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Logistics

Reading: Rosen
» Now: 2.1-25

Assignments

» AOQ3: post later today
» Due Tuesday

Quizzes

> Quiz 01 today

Goals

» Finish up proof basics

» Sets now, others later
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Sets

» A collection of unique objects (no redundant elements)
» In Mathematics, small sets often written with curlies:

A=1{1,3,5,7,11}, B = {apple, orange, banana}, C = {1,2,3,...,99}

» Standard numeric sets denoted with well-established symbols
(though context can vary what symbol is used)

Sym Alt Name Values
N A Natural Numbers {0,1,2,3,...}
y4 Z  Integers {0,1,-1,2,-2,...}
Q Q Rational Numbers {0,1,2,1/2,3,1/3,2/3,...}
R R Real Numbers {0,0.1,0.25,2.67, 7, e,v/2, ...}

C C  Complex Numbers Reals plus stuff with i =+/—1

Set builder notation frequently employed
» A = {x € S|conditions} : elements of S with conditions true
» Z* = {x€ Z|x> 0} : positive integers (standard notation)
» T={xeR|0<x<1}: reals between 0 and 1



Sizes of Sets, Nesting

» Cardinality describes the size of a set, written |§]
> Examples:
> E={}, |E| =0 (the empty set / null set, written §) or &)
> A={1,3,57,11}, |A| =5
> B={xe N|x< 100, xis even}, |B| =50
» Sets can nest, a "set of sets”
> D={{1,2,3},{3,4}}, |D| = 2 (contains two sets)
F={N,Z,Q,R}, |F| =4 (contains four sets)

| 2
> G6={{}.{{}},{{{}}}}, [6] =3 (contains three sets)
» The style of G looks really weird but is frequently used when

using set theory to establish number theory. Math folks love
that stuff, get on well with (1isp '(programmers ()))

P Finite sets have a cardinality in the natural numbers

» Infinite sets like N and R have infinite cardinality but these
infinities come in different sizes



Membership of Individual Elements

> Statements about membership of an element in a set often
use the "in" symbol: €

» This is a Predicate and has a true/false value
5$=1{1,3,5,7,11}, 7€ S: true, 12 € S: false
> Keep in mind that membership is on individual elements
5$=1{1,3,5,7,11}, S N : false

The set of Natural Numbers contains numbers, not sets, so
despite all elements of S being in N, S¢ N



Subsets

A is a subset of B if every element in A is also in B
Notation: AC B=Vx((x€ A) — (x€ B))
Two sets are equal if they are subsets of each other
Notation: A= B=Vx((x€ A) + (x € B))

A is a proper subset of B if it is a subset but not equal

vVvyvyVvVvYyypy

Notation:
ACB=Vx((xe A) = (xe B)) A3x(xe BAx & A)



Exercise: Set Operations
» A— B={x|x€ AAx¢ B} : Difference
AUB={x|]x€ AV x € B}: Union
AN B={x|]x€ AAx e B}: Intersection
Ax B={(a,b)lac A, be B} : Cartesian Product,
» Note the result of the Cartesian Product is a set of pairs
> P(A) = {S|S C A} : Power Set of A
> Note the result is a set of sets, all subsets of A
Do Set Ops
With A ={1,3,5}, B={3,9}, determine the results of the
following operations

> A—B=
AUB=
ANB=
Ax B=
P(A) =

vvyy

>
>
>
>



Answers: Set Operations
» A— B={x|x€ AAx¢ B} : Difference
AUB = {x|xe€ AV x e B}: Union
AN B={x|]x€ AAx e B}: Intersection
Ax B={(a,b)lac A, be B} : Cartesian Product,
» Note the result of the Cartesian Product is a set of pairs
> P(A) = {S|S C A} : Power Set of A

> Note the result is a set of sets, all subsets of A

Do Set Ops
With A = {1,3,5}, B={3,9}, determine the results of the
following operations

» A— B={1,5}

» AUB={1,3,5,9}
» AnB={3}
>
>

vvyy

Ax B=1{(1,3),(1,9),(3,3),(3,9),(5,3),(5,9)}
P(A) = {0, {1}, {3}, {5}, {1, 3}, {1,5},{3,5},{1,3,5}}



Exercise: Complement of a Set

The complement of a set is the set of
all elements not in the set with respect
to some larger Universe (also a set)

» Notation involves "overlines”

> A= {x]xe UANx¢ A}

» AUB={xxe UNx¢ AU B}

Exercise
> With U= N
E={x€ N|xis even}, E=77
» With U=R, Q =77
» With U=C, R=77

A is shaded.

FIGURE 4 Venn Diagram for
the Complement of the Set A.

Name

Natural Numbers
Integers

Rational Numbers
Real Numbers
Complex Numbers

)
n;UONZE

10



Answers: Complement of a Set

Exercise
| 4 Wlth U: N A is shaded.
E: {x € Nix s even} FIGURE 4 Venn Diagram for
E = Odd numbers the Complement of the Set A.
» With U=R
Q = Irrational Numbers N
. ame
» With U=C
= . Natural Numbers
R = Imaginary numbers, |
Integers

Rational Numbers
Real Numbers

Complex Numbers
11

)
n;UONZE




Set Identities

» Like many other

mathematical objects
(numbers,
propositions, etc.),
sets can be
manipulated through
rules

The following table
shows the most
common identities for
sets

Examine and then
describe anything
familiar that appears
on this table

TABLE 1 Set Identities.

Identity Name

ANU=A Identity laws
AUR=A

AUU=U Domination laws.
ANU=0

AUA=A Idempotent laws
ANA=A

ﬁ: A Complementation law
AUB=BUA Commutative laws
ANB=BnNA

AUBUC)=(AUB)UC
AN(BNC)=(ANB)NC

Associative laws

AUBNC)=(AUB)N(AUC)
ANBUC)=(ANB)UANC)

Distributive laws

ANB

AUB

AU
AN

| ol

De Morgan's laws

AUANB) =A
AN(AUB)=A

Absorption laws

AUA=U
ANA=¢

Complement laws

12



Showing Equivalence

» Common flavor of proof with sets: show two sets are
equivalent

» Often done via definitions in set builder notation

Example: Show ANB=AUB

De Morgan's Law for Sets: proof below uses De Morgan's Law for

logic

O ~NO OB~ WN -

>
D)
oy}

{x|x¢ An B}

{x|~(xe AN B)}
{X=(xe ANxe B)}
{X|=(x€ A) vV =(x e B)}
(x(x# M)V (x4 B))
{X(xe A) Vv (xe B)}
{xIx € (AU B)}

AUB

Def of Complement
Def of "Not In”
Def of Intersection
De Morgan’s Law
Def of ¢

Def of Complement
Def of Union
Simplify B

13



Exercise: Set Equivalences

Show that IF AUB=ATHEN BC A

» Use set builder notation starting
» Start with known facts

» Derive definition of subset

1 AUB=A Fact

14



Exercise: Set Equivalences

Show that IF AUB=ATHEN BC A

» Use set builder notation starting
» Start with known facts

» Derive definition of subset

SOl W N

AUB=A
AUB={xx€ AV xe B}
A= {x|]x e A}

{xIxe A} = {x|xe AV xe B}
Vx(x € B— x € A)
BCA

Fact

Def of Union

Set Builder Notation
Equiv of 2/3 by 1
Meaning of 4

Def of Subset from 4 W

15



Functions

» Most of you are familiar
with functions
» A simple way to define a
function is a mapping from
one set to another
» Domain is the set of
"inputs”
» Codomain is the set of
"outputs”

» Programming Examples

> int length(String s):

Domain of Strings,
Codomain positive
Integers

» double halve(int s):
Domain Integers,
Codomain reals (sort of)

16



Functions Map Between Sets

» Function as a set of pairs:
strlen = {("hi" ,2) , (ubyen ,3u) R ("y0" ,2) ,
("hello",5), ("goodbye",7), ...}
» Important: One input, One Output
Not a function: strlen = {("hi",2), ("hi",5),...}
» Note that the Codomain may be a subset of a larger set:

» strlen() Codomain is Positive Integers which is a subset of
Integers

» Universe of Codomain often referred to as the Range of the
function

17



Exercise: Special types of functions

One-to-one A function where each element of the Codomain

(output) is mapped from a unique element of
Domain (input)

Onto A function which has all elements of its Codomain
(or Range) mapped from an element of its Domain

Invertible A function that is both One-to-one and Onto

Are these One-to-One, Onto, Invertible?

>

>
>
>
>

boolean not(boolean b): flip Boolean value

boolean is_zero(int i): true for zero, false otherwise
int strlen(String s): length of input string

int increment(int i): increment integer and return result

double halve(int s): halve input integer, give real value

18



Answers: Special types of functions

One-to-one A function where each element of the Codomain

(output) is mapped from a unique element of
Domain (input)

Onto A function which has all elements of its Codomain
(or Range) mapped from an element of its Domain

Invertible A function that is both One-to-one and Onto

Are these One-to-One, Onto, Invertible?

>

| 4
»
| 2
>

boolean not(boolean b): 1-to-1, Onto, Invertible
boolean is_zero(int i): Onto

int strlen(String s): Onto for pos ints, Not for all ints
int increment(int i): 1-to-1, Onto, Invertible

double halve(int s): 1-to-1, Onto", Invertible

*. If the Codomain is Integers plus Halves, not Onto for Reals

19



Floor and Ceiling Functions
Several numerical functions come up in computing worth noting

| x] or floor (x)

P Nearest integer less than or equal to real number x
» Sometimes referred to as truncation

[x] or ceil(x)

P> Nearest integer greater than or equal to real number x

» Notice for both behavior at negative values in graph

() y=[xl

FIGURE 10  Graphs of the (a) Floor and (b) Ceiling Functions. 20



Exercise: Prove or Disprove Ceil Property

Prove or Disprove the following relationship for real numbers x, y

[x+y] = [x] + [y]

21



Answers: Prove or Disprove Ceil Property

Prove or Disprove the following relationship for real numbers x, y

[x+yl=[x]+ [yl
False: Searching for some counter examples yields the following
> x=1/2, y=1/2
> [x+yl=[1/2+1/2]=[1]=1
> [x]+[y] =[1/2]+[1/2] =1+1=2

22



Sequences

» Standard Calc I/l topic: sequence of successive numbers

» Convention: start index variable n at 0 unless otherwise
indicated

» Come in a variety of flavors such as...

» Arithmetic: a,a+d,a+2d,--- ,a+nd,---
» a3, =3+2n=3,5,7,9,---
> b, =0+5n=0,5,10,15, -

» Geometric: a,art, ar?, ar, - -
><%:1"—1111

111
> d,=3-2"=23,6,12,24,48, - --

23



Summations and Notation

» In CS, often interested in sequences as they represent
operation counts in iterations of an algorithm

> Makes sense to sum these as it indicates total operations

performed
» Summation notation:
"Sequence” Notation s
1+2+3+4+5 = 2, 15

2+4+6+8+10 SP.2i 30
142434+4+---4+n = X1qi 77

24



Exercise: Prove Summation of 1 to n

Show that the following equality holds for all positive integers.

Z’_ n—l—l)

Further, show that the right hand side never has a remainder in
the division that is done.

» First step: Show how to construct sums of n out of pairs of
terms in the summation

25



Exercise: Prove Summation of 1 to n
Show that the following equality holds for all positive integers.

i . n(n+1)
= ——>
=1 2
Direct Proof: The summation can be expanded a bit to
n
d i=1+42+43+44--+(n—4)+(n=3)+(n—2)+(n—1)+n
=1
Pair these terms as follows

0 4+ n

1 4+ n-1
2 + n-2
3 4+ n3

The sum of each term pair is n so we just need to count how many
pairs and multiply by n.

Second step: How many pairs are there? Divide into two cases for
n even/odd, ensure any extra terms are identified.

26



Answers: Prove Summation of 1 to n

n is even

There will be n/2 such groups
and the pairing will end with n/2
as below.

0 4+ n

1 + n-1

2 + n-2

3 + n-3
+ n/2

Totaling gives n(3§) + n/2.
Rearranging gets the desired
result:

n>+n) n(n+1)

2 2

nis odd

There will be (n+ 1)/2 such
groups and the pairing will end

0
1
2
3

[n/2]

+ o+

_l’_

This gives n(Z)
gets the desired result:

n’+n)

n
n-1
n-2
n-3

[n/2]

. Rearranging

n(n+1)

2

2

27



Some Useful Summation Closed Forms

Having these in mind can be
handy

TABLE 2 Some Useful Summation Formulae.

Sum Closed Form
n
+1
3 ark £ 0) a1
k=0 -
n
Zk nn+1)
k=1 2
n
Zki nn+1)2n+1)
k=1 6
n
NS n2n + 12
k=1 4
o0
1
Sk <t ;
k=0 -
& 1
>k <1 —
(1-x)?

-~
I

28



Generalized "Big" Ops

» Summing is not the only way to combine elements in a
sequence

» Often will see other notations for "big” operations

10
Hi: 1x2x3---x10=10! Factorial/Product
i=1

n

U Ai=AiUAU---UA, Union of indexed sets
i=1

29



Recurrence Relations

» So far have seen terms in sequences have been expressed as
functions of index: a, = 3n°

» Can also create Recurrent Sequences where terms depend
on previous elements

» Example: f, =21, 12 with fy =1

P> Resulting sequence can be computed by building up from
previous elements

» What's the example of this that CS folks love?

» Recurrence Relations define these sequences and will be
studied later in the course as they pertain to recursive
algorithms

30



Exercise: Sizes of Infinity

Now acquainted with the idea of an infinite set

Worthwhile to consider that there are different sizes of infinity

If |A] = o0 and |B| = o0, is |A| = |B|?

Consider:
1. Are there more Even Natural #'s or Odd Natural #'s?
2. Are there more Natural Numbers or Integers?

3. Are there more Integers or Rational Numbers?
4. Are there more Real Numbers than Integers?

>
>
> Want to know about the cardinality of various infinite sets
>
>

» How would one argue about the relative sizes of these?

31



Answers: Sizes of Infinity

» Argue about infinite cardinality sets by deriving mapping
between the two sets

» Mapping is an one-to-one function that maps elements of
one set to another

Example Mappings

» Evens and Odds have are the same size: Increment(e) : e+ 1
maps all even numbers to an odd numbers; it is a one-to-one
function, same size

» Natural Numbers and Integers have the same size by using the
following mapping / inverse mapping

nat_to_int(nat): int_to_nat(int):
if (nat is even) if(int > 0)
return nat / 2 // Pos return 2 int // Even
else else

return -((nat+1)/2) // Neg return 2*abs(int)+1 // 0Odds

32



Exercise: Countable Sets

> A set is called countable if one can derive a mapping
(one-to-one function) from the Natural Numbers N to its
elements

» The set has the same cardinality as the Natural numbers then

» Formally, set X is countable if 3f(f: N — X A fis one-to-one)

Map It

Construct a mapping function from the Naturals to the following
sets to show that they are countable

> Mapping between N and Even Natural #s
» Mapping between N and Character Strings
» Mapping between N and Positive Rational Numbers Q™+

33



Answers: Countable Sets

» Mapping between N and » Mapping between N and
Even Natural #s Positive Rational
double(nat): return 2#*nat Numbers Q*

» Mapping between N and » Rational impliesp/q
Character Strings » List in order of

> Informally, let each letter p+qg=1 p+qg=2
in the alphabet be p+q=3 p+qg=4

numbered 1 to size

» Let the empty string be
string 0

» All 1-character strings are
numbered 1 to size

» All 2-character strings are
numbered size+1 to
sizex*size

» Continue the pattern for
all 3-char, 4-char, etc. 5
strings N

skipping repeats: % = %

A Y N

s R
>

w4

INES
|

v Ul
EEEERV T FS
o



Uncountable Sets

P Important idea: a countable set has some algorithm to
enumerate all of its elements (print them), alternately called
enumerable sets

> May take a long time, but will eventually print any element

» An uncountable set is one for which no algorithm exists to
enumerate its elements
» Fundamentally larger than Natural numbers
» Uncountable is a bigger infinity than the one associated with
Naturals, Integers, Rationals, Strings

» The Real Numbers are uncountable and here's why...

35



Proof by Contradiction: Reals are Uncountable
Referred to as Cantor’s Diagonalization Argument

1. Suppose that Reals are countable.

2. Then any subset of them is also
countable such as all 0 < x<'1

3. If 0 < x < 1 are countable, then
we can enumerate them in a list
like the following

rn = 0.d11d12d13d14 . ..
rn = 0.db1doodrzdhs . ..
r3 = 0.d31d32d33034 . . .
rs = 0.ds1daodazdas . . .

with each dj; being a digit of the
number like 1,2,3,..,9

4.

Let the real number p have digits
pi defined this enumeration:

| 4 ifdi#4
Pi{5 }

if di =4
Note p's dependency on the
"diagonal” elements

Suppose that p appeared in the
listing of (3) as rx. This leads to
a contradiction: the digits px and
dikx do not match by the definition
of p.

Therefore p is not in the listing in
(4) so there is no enumeration of
all real numbers: the Reals
Numbers are uncountable

36



An Interesting Application: Uncomputable Functions

» The set of valid Programs (P) in some language is a subset of
the strings in a some appropriate character set

» Is P countable or uncountable?

» The set of mathematical Functions (F) (mappings) from
Integers to Integers has the same cardinality as the reals

» Is F countable or uncountable?
» Can there be Program in P for every Function in F?
> Is |P| = |F]?
Some mathematical functions are NOT computable
> Referred to as Uncomputable
» Disturbing but true
> We'll look at one later: the halting problem

37



Matrices and their Notation

> A "grid of numbers” with some associated operations and
rules

» Dimension is in #rows and F#cols

» Notated in various ways (use {} or [] or ()) but usually
obvious it's a matrix

Fat Matrix: rows < cols Skinny Matrix: rows > cols

~(323)
C=

Square Matrix: rows = cols

©O© 00—~ N
S N W

bi1 b b1z
B= | by b b3
bs1 b3x b33

38



Basic Arithmetic

» Element-wise operations on matrices are obvious:

» Addition, Subtraction, Multiplication, Division
Addition (Element-Wise)

1 2 3
4 5 6

Multiplication (Element-Wise)

1 2 3
4 5 6

_l’_

®

7
10

7
10

8
11

8
11

9
12

9
12

8 10
14 16

7 16
40 55

12
18

27
72

39



Transposition

» Mirror a matrix across it's main diagonal
» Main diagonal are elements aj1, a, ass, - - -

» Flips row and column counts: fat to skinny, skinny to fat,
square stays square

> Notated as AT for "transpose”

1 9

A:[; 2 g} AT=10 4
2 3

bi1 bix b3 bi1 b1 b3

B= | by by b BT = | b1z by b3

b3 b3 b33 b1z b3 b33

40



Matrix Multiplication

» The important and B
"different” operation In =1
. . bys by s
» Multiply corresponding 5. 5,16,
elements of rows of first | — l II_

matrix by columns of second
matrix, sum to form a new
element A

» Dimensions must match:
in A x B, columns of A must
equal rows of B

4%2 matrix 43 matrix Some results elements:

a1l a2 2x 3 matrix ©X12 X13
bis b x12 = a11bi2 + anboo
12 b3 - :

asr as2 [ by b3l |- x32 X33 x33 = a31b13 + as2b23

a1



Exponentiation are Repeated Multiplication

X2:X'X'X,X4:X'X'X'X'X

Same goes for matrices

M =AA A

Since dimensions must match, exponentiation only works for

square matrices

1 2 3
=14 5 6| x
7 8 9

(6]
(o))

1+8+21
4420+42
7432442

2+10+24
8+25+48
14+40+72

3+124-27
124-30+54
214-48+81

42



Menagerie of Matrices

Zero-One and Boolean Matrices Interpret element as True/False
and use logical and/or operations as in AA B or
generalize multiplication C= A ® B so that
Cij = (a,-1 VAN blj) V (a,g VAN bgj) VRS

Symmetric Matrices Element a;; = aj;, has some special properties
such as real eigenvalues (not studied here but
prominent in linear algebra)

Column and Row Vectors A matrix with 1 column or 1 row,
multiplying by an appropriate matrix results in
another vector

Many other aspects of matrices that we'll touch on at later times
including algorithm complexity of matrix operations.
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