
CSCI 2011: Integers and Modular Arithmetic

Chris Kauffman

Last Updated:
Thu Jul 5 13:42:49 CDT 2018

1

Logistics

Reading: Rosen
▶ Now: 4.1 - 4.6
▶ Next: 5.1 - 5.3

Assignments
▶ A04: Due Tonight
▶ A05: Post Thursday
▶ Due Tuesday

Holiday Week
▶ No Discussion Wed
▶ No Quiz Thursday

Goals
▶ Finish Algorithms/Big-O
▶ Numbers, Bits, Encryption

2

Number Systems
▶ Must recall how decimal numbers ”work”
▶ Digits 0-9 denote value, right-to-left placement indicates

power of 10: base 10 system
▶ Works just as well for base 2 with digits 0/1

Decimal: Base 10 Example
Each digit adds on a power 10

80, 345 =5 × 100+ 5 ones
4 × 101+ 40 tens
3 × 102+ 300 hundreds
0 × 103+ 0 thousands
8 × 104 80, 000 ...

So 5 + 40 + 300 + 80,000

Binary: Base 2 Example
Each digit adds on a power 2

110012 =1 × 20+ 1 ones
0 × 21+ 0 twos
0 × 22+ 0 fours
1 × 23+ 8 eights
1 × 24+ 16 sixteens

=1 + 8 + 16 = 25

So, 110012 = 2510
3

Exercise: Convert Binary to Decimal

Base 2 Example:

11001 =1 × 20+ 1
0 × 21+ 0
0 × 22+ 0
1 × 23+ 8
1 × 24+ 16

=1 + 8 + 16 = 25

So, 110012 = 2510

Try With a Pal
Convert the following two
numbers from base 2 (binary) to
base 10 (decimal)
▶ 111
▶ 11010
▶ 01100001

4

Answers: Convert Binary to Decimal

1112 =1 × 22 + 1 × 21 + 1 × 20

=1 × 4 + 1 × 2 + 1 × 1
=710

110102 =1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

=1 × 16 + 1 × 8 + 0 × 4 + 1 × 2 + 0 × 1
=2610

011000012 =0 × 27 + 1 × 26 + 1 × 25 + 0 × 24

+ 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20

=0 × 128 + ×64 + 1 × 32 + 0 × 16
+ 0 × 8 + 0 × 4 + 0 × 2 + 1 × 1

=9710

Note: last example ignores leading 0’s
5

The Other Direction: Base 10 to Base 2
Converting a number from base 10 to base 2 is easily done using
repeated division by 2; keep track of remainders
Convert 124 to base 2:

124 ÷ 2 = 62 rem 0
62 ÷ 2 = 31 rem 0
31 ÷ 2 = 15 rem 1
15 ÷ 2 = 7 rem 1
7 ÷ 2 = 3 rem 1
3 ÷ 2 = 1 rem 1
1 ÷ 2 = 0 rem 1

▶ Last step got 0 so we’re done.
▶ Binary digits are in remainders in reverse
▶ Answer: 1111100
▶ Check:

0 + 0 + 22 + 23 + 24 + 25 + 26 = 4 + 8 + 16 + 32 + 64 = 124 6

Exercise: Decimal to Binary

12410 to Base 2

124 ÷ 2 = 62 rem 0
62 ÷ 2 = 31 rem 0
31 ÷ 2 = 15 rem 1
15 ÷ 2 = 7 rem 1
7 ÷ 2 = 3 rem 1
3 ÷ 2 = 1 rem 1
1 ÷ 2 = 0 rem 1

▶ Remainders in reverse
▶ 12410 = 11111002

▶ Convert 1910 to base 2
▶ Estimate # of steps it takes

for the conversion of any
number

▶ Speculate on an algorithm
to convert numbers from
base 10 to base 7, base 9,
and base 13

7

Answers: Decimal to Binary

1910 to Base 2

19 ÷ 2 = 9 rem 1
9 ÷ 2 = 4 rem 1
4 ÷ 2 = 2 rem 0
2 ÷ 2 = 1 rem 0
1 ÷ 2 = 0 rem 1

▶ 1910 = 100112

▶ Convert 1910 to base 2
▶ 1910 = 100112

▶ Estimate # of steps it takes
for the conversion of any
number
▶ Takes log2 N steps where

N is the number to
convert

▶ Speculate on an algorithm
to convert numbers from
base 10 to base 7, base 9,
and base 13
▶ Repeatedly divide by the

base, answer is remainder
digits in reverse

8

Decimal, Hexadecimal, Octal, Binary

▶ Numbers exist independent of any writing system
▶ Can write the same number in a variety of bases
▶ Most common in computing are below
▶ Most programming languages have constant syntax for

different bases such as the C examples below
▶ Expectation: Gain familiarity with doing conversions between

bases as it will be useful in practice

Decimal Binary Hexadecimal Octal
Base 10 2 16 8
Mathematical 125 11111012 7D16 1758
C Prefix None 0b... 0x.. 0...
C Example 125 0b1111101 0x7D 0175

9

Octal: Base 8

Octal Basics
▶ Easy to convert Binary to

Octal by grouping bits in
groups of 3
100 111 101 011

4 7 5 3
▶ So 1001111010112 = 47538

File Permissions
▶ Octal commonly used for

Unix file permissions
▶ 3 entities: user, group, other
▶ 3 permissions: read, write,

execute

> chmod 665 somefile.txt

RESULT:
binary octal
110110101 = 665
rw-rw-r-x somefile.txt
U G O
S R T
E O H
R U E

P R

Readable chmod version:
> chmod u=rw,g=rw,o=rx somefile.txt

Make file read/write/execute
by everyone on the system
> chmod 777 ur_mom.txt

10

Hexadecimal: Base 16
▶ Hex: compact way to write

bit sequences
▶ One byte is 8 bits
▶ Hex uses 2 written

characters per byte
▶ Each hex character

represents 4 bits

|-----------+----------------+-----|
| Byte | Hex | Dec |
|-----------+----------------+-----|
0101 0111	57 = 5*16 + 7	87
5 7		
0011 1100	3C = 3*16 + 12	60
3 C=12		
1110 0010	E2 = 14*16 + 2	226
E=14 2		
-----------+----------------+-----		

Hex to 4 bit equivalence

Dec Bits Hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

11

Binary Integer Addition/Subtraction

Adding/subtracting in binary works the same as with decimal
EXCEPT that carries occur on values of 2 rather than 10j
ADDITION #1 SUBTRACTION #1

1 11 <-carries ? <-carries
0100 1010 = 74 0111 1001 = 121

+ 0101 1001 = 89 - 0001 0011 = 19
------------ ------------

1010 0011 = 163 VVVVVVVVVVVVV
VVVVVVVVVVVVV

ADDITION #2 VVVVVVVVVVVVV
1111 1 <-carries x12 <-carries
0110 1101 = 109 0111 0001 = 119

+ 0111 1001 = 121 - 0001 0011 = 19
------------ ------------

1110 0110 = 230 0110 0110 = 102

12

Exponentiation Algorithms

▶ Recall discussion of the
pow(x,y) function for
positive integers,

▶ Computes xy

▶ Naive algorithm for this is to
multiply in a loop

pow_linear(int base, int exp){
ans = 1
while(exp > 0){

ans = ans * base
exp = exp-1

}
return ans

}

▶ Speedier version of this
exploits repeated squaring

▶ Example: compute 714 =
(76) · (78) = (76) · ((72)2)2

▶ Latter term is squares 7,
then squares result (492),
then squares again

▶ Fast Exponentiation
Algorithm exploits this via
add/even powers

13

Fast Exponentiation Algorithm

pow_fast(int base, int exp){
ans = 1
power = base
while(exp > 0){
if(exp even){ # even

power = power*power
exp = exp / 2

}
else{ # odd

ans = ans*power
power = power*power
exp = (exp-1) / 2

}
}
return ans

}

Variable values at the end of loop
iterations

Iter exp ans power
init 14 1 = 70 7 = 71

1 7 1 = 70 49 = 72

2 3 49 = 72 2401 = 74

3 1 117649 = 76 … = 78

4 0 … = 714 … = 716

14

Exponentiation in Binary
▶ Easy to detect even/odd in binary by examining bits
▶ Leads to the following adaptation of the algorithm
▶ What is the runtime complexity of this equivalent version?

pow_fast_bin(int base, int exp){
ans = 1
power = base
for(i=0; i < #bits(exp); i++){
if(exp_bits[i] == 0){# even

power = power*power
}
else{ # odd

power = power*power
ans = ans*power

}
}
return ans

}

▶ Variable values at the end of loop
iterations

▶ Binary exp = 1410 = 11102

bits
Iter exp ans power
init 14 1 = 70 7 = 71

1 0 1 = 70 49 = 72

2 1 49 = 72 2401 = 74

3 1 117649 = 76 … = 78

4 1 … = 714 … = 716

15

Modular Arithmetic

▶ Recall Modulo: 30 mod 4 = 2 mod 4 as remainder of
30 ÷ 4 = 7 rem 2

▶ Fact: in modulo systems,

c = a · b, c mod m = (a mod m) · (b mod m) mod m

▶ Example

30 = 2 · 15
30 mod 4 = (2 mod 4) · (15 mod 4) mod 4

= 2 · 3 mod 4, because 15 ÷ 4 = 3 rem 3
= 6 mod 4
= 2 mod 4

16

Fast Modular Exponentiation
▶ Important Applications in Cryptography
▶ Will Examine them next week

pow_fast_mod(int base, int exp,
int mod)

{
ans = 1
power = base % mod
for(i=0; i < #bits(exp); i++){
if(exp_bits[i]==0){ # even

power = power*power % mod
}
else{ # odd

power = power*power % mod
ans = ans*power % mod

}
}
return ans

}

▶ Binary exp = 1410 = 11102
▶ Compute 714 mod 9
▶ pow_fast_mod(7,14,9)

bits
Iter exp ans power
init 14 1 = 70 % 9 7 = 71 % 9

1 0 1 = 70 % 9 4 = 72 % 9
2 1 4 = 72 % 9 7 = 74 % 9
3 1 1 = 76 % 9 4 = 78 % 9
4 1 4 = 714 % 9 7 = 716 % 9

17

Modulo and Negative Numbers
Definition: a ÷ b = q rem r ↔ a = q × b + r
▶ q is the quotient
▶ r is the remainder

Differences arise in practice
Mathematical Modulus Defined to have only positive remainders

in most mathematical contexts
Programming Modulus a % b may produce negatives, properly the

”remainder operator”, truncates division towards 0

Math Quot Rem Programming Quot Rem
−11 ÷ 3 -4 +1 q=-11/3; r=-11%3; -3 -2
−10 ÷ 4 -3 +2 q=-10/4; r=-10%4; -2 -2
−20 ÷ 11 -2 +2 q=-20/11; r=-20%11; -1 -9

18

Hash Tables use Modulus

▶ A Hash Table is an array,
usually with Prime Number
length

▶ Objects entering table have
associated key, their Hash
Code

▶ Hash Codes may be large,
modulus used to locate their
slot in table, must resolve
collisions
▶ Why is Mako at slot 4?
▶ Tenzin at slot 9?
▶ Where will Amon go?
▶ Algorithm to compute

codes?

19

Modulus to Generate Pseudorandom Numbers
A classic random number generator from The C Programming
Language by Kernighan and Ritchie
▶ Example of a linear congruential method: modulo used to

restrict range to int
▶ Is there anything random about it? How could one introduce

randomness?
/* Tracks state of random number generator */
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand() {

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed) {

next = seed;
}

20

http://en.wikipedia.org/wiki/The_C_Programming_Language
http://en.wikipedia.org/wiki/The_C_Programming_Language

Encryption

▶ Modular Arithmetic has big play in cryptography
▶ Obscure information except for the intended recipient
▶ Usually involves a shared secret or private key
▶ Caesar Cipher

▶ Constant shift of characters
▶ Secret key is the shift amount
▶ Not very strong encryption

▶ Vigenere Cipher
▶ Variable shift of characters
▶ Secret key is the pass phrase

▶ A good video on Caesar and Vigenere Ciphers for beginners

21

http://cs50.tv/2012/fall/shorts/vigenere_cipher/vigenere_cipher-720p.mp4

Exercise: Caesar Cipher Example
0 1 2 3 4 5 6 7 8 9 10 11 12
A B C D E F G H I J K L M

13 14 15 16 17 18 19 20 21 22 23 24 25
N O P Q R S T U V W X Y Z

Example 1
Secret Key +4
Plain Text MARIO
Encrypted QEVMS

Work It
Secret Key +9
Encrypted CXJM
Plain Text ????

Example 2
Secret Key +7
Plain Text LUIGI
Encrypted SBPNP

Notice the wrapping of U
▶ U→ 21;
▶ (20+7) % 26 = 27 % 26 = 1
▶ 1 → B

22

Vigenere Cipher
0 1 2 3 4 5 6 7 8 9 10 11 12
A B C D E F G H I J K L M

13 14 15 16 17 18 19 20 21 22 23 24 25
N O P Q R S T U V W X Y Z

Don’t use a single key, use a passphrase
Secret Key TOAD → [19, 14, 0, 3]
Plain Text PRINCESS
Encrypted IFJQVSSV

Original P R I N C E S S
Numbers 15 17 8 13 2 4 18 18
Secret Key T O A D T O A D
Numbers 19 14 0 3 19 14 0 3
Sums 34 31 8 16 21 18 18 21
modulo 26 8 5 I 16 21 18 18 21
Encrypted I F J Q V S S V

23

Limits of Classical Cryptography

▶ Caesar and Vigenere are weak ciphers: how would one crack
them?

▶ Improved versions are extremely strong: takes millenia to
crack

▶ Drawback: shared secrets like single private key limits
applicability - WHY?

▶ Modern commerce requires no a priori shared secret, must be
able to develop a shared secret as part of the system

▶ Public Key Cryptography solves this

24

The RSA System

Based on the following scheme

(me)d ≡ m mod n

▶ m is a message, numeric form, to be encrypted/decrypted
▶ n is very large number, product of two primes
▶ e is a public key, used for encryption, shared freely
▶ d is a private key, used for decryption, kept secret
▶ e, d are chosen as inverses of one another under modulo n

Notice the following
▶ Need for fast modular exponentiation
▶ Need to know how to find d, e efficiently

25

Encryption in RSA

▶ Alice wants to send Bob a
message
m = HELP = H E L P
m = 0704 1115
block# 1 2

▶ Requests Bob’s
▶ Public Encryption Key

e = 13
▶ Modulo base n = 2537

▶ Alice computes ciphered
message in two blocks

c = me mod n
c1 = 070413 mod 2537 = 0981
c2 = 111513 mod 2537 = 0461

Security
▶ Alice sends Bob message

0981 0461 over an open
channel like the internet

▶ Evil Eve intercepts the
messages so has e, n, c

▶ Eve tries decrypting with e
which yields gibberish

098113 mod 2537 = 1607
046113 mod 2537 = 1244
1607 1244 = QHMS ???

▶ Eve cannot determine m as
she lacks the decryption key
d Bob has kept secret

26

Decryption in RSA
▶ Bob receives the message 0981 0461 from Alice
▶ Bob decrypts it using his secret decryption key d = 937

m = cd mod n = (me)d mod n
m1 = 0981937 mod 2537 = 0704
m2 = 0461937 mod 2537 = 1115
0704 1115 = HELP

▶ If Bob wants to send a safe return message, requests from
Alice
▶ Alice’s public encryption key
▶ Alice’s modulo base

▶ Bob encrypts with Alice’s key and replies

Fast Modular Exponentiation
▶ Encryption and Decryption use fast modular exponentiation
▶ Actual keys/modulo base are not 4 digits but 100-300 digits

long or 1024-4096 bits long
27

Aspects of RSA

Key Generation
▶ RSAs successful because

trios e, d, n can be
efficiently produced such
that for all m

(me)d mod n = m mod n

▶ Involves picking two large
prime numbers p, q

28

Key Generation: Finding Encryption/Decryption Pairs
Part of RSAs success that trios e, d, n can be efficiently produced
such that for all m: (me)d mod n = m mod n
Key Generation involves the following steps

1. Pick two large prime numbers
p, q: use primality tests such as
the Sieve of Eranthoses
(super-linear time)

2. Find the least common
multiple t = lcm(p − 1, q − 1),
called totient (log time)

3. Pick encryption key e < t such
that e is relatively prime to t
(no common factors, log time)

4. Find d so that e · d mod t = 1
▶ d, e are modular

multiplicative inverses
▶ Use the Extended

Euclidean Algorithm
(log time)

5. Publish public modular base
n = p · q and public encryption
key e

6. Keep private decryption key d
secret

Fermat’s Little Theorem used to show e, d, n have desired properties if
chose by the above scheme

29

Strength of RSA
▶ Strength of RSA is based on the difficulty of factoring large

integers: determine n = f1 · f2 · f3 · · · with fi prime
▶ During key selection, picked primes p, q, published base

n = p · q
▶ During key selection used secret knowledge of p, q to generate

encryption/decryption pair
▶ Attackers only know n: may try to factor n to determine p, q

but no polynomial time algorithm exists for integer
factorization on deterministic CPUs

▶ Largest published cracked RSA key is 768 bits, took 1500
CPU years (2 years with many parallel computers)

▶ Practical keys/modulo base are 100-300 digits / 1024-4096
bits long making them relatively secure

▶ On the horizon: Shor’s Algorithm factors numbers in
polynomial time on non-deterministic machines like Quantum
computers, may someday practically impact your Amazon
orders

30

https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Quantum_computing

Take-Home

▶ Number theory was once thought the last bastion of truly
pure mathematics

▶ Many interesting algorithms exist within it
▶ With the advent of computing and communication networks,

number theory has many practical applications these days

31

