and y Even

∀x∀y((Even(x · y) ∧ Even(x + y))→ (Even(x) ∧ Even(y)))

▶ Proof by contraposition: if at least one of x, y is Odd, then
sum or product is Odd

▶ Give a symbolic version of the contrapositive

∀x∀y((Odd(x) ∨ Odd(y))→ (Odd(x · y) ∨ Odd(x + y)))

▶ Without loss of Generality assume that x is Odd
▶ Ignore y is Odd as reasoning would be symmetric

▶ Show Odd(x · y) ∨ Odd(x + y) to complete contraposition

39



Exercise: Combining Several Proof Techniques 2

▶ Without loss of Generality assume that x is Odd
▶ Show Odd(x · y) ∨ Odd(x + y) to complete contraposition
▶ Divide into 2 cases based on properties of y
▶ What are these two cases?
▶ What facts would one start with in the cases?
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Exercise: Combining Several Proof Techniques 3

▶ Without loss of Generality assume that x is Odd
▶ Show Odd(x · y) ∨ Odd(x + y) to complete contraposition
▶ Divide into 2 cases based on properties of y

Case 1: y is Even

1 Odd(x) so x = 2a + 1 for some a Fact
2 Even(y) so y = 2b for some b Fact

Fill in the proof that Odd(x · y) ∨ Odd(x + y)

Case 2: y is Odd

1 Odd(x) so x = 2a + 1 for some a Fact
2 Odd(y) so y = 2b + 1 for some b Fact

Fill in the proof that Odd(x · y) ∨ Odd(x + y)
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Answers: Combining Several Proof Techniques 3
Case 1: y is Even

1 Odd(x) so x = 2a + 1 for some a Fact
2 Even(y) so y = 2b for some b Fact
3 x + y = 2a + 1 + 2b Substitute 1/2 into sum
4 x + y = 2(a + b) + 1 Rearrange 3
5 x + y = 2c + 1, c = a + b so Odd(x + y) Rearrange 4
6 Odd(x + y) ∨ Odd(x · y) Addition (Rule of Inference)

Case 2: y is Odd
1 Odd(x) so x = 2a + 1 for some a Fact
2 Odd(y) so y = 2b + 1 for some b Fact
3 x · y = (2a + 1) · (2b + 1) Substitute 1/2 into product
4 x · y = 4ab + 2a + 2b + 1 Rearrange 3
5 x · y = 2c + 1, c = 2ab + a + b so Odd(x · y) Rearrange 4
6 Odd(x + y) ∨ Odd(x · y) Addition (Rule of Inference)

▶ In both cases, Odd(x)→ Odd(x + y) ∨ Odd(x · y)
▶ Completes the proof of contrapositive, original property holds:

∀x∀y((Even(x · y) ∧ Even(x + y))→ (Even(x) ∧ Even(y))) 42



More to Come

Existence Proofs
▶ Show that something exists out there
▶ Can be done Constructively (here it is!)
▶ Or Nonconstructively, often by contradiction (if it didn’t

exist, the something we know is true would appear false)
▶ Uniqueness proofs also come up: this thing exists and there

is only one of it

Proof by Induction
▶ Important enough to get its own chapter
▶ Often comes up in CS due to our use of recursive algorithms

and recursive data structures like trees
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Conjectures and Open Problems
▶ A Conjecture is a proposed truth often without a proof
▶ Sometimes may be asked to ”form a conjecture” then prove it
▶ Some open problems are a conjecture that hasn’t yet been

proved

Example: Collatz Conjecture

Algorithm: integer input x > 0 Pseudo Code
1 If x is even, halve it x← x/2
2 If x is odd, triple and add 1 x← 3x + 1
3 Repeat steps 1/2 until x = 1 while(x > 1)

Conjecture: The sequence of numbers produced by this algorithm
always converges to 1.

Mathematics is not yet ripe enough for such questions.
– Richard K. Guy (1983a) Don’t try to solve these prob-
lems!, Amer. Math. Monthly 90 (1983), 35–41.
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