
CSCI 2011: Algorithms and Big-O Analysis

Chris Kauffman

Last Updated:
Wed Jul 4 14:01:45 CDT 2018

1

Logistics

Reading: Rosen
▶ Now: 3.1 - 3.3
▶ Next: 4.1 - 4.6

Assignments
▶ A04: post later today
▶ Due Tuesday

Quizzes
▶ Quiz 02 today

Goals
▶ Finish discrete structures
▶ Discuss Algorithms and

Big-O analysis

2

Algorithms
▶ Finite sequence of concrete steps to take to accomplish

something
▶ Finite in that you can write the steps down in a finite amount

of space, not that the algorithm will terminate in a finite
amount of time

▶ After two semesters of programming should have been
exposed to a variety of algorithms including
▶ Searching for elements in data structures like lists, arrays,

trees. Might be a find_max(a[]) or a find_query(q,x[])
▶ Sorting elements in arrays like bubble_sort(a[]) or

insertion_sort(a[]), possibly also more efficient versions
like merge_sort(a[])

▶ Will use real code and pseudocode, code-like but informal
find_max(a[] : integer array): // find max in array a[]
max = a[1]
for i=2 to length(a):

if max < a[i]:
max = a[i]

end
3

Exercise: Counting Operations
▶ The execution time of an

algorithm depends on the
number of operations
performed

▶ Operations may take a
varying times but can rely
on common operations
taking a fixed duration
▶ Adding two small-ish

numbers or incrementing
▶ Comparing two numbers
▶ Accessing an array

element
▶ To that end, counting the

number of operations
performed approximates
execution time

1: find_max(a[] : integer array):
2: max = a[1]
3: for i=2 to length(a):
4: if max < a[i]:
5: max = a[i]
6: end

Count the maximum operations
performed for find_max() for
input arrays sized
▶ 4
▶ 10
▶ N

4

Exercise: Counting Operations

1: find_max(a[] : integer array):
2: max = a[1] # 1, setting variable
3: for i=2 to length(a): # 2, set i / increment, compare to length
4: if max < a[i]: # 2, access and compare
5: max = a[i] # 2, maybe access and update
6: end

Count the maximum operations performed for find_max() for
input arrays sized
▶ 4 : 1 + 4*(2+2+2) = 25
▶ 10: 1 + 10*(2+2+2) = 61
▶ N: 1 + N*(2+2+2) = 6N+1
▶ These are maximum counts as NOT hitting conditional may

lower it
▶ Omits some details of control like operations required to track

the next instruction
5

Approximating Algorithm Complexity

▶ Early on folks measured runtimes
against one another

▶ Problematic as if my CPU can do
addition in half the time as yours,
my results might look better even
though my algorithm is worse

▶ To properly compare algorithms,
count steps

▶ Still problematic as details what
operations vary a bit between CPUs

▶ Approximate this with Order
Notation which describes roughly
how performance scales with input
size

1: find_max(a[] : int array):
2: max = a[1]
3: for i=2 to length(a):
4: if max < a[i]:
5: max = a[i]
6: end

▶ find_max(a[]) will
take a maximum of
6N + 1 steps to
complete

▶ Its execution time
scales linearly with
its input size

▶ find_max(a[]) has
runtime O(N)

6

It’s Show Time!

Not The Big O Just Big O
Let f(x) be a function of x
(integer or real).
f(x) is O(g(x)) if there are
positive constants C and k such
that
▶ When x > k
▶ |f(x)| ≤ C|g(x)|

Reads
▶ ”f(x) is big-O g(x)”
▶ g grows at least as fast as f
▶ ”f is upper bounded by g”

7

Show It

Show that
f(n) = 2n2 + 3n + 2 is O(n3)
▶ Pick C = 0.5 and k = 6
▶ Called witnesses

n f(n) 0.5n3

0 2 0
1 7 0
2 16 4
3 29 13
4 46 32
5 67 62
6 92 108 ← k
7 121 171

● ● ● ●
●

●
●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

0

100

200

300

400

500

0.0 2.5 5.0 7.5 10.0
n

V
al

ue

Function ● ●0.5*n^3 2*n^2+3*n+2

How about the opposite? Show

g(n) = n3 is O(2n2 + 3n + 2)
8

Exercise: Can I get a Witness?

Show that 7x2 is O(x3).
Do so by finding witnesses C, k such that 7x2 ≤ Cx3 for all x > k.

9

Answers: Can I get a Witness?

Show that 7x2 is O(x3). Do so by finding witnesses C, k such that
7x2 ≤ Cx3 for all x > k. Show that 7x2 is O(x3).
Do so by finding witnesses C, k such that 7x2 ≤ Cx3 for all x > k.
▶ Divide both sides of inequality by x2

▶ Equivalent inequality 7 < x
▶ When x > 7, we have 7x2 < x3

▶ Witnesses exist: C = 1, k = 7 ■

10

Showing Something Isn’t O(g(x))

Show that n2 is not O(n): no pair of witnesses C and k exist such
that n2 ≤ Cn whenever n > k.
Proof by Contradiction:

1. Suppose C, k do exist.
2. Divide both sides of the inequality n2 ≤ Cn by n to get n ≤ C.
3. No matter what C and k are, inequality n ≤ C doesn’t hold for

n = max(k + 1, C + 1)
4. Contradiction shows means that that n2 is not O(n). ■

Most proofs of ”not big-O” follow a similar flavor.

11

Combining functions in big-O

▶ a(n) is O(x(n))
▶ b(n) is O(y(n))

Combine functions a, b by

ADDING a(n) + b(n) is O(x(n) + y(n))
MULTIPLYING a(n) · b(n) is O(x(n) · y(n))

Special Cases

a(n) and b(n) BOTH O(x(n)) then a(n) + b(n) is O(x(n))
a(n) and b(n) BOTH O(x(n)) then a(n) · b(n) is O(x(n)2)

12

Constant Time Program Operations
The following take O(1) Time (Constant Time)
▶ Arithmetic operations (add, subtract, divide, modulo)

▶ Integer ops usually practically faster than floating point
▶ Accessing a stack variable
▶ Accessing a field of an object
▶ Accessing a single element of an array
▶ Doing a primitive comparison (equals, less than, greater than)
▶ Calling a function/method but NOT waiting for it to finish

The following take more than O(1) time (how much more)?
▶ Raising an arbitrary number to arbitrary power
▶ Allocating an array
▶ Checking if two Strings are equal
▶ Determining if an array or ArrayList contains() an object

13

Common Code Patterns
▶ Adjacent Loops Additive: 2× n is O(n)

for(int i=0; i<N; i++){
blah blah blah;

}
for(int j=0; j<N; j++){
yakkety yack;

}
▶ Nested Loops Multiplicative usually polynomial

▶ 1 loop, O(n)
▶ 2 loops, O(n2)
▶ 3 loops, O(n3)

▶ Repeated halving usually involves a logarithm
▶ Binary search is O(log n)
▶ Fastest sorting algorithms are O(n log n)
▶ Proofs are harder, require solving recurrence relations

Lots of special cases so be careful

14

Exercise: Complexity of Reversal
Two functions to reverse an array. Discuss
▶ Big-O estimates of runtime of both
▶ Big-O estimates of memory overhead of both

▶ Memory overhead is the amount of memory in addition to the
input required to complete the method

▶ Which is practically better?

reverseE
void reverseE(Integer a[]){
int n = a.length;
Integer b[] = new Integer[n];
for(int i=0; i<n; i++){

b[i] = a[n-1-i];
}
for(int i=0; i<n; i++){

a[i] = b[i];
}

}

reverseI
reverseI(Integer a[]){
int n = a.length;
for(int i=0; i<n/2; i++){
int tmp = a[i];
a[i] = a[n-1-i];
a[n-1-i] = tmp;

}
return;

}

15

Exercise: Much Trickier Allocation Exercise

// Concatenate all strings in arr
// concat_all({"A","B","C","D","E"})
// results in "ABCDE"
string concat_all(string arr[]) {

string result = "";
for(int i=0; i<length(arr); i++){

result = result + arr[i];
}
return result;

}

▶ Give a Big-O estimate for the runtime
▶ Give a Big-O estimate for the memory overhead

16

Answers: Much Trickier Allocation Exercise

▶ Cannot alter size of
allocated memory blocks

▶ result = result + arr[i];
Creates a new string which
combines two existing
strings
▶ Allocate combined space
▶ Copy all characters from

both, implicit loops
▶ Redirect pointer for result

▶ Runtime Complexity: O(n2)
for strings length 1

▶ Space Complexity: O(n) at
least, worse if not garbage
collecting effectively

// Concatenate all strings in arr
// concat_all({"A","B","C","D","E"})
// results in "ABCDE"
string concat_all_verbose(string arr[]){
string result = "";
for(int i=0; i<length(arr); i++){

int size =
length(result) + length(arr[i]);

string tmp = new string[size];
for(int j=0; j<length(result); j++){

tmp[j] = result[j];
}
for(int j=0; j<length(arr[i]); j++){

tmp[j+length(result)] = arr[i][j];
}
free(result);
result = tmp;

}
return result;

}

Proper data structures /
algorithm gets linear runtime

17

Exercise: Hash Code Efficiency

▶ Hash code: an integer
computed from some object
such as a character string;
used to place it in a hash
table

▶ NOT an invertible
computation: cannot map
from number to string

▶ Spreads well: changing
single characters changes
hash code considerably

▶ Typically computed using
the following functions
similar to the right

// Computes hash code =
// s[0]*31^(n-1) + s[1]*31^(n-2) +
// ...
// + s[n-3]*31^2 s[n-2]*31 + s[n-1]

int hash_code(char array str[]){
int hc = 0;
int n = length(str);
for(int i=0; i<n; i++){

hc = hc + str[i] * pow(31,n-i-1));
}
return h;

}

▶ What is the Big-O Time
Complexity of this function?

▶ State any assumptions about
functions that are used

▶ Could you improve the
efficiency of this code?

18

Answers: Hash Code Efficiency

▶ Complexity hinges the
pow(x,y) function

▶ pow(x,y) is NOT O(1): try
computing 325 a see how
long it takes you

▶ If pow(x,y) is O(n),
hash_code(str) is O(n2)

▶ We will see a version of
pow(x,y) which is O(log2 n)
making hash_code(str)
O(n log2 n)

▶ hash_code_linear(str) is
O(n): no hidden nested
loops

// LINEAR TIME hash code computation
int hash_code_linear(char str[]){
int hc = 0;
int base = 31;
int power = 1;
int n = length(str);
for(int i=n-1; i>=0; i--){
h = h + str[i] * power;
power = power * base;

}
return h;

}

Enrichment: Find a way to get
O(n) iterating from low to high
index in str

19

Exercise: Binary Search Complexity

▶ Typical code for iterative
binary search

▶ What is its complexity in
big-O terms?

▶ How could one prove this?

int binary_search(int a[], int key){
int left=0, right=a.length-1;
int mid = 0;
while(left <= right){
mid = (left+right)/2;
if(key == a[mid]){
return mid;

}else if(key < a[mid]){
right = mid-1;

}
else{
left = mid+1;

}
}
return -1;

}

20

Answers: Binary Search Complexity
Binary search has worst case runtime complexity O(log2 N)
Semi-formal Proof

1. Without loss of generality, assume, assume N = 2a.
2. The worst case performance is when an element is not present
3. Each step of the algorithm examines the current ”middle”

element, eliminates it and half of remaining array
4. Performing a steps will reduce array to empty so algorithm

terminates in O(a) steps
5. Taking the log of N = 2a gives a = log2 N
6. By (4) and (5), binary search is O(log2 N)

Notes
▶ Looseness around halving vs. (halving-1)
▶ Will prove this again once the Master Theorem for

recurrence relations is in hand
21

Bounding Functions
▶ Big-O: Upper bounded by …

▶ 2n2 + 3n + 2 is O(n3) and O(2n) and O(n2)
▶ Big-Omega: Lower bounded by …

▶ 2n2 + 3n + 2 is Ω(n) and Ω(log(n)) and Ω(n2)
▶ Big-Theta: Upper and Lower bounded by

▶ 2n2 + 3n + 2 is Θ(n2) - tightly bounded
▶ Little-O: Upper bounded by but not lower bounded by…

▶ 2n2 + 3n + 2 is o(n3)

Big-O versus Big-Theta Jargon
▶ Often folks say ”That algorithm is Big-O N-squared”

▶ upper bounded by N2

▶ Most often they mean ”That algorithm is Big-Theta
N-squared”
▶ upper and lower/tightly bounded by N2

▶ Kauffman will almost always do this
22

Growth Ordering of Some Functions

Name Lead Term Big-Oh Example
Constant 1, 5, c O(1) 2.5, 85, 2c
Log-Log log(log(n)) O(log log n) 10 + (log log n + 5)
Log log(n) O(log(n)) 5 log n + 2

log(n2)
Linear n O(n) 2.4n + 10

10n + log(n)
N-log-N n log n O(n log n) 3.5n log n + 10n + 8
Super-linear n1.x O(n1.x) 2n1.2 + 3n log n− n + 2
Quadratic n2 O(n2) 0.5n2 + 7n + 4

n2 + n log n
Cubic n3 O(n3) 0.1n3 + 8n1.5 + log(n)
Exponential an O(2n) 8(2n)− n + 2

O(10n) 100n500 + 2 + 10n

Factorial n! O(n!) 0.25n! + 10n100 + 2n2

Bottom category referred to as intractable 23

Problem Classes

Problem Size Described by N
Tractable Best known algorithms that solve the problem have

runtime complexity O(aN) for constant a and small
value of N like N < 100

Intractable Not Tractable: best known algorithms have runtime
complexity that is a large polynomial, is exponential
(O(2N)), or is factorial O(N!)

Unsolvable No algorithm exists to solve the problem.
Most algorithms you study in 4041 will be in Tractable but there
are quite a few Intractable problems that arise in the real world,
particularly for salespeople.

24

P vs NP vs NP-Complete
Problem Class P We know a polynomial time algorithm that runs

on a deterministic computer to solve it. Ex: Matrix
Mult.

Problem Class NP We know a polynomial time algorithm that
runs on a non-deterministic computer to solve it.
Can verify a solution in polynomial time. Ex:

Non-deterministic Computer Roughly, employs an infinite number
of CPUs to try many possible solutions at once.
Unfortunately reality dictates that we can’t easily
build a non-deterministic machine and simulating one
takes exponential time.

NP Problems are Difficult Best algs have worst-case performance
that is exponential on problem size.

Problem Class NP-Complete Group of NP problems that can used
to solve other NP problems. A polynomial time alg
for any one NPC would solve all NP problems in
poly-time. Ex: Boolean Satisfiability (3SAT).

25

A Problematic Problem

Write a program H that
1. Takes as input the code for another program P and input for

P called I
2. Determines if P will eventually terminate on input I
3. Prints out ”Halts” if it will terminate.
4. Prints out ”Runs Forever” otherwise.

This specification is referred to as the Halting Problem
Propose some solutions (?!?)

26

No Algorithm Solves The Halting Problem
▶ Naive approach: Run program P on input I.
▶ If P finishes, print ”Halts”
▶ If it doesn’t finish… wait… crap…

Proof by Contradiction, Courtesy of Alan Turing, 1936

1. Suppose H exists which
solves the halting problem

2. Notate H(P,I) to mean run
H on program P with input I

3. Note that programs can be
input so H(P,P) is valid

4. Let K(P) be the algorithm
▶ a) Run H(P,P)
▶ b) If the output is ”Runs

Forever”, output ”Halts”
▶ c) If the output is

”Halts”, enter an infinite
loop

5. Note that H(K,K) ≡ K(K)
and should give same
output.

6. Suppose H(K,K) outputs
”Runs Forever”: K
terminates on input K.

7. By code of K(K), did step
(c) so in step (a), H(K,K)
must output ”Halts”

8. Output of H(K,K) is
contradictory in 6 and 7. ■

27

