CSCI 2011: Algorithms and Big-O Analysis

Chris Kauffman

Last Updated: Wed Jul 4 14:01:45 CDT 2018

Logistics

Reading: Rosen

Now: 3.1 - 3.3

Next: 4.1 - 4.6

Assignments

► A04: post later today

Due Tuesday

Quizzes

Quiz 02 today

Goals

- ► Finish discrete structures
- Discuss Algorithms and Big-O analysis

Algorithms

- Finite sequence of concrete steps to take to accomplish something
 - Finite in that you can write the steps down in a finite amount of space, **not** that the algorithm will terminate in a finite amount of time
- ► After two semesters of programming should have been exposed to a variety of algorithms including
 - Searching for elements in data structures like lists, arrays, trees. Might be a find_max(a[]) or a find_query(q,x[])
 - Sorting elements in arrays like bubble_sort(a[]) or insertion_sort(a[]), possibly also more efficient versions like merge_sort(a[])
- Will use real code and pseudocode, code-like but informal
 find_max(a[] : integer array): // find max in array a[]
 max = a[1]
 for i=2 to length(a):
 if max < a[i]:
 max = a[i]
 end</pre>

Exercise: Counting Operations

- The execution time of an algorithm depends on the number of operations performed
- Operations may take a varying times but can rely on common operations taking a fixed duration
 - Adding two small-ish numbers or incrementing
 - ► Comparing two numbers
 - Accessing an array element
- To that end, counting the number of operations performed approximates execution time

```
1: find_max(a[] : integer array):
2: max = a[1]
3: for i=2 to length(a):
4: if max < a[i]:
5: max = a[i]
6: end
```

Count the **maximum** operations performed for find_max() for input arrays sized

- 4
- **1**0
- N

Exercise: Counting Operations

Count the **maximum** operations performed for find_max() for input arrays sized

- ▶ 4 : 1 + 4*(2+2+2) = 25▶ 10: 1 + 10*(2+2+2) = 61▶ N: 1 + N*(2+2+2) = 6N+1
- ► These are maximum counts as NOT hitting conditional may lower it
- Omits some details of control like operations required to track the next instruction

Approximating Algorithm Complexity

- ► Early on folks measured runtimes against one another
- Problematic as if my CPU can do addition in half the time as yours, my results might look better even though my algorithm is worse
- To properly compare algorithms, count steps
- Still problematic as details what operations vary a bit between CPUs
- Approximate this with Order Notation which describes roughly how performance scales with input size

```
1: find_max(a[] : int array):
2:    max = a[1]
3:    for i=2 to length(a):
4:        if max < a[i]:
5:        max = a[i]
6: end</pre>
```

- find_max(a[]) will
 take a maximum of
 6N+1 steps to
 complete
- Its execution time scales linearly with its input size
- find_max(a[]) has runtime O(N)

It's Show Time!

Not The Big O

Just Big O

Let f(x) be a function of x (integer or real). f(x) is O(g(x)) if there are positive constants C and k such that

- \blacktriangleright When x > k
- $|f(x)| \le C|g(x)|$

Reads

- ightharpoonup "f(x)" is big-O g(x)"
- g grows at least as fast as f
- ▶ "f is upper bounded by g"

7

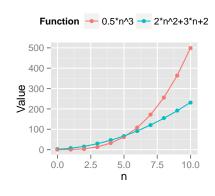
Show It

Show that

$$f(n) = 2n^2 + 3n + 2$$
 is $O(n^3)$

- ightharpoonup Pick C = 0.5 and k = 6
- Called witnesses

n	f(n)	$0.5n^{3}$	
0	2	0	
1	7	0	
2	16	4	
3	29	13	
4	46	32	
5	67	62	
6	92	108	$\leftarrow \mathbf{k}$
7	121	171	



How about the opposite? Show

$$g(n) = n^3$$
 is $O(2n^2 + 3n + 2)$

Exercise: Can I get a Witness?

Show that $7x^2$ is $O(x^3)$.

Do so by finding witnesses C, k such that $7x^2 \le Cx^3$ for all x > k.

9

Answers: Can I get a Witness?

Show that $7x^2$ is $O(x^3)$. Do so by finding witnesses C, k such that $7x^2 \le Cx^3$ for all x > k. Show that $7x^2$ is $O(x^3)$. Do so by finding witnesses C, k such that $7x^2 \le Cx^3$ for all x > k.

- ▶ Divide both sides of inequality by x^2
- ightharpoonup Equivalent inequality 7 < x
- ▶ When x > 7, we have $7x^2 < x^3$
- ▶ Witnesses exist: C = 1, k = 7 ■

Showing Something Isn't O(g(x))

Show that n^2 is not O(n): no pair of witnesses C and k exist such that $n^2 \le Cn$ whenever n > k.

Proof by Contradiction:

- 1. Suppose C, k do exist.
- 2. Divide both sides of the inequality $n^2 \le Cn$ by n to get $n \le C$.
- 3. No matter what C and k are, inequality $n \le C$ doesn't hold for n = max(k+1, C+1)
- 4. Contradiction shows means that that n^2 is not O(n). \blacksquare Most proofs of "not big-O" follow a similar flavor.

Combining functions in big-O

- ightharpoonup a(n) is O(x(n))
- \blacktriangleright b(n) is O(y(n))

Combine functions a, b by

ADDING
$$a(n) + b(n)$$
 is $O(x(n) + y(n))$
MULTIPLYING $a(n) \cdot b(n)$ is $O(x(n) \cdot y(n))$

Special Cases

$$a(n)$$
 and $b(n)$ BOTH $O(x(n))$ then $a(n) + b(n)$ is $O(x(n))$ $a(n)$ and $b(n)$ BOTH $O(x(n))$ then $a(n) \cdot b(n)$ is $O(x(n)^2)$

Constant Time Program Operations

The following take O(1) Time (Constant Time)

- Arithmetic operations (add, subtract, divide, modulo)
 - ▶ Integer ops usually practically faster than floating point
- Accessing a stack variable
- Accessing a field of an object
- Accessing a single element of an array
- Doing a primitive comparison (equals, less than, greater than)
- Calling a function/method but NOT waiting for it to finish

The following take more than O(1) time (how much more)?

- Raising an arbitrary number to arbitrary power
- Allocating an array
- Checking if two Strings are equal
- Determining if an array or ArrayList contains() an object

Common Code Patterns

▶ Adjacent Loops Additive: $2 \times n$ is O(n)

```
for(int i=0; i<N; i++){
  blah blah blah;
}
for(int j=0; j<N; j++){
  yakkety yack;
}</pre>
```

- Nested Loops Multiplicative usually polynomial
 - ▶ 1 loop, O(n)
 - \triangleright 2 loops, $O(n^2)$
 - \triangleright 3 loops, $O(n^3)$
- Repeated halving usually involves a logarithm
 - \triangleright Binary search is $O(\log n)$
 - Fastest sorting algorithms are $O(n \log n)$
 - Proofs are harder, require solving recurrence relations

Lots of special cases so be careful

Exercise: Complexity of Reversal

Two functions to reverse an array. Discuss

- ▶ Big-O estimates of **runtime** of both
- ▶ Big-O estimates of **memory overhead** of both
 - Memory overhead is the amount of memory in addition to the input required to complete the method
- ► Which is practically better?

reverseE

```
void reverseE(Integer a[]){
  int n = a.length;
  Integer b[] = new Integer[n];
  for(int i=0; i<n; i++){
    b[i] = a[n-1-i];
  }
  for(int i=0; i<n; i++){
    a[i] = b[i];
  }
}</pre>
```

reversel

```
reverseI(Integer a[]){
  int n = a.length;
  for(int i=0; i<n/2; i++){
    int tmp = a[i];
    a[i] = a[n-1-i];
    a[n-1-i] = tmp;
  }
  return;
}</pre>
```

Exercise: Much Trickier Allocation Exercise

```
// Concatenate all strings in arr
// concat_all({"A","B","C","D","E"})
// results in "ABCDE"
string concat_all(string arr[]) {
   string result = "";
   for(int i=0; i<length(arr); i++){
     result = result + arr[i];
   }
   return result;
}</pre>
```

- Give a Big-O estimate for the runtime
- Give a Big-O estimate for the memory overhead

Answers: Much Trickier Allocation Exercise

- Cannot alter size of allocated memory blocks
- result = result + arr[i];
 Creates a new string which
 combines two existing
 strings
 - Allocate combined space
 - Copy all characters from both, implicit loops
 - ► Redirect pointer for result
- Runtime Complexity: $O(n^2)$ for strings length 1
- Space Complexity: O(n) at least, worse if not garbage collecting effectively

```
// Concatenate all strings in arr
     concat_all({"A","B","C","D","E"})
// results in "ABCDE"
string concat all verbose(string arr[]){
  string result = "";
  for(int i=0; i<length(arr); i++){</pre>
    int size =
      length(result) + length(arr[i]);
    string tmp = new string[size];
    for(int j=0; j<length(result); j++){</pre>
      tmp[j] = result[j];
    for(int j=0; j<length(arr[i]); j++){</pre>
      tmp[j+length(result)] = arr[i][j];
    free(result):
    result = tmp;
  return result:
```

Proper data structures / algorithm gets linear runtime

Exercise: Hash Code Efficiency

- ► Hash code: an integer computed from some object such as a character string; used to place it in a hash table
- NOT an invertible computation: cannot map from number to string
- Spreads well: changing single characters changes hash code considerably
- Typically computed using the following functions similar to the right

```
// Computes hash code =
// s[0]*31^(n-1) + s[1]*31^(n-2) +
// ...
// + s[n-3]*31^2 s[n-2]*31 + s[n-1]
int hash_code(char array str[]){
  int hc = 0;
  int n = length(str);
  for(int i=0; i<n; i++){
    hc = hc + str[i] * pow(31,n-i-1));
  }
  return h;
}</pre>
```

- What is the Big-O Time Complexity of this function?
- State any assumptions about functions that are used
- Could you improve the efficiency of this code?

Answers: Hash Code Efficiency

- Complexity hinges the pow(x,y) function
- pow(x,y) is NOT O(1): try computing 3²⁵ a see how long it takes you
- If pow(x,y) is O(n), hash_code(str) is $O(n^2)$
- We will see a version of pow(x,y) which is O(log₂ n) making hash_code(str) O(n log₂ n)
- hash_code_linear(str) is
 O(n): no hidden nested
 loops

```
// LINEAR TIME hash code computation
int hash_code_linear(char str[]){
  int hc = 0;
  int base = 31;
  int power = 1;
  int n = length(str);
  for(int i=n-1; i>=0; i--){
    h = h + str[i] * power;
    power = power * base;
  }
  return h;
}
```

Enrichment: Find a way to get O(n) iterating from low to high index in str

Exercise: Binary Search Complexity

- Typical code for iterative binary search
- What is its complexity in big-O terms?
- ► How could one **prove** this?

```
int binary_search(int a[], int key){
  int left=0, right=a.length-1;
  int mid = 0:
 while(left <= right){
   mid = (left+right)/2;
    if(key == a[mid]){
      return mid;
    }else if(key < a[mid]){</pre>
      right = mid-1;
    else{
      left = mid+1:
 return -1;
```

Answers: Binary Search Complexity

Binary search has worst case runtime complexity $O(\log_2 N)$

Semi-formal Proof

- 1. Without loss of generality, assume, assume $N = 2^a$.
- 2. The worst case performance is when an element is not present
- 3. Each step of the algorithm examines the current "middle" element, eliminates it and half of remaining array
- 4. Performing a steps will reduce array to empty so algorithm terminates in O(a) steps
- 5. Taking the log of $N = 2^a$ gives $a = \log_2 N$
- 6. By (4) and (5), binary search is $O(\log_2 N)$

Notes

- ► Looseness around halving vs. (halving-1)
- Will prove this again once the Master Theorem for recurrence relations is in hand

Bounding Functions

- ▶ Big-O: **Upper** bounded by ...
 - $ightharpoonup 2n^2 + 3n + 2$ is $O(n^3)$ and $O(2^n)$ and $O(n^2)$
- Big-Omega: Lower bounded by ...
 - $ightharpoonup 2n^2 + 3n + 2$ is $\Omega(n)$ and $\Omega(\log(n))$ and $\Omega(n^2)$
- Big-Theta: Upper and Lower bounded by
 - ▶ $2n^2 + 3n + 2$ is $\Theta(n^2)$ **tightly bounded**
- Little-O: Upper bounded by but not lower bounded by...
 - $2n^2 + 3n + 2$ is $o(n^3)$

Big-O versus Big-Theta Jargon

- ▶ Often folks say "That algorithm is Big-O N-squared"
 - ightharpoonup upper bounded by N^2
- Most often they mean "That algorithm is Big-Theta N-squared"
 - ightharpoonup upper and lower/tightly bounded by N^2
- ► Kauffman will almost always do this

Growth Ordering of Some Functions

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Name	Lead Term	Big-Oh	Example
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Constant	1, 5, <i>c</i>	O(1)	2.5, 85, 2 <i>c</i>
Linear n $O(n)$ $2.4n + 10$ $10n + \log(n)$ N -log-N $n \log n$ $O(n \log n)$ $3.5n \log n + 10n + 8$ Super-linear $n^{1.x}$ $O(n^{1.x})$ $2n^{1.2} + 3n \log n - n + 2$ Quadratic n^2 $O(n^2)$ $0.5n^2 + 7n + 4$ $n^2 + n \log n$ Cubic n^3 $O(n^3)$ $0.1n^3 + 8n^{1.5} + \log(n)$ Exponential a^n $O(2^n)$ $8(2^n) - n + 2$ $O(10^n)$ $100n^{500} + 2 + 10^n$	Log-Log	$\log(\log(n))$	$O(\log \log n)$	$10 + (\log\log n + 5)$
Linear n $O(n)$ $2.4n + 10$ $10n + \log(n)$ $N-\log N$ $n \log n$ $O(n \log n)$ $3.5n \log n + 10n + 8$ Super-linear $n^{1.x}$ $O(n^{1.x})$ $2n^{1.2} + 3n \log n - n + 2$ Quadratic n^2 $O(n^2)$ $0.5n^2 + 7n + 4$ $n^2 + n \log n$ Cubic n^3 $O(n^3)$ $0.1n^3 + 8n^{1.5} + \log(n)$ Exponential a^n $O(2^n)$ $8(2^n) - n + 2$ $O(10^n)$ $100n^{500} + 2 + 10^n$	Log	$\log(n)$	$O(\log(n))$	$5\log n + 2$
N-log-N $n \log n$ $O(n \log n)$ $3.5n \log n + 10n + 8$ Super-linear $n^{1.x}$ $O(n^{1.x})$ $2n^{1.2} + 3n \log n - n + 2$ Quadratic n^2 $O(n^2)$ $0.5n^2 + 7n + 4$ $n^2 + n \log n$ Cubic n^3 $O(n^3)$ $0.1n^3 + 8n^{1.5} + \log(n)$ Exponential a^n $O(2^n)$ $8(2^n) - n + 2$ $O(10^n)$ $100n^{500} + 2 + 10^n$				$\log(n^2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Linear	n	<i>O</i> (<i>n</i>)	2.4n + 10
Super-linear $n^{1.x}$ $O(n^{1.x})$ $2n^{1.2} + 3n \log n - n + 2$ Quadratic n^2 $O(n^2)$ $0.5n^2 + 7n + 4$ $0.5n^2 + n \log n$ Cubic n^3 $O(n^3)$ $0.1n^3 + 8n^{1.5} + \log(n)$ Exponential a^n $O(2^n)$ $8(2^n) - n + 2$ $0(10^n)$ $100n^{500} + 2 + 10^n$				$10n + \log(n)$
Quadratic n^2 $O(n^2)$ $0.5n^2 + 7n + 4$ $n^2 + n \log n$ $n^2 + n \log n$ Cubic n^3 $O(n^3)$ $0.1n^3 + 8n^{1.5} + \log(n)$ Exponential a^n $O(2^n)$ $8(2^n) - n + 2$ $O(10^n)$ $100n^{500} + 2 + 10^n$	N-log-N	$n \log n$	$O(n \log n)$	$3.5n\log n + 10n + 8$
Cubic n^3 $O(n^3)$ $0.1n^3 + 8n^{1.5} + \log(n)$ Exponential a^n $O(2^n)$ $8(2^n) - n + 2$ $O(10^n)$ $100n^{500} + 2 + 10^n$	Super-linear	$n^{1.x}$	$O(n^{1.x})$	$2n^{1.2} + 3n\log n - n + 2$
Cubic n^3 $O(n^3)$ $0.1n^3 + 8n^{1.5} + \log(n)$ Exponential a^n $O(2^n)$ $8(2^n) - n + 2$ $O(10^n)$ $100n^{500} + 2 + 10^n$	Quadratic	n^2	$O(n^2)$	$0.5n^2 + 7n + 4$
Exponential a^n $O(2^n)$ $8(2^n) - n + 2$ $O(10^n)$ $100n^{500} + 2 + 10^n$				$n^2 + n \log n$
$O(10^n)$ $100n^{500} + 2 + 10^n$	Cubic	n^3	$O(n^3)$	$0.1n^3 + 8n^{1.5} + \log(n)$
	Exponential	a ⁿ	$O(2^n)$	
Factorial $n!$ $O(n!)$ $0.25n! + 10n^{100} + 2n^2$			$O(10^{n})$	$100n^{500} + 2 + 10^n$
	Factorial	n!	O(n!)	$0.25n! + 10n^{100} + 2n^2$

Bottom category referred to as **intractable**

Problem Classes

Problem Size Described by N

Tractable Best known algorithms that solve the problem have runtime complexity $O(a^N)$ for constant a and small value of N like N < 100

Intractable Not Tractable: best known algorithms have runtime complexity that is a large polynomial, is exponential $(O(2^N))$, or is factorial O(N!)

Unsolvable No algorithm exists to solve the problem.

Most algorithms you study in 4041 will be in Tractable but there are quite a few Intractable problems that arise in the real world, particularly for salespeople.

P vs NP vs NP-Complete

- Problem Class P We know a polynomial time algorithm that runs on a deterministic computer to solve it. Ex: Matrix Mult.
- Problem Class NP We know a polynomial time algorithm that runs on a **non-deterministic** computer to solve it. Can **verify a solution** in polynomial time. Ex:
- Non-deterministic Computer Roughly, employs an infinite number of CPUs to try many possible solutions at once.

 Unfortunately reality dictates that we can't easily build a non-deterministic machine and simulating one takes exponential time.
- NP Problems are Difficult Best algs have worst-case performance that is exponential on problem size.
- Problem Class NP-Complete Group of NP problems that can used to solve other NP problems. A polynomial time alg for any one NPC would solve all NP problems in poly-time. Ex: Boolean Satisfiability (3SAT).

A Problematic Problem

Write a program H that

- Takes as input the code for another program P and input for P called I
- 2. Determines if P will eventually terminate on input I
- 3. Prints out "Halts" if it will terminate.
- 4. Prints out "Runs Forever" otherwise.

This specification is referred to as the **Halting Problem** Propose some solutions (?!?)

No Algorithm Solves The Halting Problem

- Naive approach: Run program P on input I.
- ► If P finishes, print "Halts"
- ▶ If it doesn't finish... wait... crap...

Proof by Contradiction, Courtesy of Alan Turing, 1936

- Suppose H exists which solves the halting problem
- Notate H(P,I) to mean run H on program P with input I
- 3. Note that programs can be input so H(P,P) is valid
- 4. Let K(P) be the algorithm
 - ▶ a) Run H(P,P)
 - b) If the output is "Runs Forever", output "Halts"
 - c) If the output is "Halts", enter an infinite loop

- 5. Note that $H(K,K) \equiv K(K)$ and should give same output.
- Suppose H(K,K) outputs "Runs Forever": K terminates on input K.
- By code of K(K), did step (c) so in step (a), H(K,K) must output "Halts"
- 8. Output of H(K,K) is contradictory in 6 and 7. ■