
CSCI 2011: Basic Discrete Structures
Sets, Functions, Sequences, Sums, Matrices

Chris Kauffman

Last Updated:
Thu Jun 28 10:42:25 CDT 2018

1

Logistics

Reading: Rosen
▶ Now: 2.1 - 2.5

Assignments
▶ A03: post later today
▶ Due Tuesday

Quizzes
▶ Quiz 01 today

Goals
▶ Finish up proof basics
▶ Sets now, others later

2

Logistics

Reading: Rosen
▶ Now: 2.1 - 2.5

Assignments
▶ A03: post later today
▶ Due Tuesday

Quizzes
▶ Quiz 02 thu

Goals
Sets, Functions, Seqs, Sums

3

Sets
▶ A collection of unique objects (no redundant elements)
▶ In Mathematics, small sets often written with curlies:

A = {1, 3, 5, 7, 11}, B = {apple, orange, banana}, C = {1, 2, 3, ..., 99}
▶ Standard numeric sets denoted with well-established symbols

(though context can vary what symbol is used)

Sym Alt Name Values
N N Natural Numbers {0, 1, 2, 3, ...}
Z Z Integers {0, 1, −1, 2, −2, ...}
Q Q Rational Numbers {0, 1, 2, 1/2, 3, 1/3, 2/3, ...}
R R Real Numbers {0, 0.1, 0.25, 2.67, π, e,

√
2, ...}

C C Complex Numbers Reals plus stuff with i =
√

−1
Set builder notation frequently employed
▶ A = {x ∈ S|conditions} : elements of S with conditions true
▶ Z+ = {x ∈ Z|x > 0} : positive integers (standard notation)
▶ T = {x ∈ R|0 ≤ x ≤ 1} : reals between 0 and 1

4

Sizes of Sets, Nesting

▶ Cardinality describes the size of a set, written |S|
▶ Examples:

▶ E = {}, |E| = 0 (the empty set / null set, written ∅ or ∅)
▶ A = {1, 3, 5, 7, 11}, |A| = 5
▶ B = {x ∈ N|x < 100, x is even}, |B| = 50

▶ Sets can nest, a ”set of sets”
▶ D = {{1, 2, 3}, {3, 4}}, |D| = 2 (contains two sets)
▶ F = {N, Z, Q, R}, |F| = 4 (contains four sets)
▶ G = {{}, {{}}, {{{}}}}, |G| = 3 (contains three sets)
▶ The style of G looks really weird but is frequently used when

using set theory to establish number theory. Math folks love
that stuff, get on well with (lisp '(programmers ()))

▶ Finite sets have a cardinality in the natural numbers
▶ Infinite sets like N and R have infinite cardinality but these

infinities come in different sizes

5

Membership of Individual Elements

▶ Statements about membership of an element in a set often
use the ”in” symbol: ∈

▶ This is a Predicate and has a true/false value

S = {1, 3, 5, 7, 11}, 7 ∈ S : true, 12 ∈ S : false

▶ Keep in mind that membership is on individual elements

S = {1, 3, 5, 7, 11}, S ∈ N : false

The set of Natural Numbers contains numbers, not sets, so
despite all elements of S being in N, S ̸∈ N

6

Subsets

▶ A is a subset of B if every element in A is also in B
▶ Notation: A ⊆ B ≡ ∀x((x ∈ A) → (x ∈ B))
▶ Two sets are equal if they are subsets of each other
▶ Notation: A = B ≡ ∀x((x ∈ A) ↔ (x ∈ B))
▶ A is a proper subset of B if it is a subset but not equal
▶ Notation:

A ⊂ B ≡ ∀x((x ∈ A) → (x ∈ B)) ∧ ∃x(x ∈ B ∧ x ̸∈ A)

7

Exercise: Set Operations
▶ A − B = {x|x ∈ A ∧ x ̸∈ B} : Difference
▶ A ∪ B = {x|x ∈ A ∨ x ∈ B}: Union
▶ A ∩ B = {x|x ∈ A ∧ x ∈ B}: Intersection
▶ A × B = {(a, b)|a ∈ A, b ∈ B} : Cartesian Product,

▶ Note the result of the Cartesian Product is a set of pairs
▶ P(A) = {S|S ⊆ A} : Power Set of A

▶ Note the result is a set of sets, all subsets of A

Do Set Ops
With A = {1, 3, 5}, B = {3, 9}, determine the results of the
following operations
▶ A − B =
▶ A ∪ B =
▶ A ∩ B =
▶ A × B =
▶ P(A) =

8

Answers: Set Operations
▶ A − B = {x|x ∈ A ∧ x ̸∈ B} : Difference
▶ A ∪ B = {x|x ∈ A ∨ x ∈ B}: Union
▶ A ∩ B = {x|x ∈ A ∧ x ∈ B}: Intersection
▶ A × B = {(a, b)|a ∈ A, b ∈ B} : Cartesian Product,

▶ Note the result of the Cartesian Product is a set of pairs
▶ P(A) = {S|S ⊆ A} : Power Set of A

▶ Note the result is a set of sets, all subsets of A

Do Set Ops
With A = {1, 3, 5}, B = {3, 9}, determine the results of the
following operations
▶ A − B = {1, 5}
▶ A ∪ B = {1, 3, 5, 9}
▶ A ∩ B = {3}
▶ A × B = {(1, 3), (1, 9), (3, 3), (3, 9), (5, 3), (5, 9)}
▶ P(A) = {∅, {1}, {3}, {5}, {1, 3}, {1, 5}, {3, 5}, {1, 3, 5}}

9

Exercise: Complement of a Set

The complement of a set is the set of
all elements not in the set with respect
to some larger Universe (also a set)
▶ Notation involves ”overlines”
▶ A = {x|x ∈ U ∧ x ̸∈ A}
▶ A ∪ B = {x|x ∈ U ∧ x ̸∈ A ∪ B}

Exercise
▶ With U = N

E = {x ∈ N|x is even}, E =??
▶ With U = R, Q =??
▶ With U = C, R =??

Sym Name
N Natural Numbers
Z Integers
Q Rational Numbers
R Real Numbers
C Complex Numbers

10

Answers: Complement of a Set

Exercise
▶ With U = N

E = {x ∈ N|x is even}
E = Odd numbers

▶ With U = R
Q = Irrational Numbers

▶ With U = C
R = Imaginary numbers, I

Sym Name
N Natural Numbers
Z Integers
Q Rational Numbers
R Real Numbers
C Complex Numbers

11

Set Identities
▶ Like many other

mathematical objects
(numbers,
propositions, etc.),
sets can be
manipulated through
rules

▶ The following table
shows the most
common identities for
sets

▶ Examine and then
describe anything
familiar that appears
on this table

12

Showing Equivalence
▶ Common flavor of proof with sets: show two sets are

equivalent
▶ Often done via definitions in set builder notation

Example: Show A ∩ B = A ∪ B
De Morgan’s Law for Sets: proof below uses De Morgan’s Law for
logic

1 A ∩ B = {x|x ̸∈ A ∩ B} Def of Complement
2 = {x|¬(x ∈ A ∩ B)} Def of ”Not In”
3 = {x|¬(x ∈ A ∧ x ∈ B)} Def of Intersection
4 = {x|¬(x ∈ A) ∨ ¬(x ∈ B)} De Morgan’s Law
5 = {x|(x ̸∈ A) ∨ (x ̸∈ B)} Def of ̸∈
6 = {x|(x ∈ A) ∨ (x ∈ B)} Def of Complement
7 = {x|x ∈ (A ∪ B)} Def of Union
8 = A ∪ B Simplify ■

13

Exercise: Set Equivalences

Show that IF A ∪ B = A THEN B ⊆ A
▶ Use set builder notation starting
▶ Start with known facts
▶ Derive definition of subset

1 A ∪ B = A Fact

14

Exercise: Set Equivalences

Show that IF A ∪ B = A THEN B ⊂ A
▶ Use set builder notation starting
▶ Start with known facts
▶ Derive definition of subset

1 A ∪ B = A Fact
2 A ∪ B = {x|x ∈ A ∨ x ∈ B} Def of Union
3 A = {x|x ∈ A} Set Builder Notation
4 {x|x ∈ A} = {x|x ∈ A ∨ x ∈ B} Equiv of 2/3 by 1
5 ∀x(x ∈ B → x ∈ A) Meaning of 4
6 B ⊂ A Def of Subset from 4 ■

15

Functions
▶ Most of you are familiar

with functions
▶ A simple way to define a

function is a mapping from
one set to another
▶ Domain is the set of

”inputs”
▶ Codomain is the set of

”outputs”
▶ Programming Examples

▶ int length(String s):
Domain of Strings,
Codomain positive
Integers

▶ double halve(int s):
Domain Integers,
Codomain reals (sort of)

16

Functions Map Between Sets

▶ Function as a set of pairs:
strlen = {("hi",2), ("bye",3"), ("yo",2),

("hello",5), ("goodbye",7), ...}
▶ Important: One input, One Output

Not a function: strlen = {("hi",2), ("hi",5),...}
▶ Note that the Codomain may be a subset of a larger set:

▶ strlen() Codomain is Positive Integers which is a subset of
Integers

▶ Universe of Codomain often referred to as the Range of the
function

17

Exercise: Special types of functions

One-to-one A function where each element of the Codomain
(output) is mapped from a unique element of
Domain (input)

Onto A function which has all elements of its Codomain
(or Range) mapped from an element of its Domain

Invertible A function that is both One-to-one and Onto

Are these One-to-One, Onto, Invertible?
▶ boolean not(boolean b): flip Boolean value
▶ boolean is_zero(int i): true for zero, false otherwise
▶ int strlen(String s): length of input string
▶ int increment(int i): increment integer and return result
▶ double halve(int s): halve input integer, give real value

18

Answers: Special types of functions
One-to-one A function where each element of the Codomain

(output) is mapped from a unique element of
Domain (input)

Onto A function which has all elements of its Codomain
(or Range) mapped from an element of its Domain

Invertible A function that is both One-to-one and Onto

Are these One-to-One, Onto, Invertible?
▶ boolean not(boolean b): 1-to-1, Onto, Invertible
▶ boolean is_zero(int i): Onto
▶ int strlen(String s): Onto for pos ints, Not for all ints
▶ int increment(int i): 1-to-1, Onto, Invertible
▶ double halve(int s): 1-to-1, Onto*, Invertible

*: If the Codomain is Integers plus Halves, not Onto for Reals
19

Floor and Ceiling Functions
Several numerical functions come up in computing worth noting
⌊x⌋ or floor(x)

▶ Nearest integer less than or equal to real number x
▶ Sometimes referred to as truncation

⌈x⌉ or ceil(x)

▶ Nearest integer greater than or equal to real number x
▶ Notice for both behavior at negative values in graph

20

Exercise: Prove or Disprove Ceil Property

Prove or Disprove the following relationship for real numbers x, y

⌈x + y⌉ = ⌈x⌉ + ⌈y⌉

21

Answers: Prove or Disprove Ceil Property

Prove or Disprove the following relationship for real numbers x, y

⌈x + y⌉ = ⌈x⌉ + ⌈y⌉

False: Searching for some counter examples yields the following
▶ x = 1/2, y = 1/2
▶ ⌈x + y⌉ = ⌈1/2 + 1/2⌉ = ⌈1⌉ = 1
▶ ⌈x⌉ + ⌈y⌉ = ⌈1/2⌉ + ⌈1/2⌉ = 1 + 1 = 2

22

Sequences

▶ Standard Calc I/II topic: sequence of successive numbers
▶ Convention: start index variable n at 0 unless otherwise

indicated
▶ Come in a variety of flavors such as…
▶ Arithmetic: a, a + d, a + 2d, · · · , a + nd, · · ·

▶ an = 3 + 2n = 3, 5, 7, 9, · · ·
▶ bn = 0 + 5n = 0, 5, 10, 15, · · ·

▶ Geometric: a, ar1, ar2, ar3, · · ·
▶ cn = 1−n = 1, 1

2 , 1
3 , 1

4 , · · ·
▶ dn = 3 · 2n = 3, 6, 12, 24, 48, · · ·

23

Summations and Notation

▶ In CS, often interested in sequences as they represent
operation counts in iterations of an algorithm

▶ Makes sense to sum these as it indicates total operations
performed

▶ Summation notation:
”Sequence” Notation Is
1 + 2 + 3 + 4 + 5 = ∑5

i=1 i 15
2 + 4 + 6 + 8 + 10 = ∑n

i=1 2i 30
1 + 2 + 3 + 4 + · · · + n = ∑n

i=1 i ??

24

Exercise: Prove Summation of 1 to n

Show that the following equality holds for all positive integers.
n∑

i=1
i = n(n + 1)

2

Further, show that the right hand side never has a remainder in
the division that is done.
▶ First step: Show how to construct sums of n out of pairs of

terms in the summation

25

Exercise: Prove Summation of 1 to n
Show that the following equality holds for all positive integers.

n∑
i=1

i = n(n + 1)
2

Direct Proof: The summation can be expanded a bit to
n∑

i=1
i = 1+ 2+ 3+ 4+ · · · + (n − 4) + (n − 3) + (n − 2) + (n − 1) + n

Pair these terms as follows
0 + n
1 + n-1
2 + n-2
3 + n-3
.. ..

The sum of each term pair is n so we just need to count how many
pairs and multiply by n.
Second step: How many pairs are there? Divide into two cases for
n even/odd, ensure any extra terms are identified. 26

Answers: Prove Summation of 1 to n
n is even
There will be n/2 such groups
and the pairing will end with n/2
as below.

0 + n
1 + n-1
2 + n-2
3 + n-3
.. ..

+ n/2

Totaling gives n(n
2) + n/2.

Rearranging gets the desired
result:

n2 + n)
2 = n(n + 1)

2

n is odd
There will be (n + 1)/2 such
groups and the pairing will end

0 + n
1 + n-1
2 + n-2
3 + n-3
.. ..

⌊n/2⌋ + ⌈n/2⌉

This gives n(n+1
2). Rearranging

gets the desired result:

n2 + n)
2 = n(n + 1)

2

27

Some Useful Summation Closed Forms

Having these in mind can be
handy

28

Generalized ”Big” Ops

▶ Summing is not the only way to combine elements in a
sequence

▶ Often will see other notations for ”big” operations

10∏
i=1

i = 1 × 2 × 3 · · · × 10 = 10! Factorial/Product

n∪
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An Union of indexed sets

29

Recurrence Relations

▶ So far have seen terms in sequences have been expressed as
functions of index: an = 3n2

▶ Can also create Recurrent Sequences where terms depend
on previous elements

▶ Example: fn = 2 · fn−12 with f0 = 1
▶ Resulting sequence can be computed by building up from

previous elements
▶ What’s the example of this that CS folks love?
▶ Recurrence Relations define these sequences and will be

studied later in the course as they pertain to recursive
algorithms

30

Exercise: Sizes of Infinity

▶ Now acquainted with the idea of an infinite set
▶ Worthwhile to consider that there are different sizes of infinity
▶ Want to know about the cardinality of various infinite sets
▶ If |A| = ∞ and |B| = ∞, is |A| = |B|?
▶ Consider:

1. Are there more Even Natural #’s or Odd Natural #’s?
2. Are there more Natural Numbers or Integers?
3. Are there more Integers or Rational Numbers?
4. Are there more Real Numbers than Integers?

▶ How would one argue about the relative sizes of these?

31

Answers: Sizes of Infinity
▶ Argue about infinite cardinality sets by deriving mapping

between the two sets
▶ Mapping is an one-to-one function that maps elements of

one set to another

Example Mappings
▶ Evens and Odds have are the same size: Increment(e) : e + 1

maps all even numbers to an odd numbers; it is a one-to-one
function, same size

▶ Natural Numbers and Integers have the same size by using the
following mapping / inverse mapping
nat_to_int(nat): int_to_nat(int):
if(nat is even) if(int > 0)
return nat / 2 // Pos return 2*int // Even

else else
return -((nat+1)/2) // Neg return 2*abs(int)+1 // Odds

32

Exercise: Countable Sets

▶ A set is called countable if one can derive a mapping
(one-to-one function) from the Natural Numbers N to its
elements

▶ The set has the same cardinality as the Natural numbers then
▶ Formally, set X is countable if ∃f (f : N → X ∧ f is one-to-one)

Map It
Construct a mapping function from the Naturals to the following
sets to show that they are countable
▶ Mapping between N and Even Natural #s
▶ Mapping between N and Character Strings
▶ Mapping between N and Positive Rational Numbers Q^+

33

Answers: Countable Sets
▶ Mapping between N and

Even Natural #s
double(nat): return 2*nat

▶ Mapping between N and
Character Strings
▶ Informally, let each letter

in the alphabet be
numbered 1 to size

▶ Let the empty string be
string 0

▶ All 1-character strings are
numbered 1 to size

▶ All 2-character strings are
numbered size+1 to
size*size

▶ Continue the pattern for
all 3-char, 4-char, etc.
strings

▶ Mapping between N and
Positive Rational
Numbers Q+

▶ Rational impliesp/q
▶ List in order of

p + q = 1 p + q = 2
p + q = 3 p + q = 4 …

skipping repeats: 2
4 = 1

2

34

Uncountable Sets

▶ Important idea: a countable set has some algorithm to
enumerate all of its elements (print them), alternately called
enumerable sets

▶ May take a long time, but will eventually print any element
▶
▶ An uncountable set is one for which no algorithm exists to

enumerate its elements
▶ Fundamentally larger than Natural numbers
▶ Uncountable is a bigger infinity than the one associated with

Naturals, Integers, Rationals, Strings
▶ The Real Numbers are uncountable and here’s why…

35

Proof by Contradiction: Reals are Uncountable
Referred to as Cantor’s Diagonalization Argument

1. Suppose that Reals are countable.
2. Then any subset of them is also

countable such as all 0 < x < 1
3. If 0 < x < 1 are countable, then

we can enumerate them in a list
like the following

r1 = 0.d11d12d13d14 . . .

r2 = 0.d21d22d23d24 . . .

r3 = 0.d31d32d33d34 . . .

r4 = 0.d41d42d43d44 . . .

...

with each dij being a digit of the
number like 1,2,3,…,9

4. Let the real number p have digits
pi defined this enumeration:

pi =
{

4 if dii ̸= 4
5 if dii = 4

}
Note p’s dependency on the
”diagonal” elements

5. Suppose that p appeared in the
listing of (3) as rk. This leads to
a contradiction: the digits pk and
dkk do not match by the definition
of p.

6. Therefore p is not in the listing in
(4) so there is no enumeration of
all real numbers: the Reals
Numbers are uncountable

36

An Interesting Application: Uncomputable Functions

▶ The set of valid Programs (P) in some language is a subset of
the strings in a some appropriate character set
▶ Is P countable or uncountable?

▶ The set of mathematical Functions (F) (mappings) from
Integers to Integers has the same cardinality as the reals
▶ Is F countable or uncountable?

▶ Can there be Program in P for every Function in F?
▶ Is |P| = |F|?

Some mathematical functions are NOT computable
▶ Referred to as Uncomputable
▶ Disturbing but true
▶ We’ll look at one later: the halting problem

37

Matrices and their Notation
▶ A ”grid of numbers” with some associated operations and

rules
▶ Dimension is in #rows and #cols
▶ Notated in various ways (use {} or [] or ()) but usually

obvious it’s a matrix

Fat Matrix: rows < cols

A =
{

1 0 2
9 4 3

}

Square Matrix: rows = cols

B =

 b11 b12 b13
b21 b22 b23
b31 b32 b33



Skinny Matrix: rows > cols

C =


2 3
1 7
8 4
9 6



38

Basic Arithmetic

▶ Element-wise operations on matrices are obvious:
▶ Addition, Subtraction, Multiplication, Division

Addition (Element-Wise)

1 2 3 + 7 8 9 = 8 10 12
4 5 6 10 11 12 14 16 18

Multiplication (Element-Wise)

1 2 3 ⊗ 7 8 9 = 7 16 27
4 5 6 10 11 12 40 55 72

39

Transposition

▶ Mirror a matrix across it’s main diagonal
▶ Main diagonal are elements a11, a22, a33, . . .

▶ Flips row and column counts: fat to skinny, skinny to fat,
square stays square

▶ Notated as AT for ”transpose”

A =
[
1 0 2
9 4 3

]
AT =

 1 9
0 4
2 3



B =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 BT =

 b11 b21 b31
b12 b22 b32
b13 b23 b33



40

Matrix Multiplication
▶ The important and

”different” operation
▶ Multiply corresponding

elements of rows of first
matrix by columns of second
matrix, sum to form a new
element

▶ Dimensions must match:
in A × B, columns of A must
equal rows of B

4×2 matrix
a11 a12
· ·

a31 a32
· ·


2×3 matrix[

· b12 b13
· b22 b23

]
=

4×3 matrix
· x12 x13
· · ·
· x32 x33
· · ·


Some results elements:

x12 = a11b12 + a12b22
x33 = a31b13 + a32b23

41

Exponentiation are Repeated Multiplication

▶ x2 = x · x · x, x4 = x · x · x · x · x
▶ Same goes for matrices
▶ A3 = A · A · A
▶ Since dimensions must match, exponentiation only works for

square matrices

1 2 3
A = 4 5 6

7 8 9

1 2 3 1 2 3 1+8+21 2+10+24 3+12+27
A2 = 4 5 6 × 4 5 6 = 4+20+42 8+25+48 12+30+54

7 8 9 7 8 9 7+32+42 14+40+72 21+48+81

42

Menagerie of Matrices

Zero-One and Boolean Matrices Interpret element as True/False
and use logical and/or operations as in A ∧ B or
generalize multiplication C = A ⊙ B so that
cij = (ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨ · · ·

Symmetric Matrices Element aij = aji, has some special properties
such as real eigenvalues (not studied here but
prominent in linear algebra)

Column and Row Vectors A matrix with 1 column or 1 row,
multiplying by an appropriate matrix results in
another vector

Many other aspects of matrices that we’ll touch on at later times
including algorithm complexity of matrix operations.

43

