CSCI 2011: Integers and Modular Arithmetic

Chris Kauffman

Last Updated:
Thu Jul 5 13:42:49 CDT 2018

Logistics

Reading: Rosen

» Now: 4.1-4.6
» Next: 5.1 -5.3

Assignments

» AO04: Due Tonight
» AO05: Post Thursday
» Due Tuesday

Holiday Week

» No Discussion Wed
» No Quiz Thursday

Goals
» Finish Algorithms/Big-O
> Numbers, Bits, Encryption

Number Systems

» Must recall how decimal numbers "work"

» Digits 0-9 denote value, right-to-left placement indicates
power of 10: base 10 system

» Works just as well for base 2 with digits 0/1

Decimal: Base 10 Example Binary: Base 2 Example

Each digit adds on a power 10 Each digit adds on a power 2

80,345 =5 x 10°+ 5 ones 11001, =1 x 2°+ 1 ones
4 x 101+ 40 tens 0x 24 0 twos
3% 10%+ 300 hundreds 0 x 22+ 0 fours
0x 103+ 0 thousands 1x2%4+ 8 eights
8 x 10* 80,000 ... 1x 2%+ 16 sixteens

=1+8+4+16 =25

So 5 + 40 + 300 + 80,000 So, 11001, = 2539

Exercise: Convert Binary to Decimal

Base 2 Example:

11001 =1 x 2%+ 1
0 x 214 0
0 x 2%+ 0
1x 234+ 8
1x 2%+ 16

=1+8+16 =25

SO, 110012 = 2510

Try With a Pal

Convert the following two
numbers from base 2 (binary) to
base 10 (decimal)

> 111
> 11010
> 01100001

Answers: Convert Binary to Decimal

111, =1x 22 +1x2' +1x2°
=1x4+1x2+1x1
=710
11010, =1 x 2* +1x 22 +0x 22+ 1 x 21 4+ 0 x 2°
=1x16+1x8+0x4+1x2+0x1
=261
01100001, =0 x 2" +1x 2% +1 x 2540 x 2*

+0x2240x224+0x2 +1x2°

=0x 128+ x644+1x%x32+0x 16
+0x8+0x44+0x2+1x1

=9719

Note: last example ignores leading 0's

The Other Direction: Base 10 to Base 2

Converting a number from base 10 to base 2 is easily done using
repeated division by 2; keep track of remainders
Convert 124 to base 2:

124 +-2 =62 rem 0
62+-2=31 rem 0
31+-2=15 rem 1
15+2=7 rem 1
7T+2=3 rem 1
3+2=1 rem 1
1+-2=0 rem 1

> Last step got 0 so we're done.

» Binary digits are in remainders in reverse

> Answer: 1111100

» Check:
0+0+224+234+2%+254+20=44+8+16+32+64 =124

Exercise: Decimal to Binary

1244, to Base 2

124 -2 =62 rem O
62 +-2=31 rem 0
31+-2=15 rem 1
15+-2=7 rem 1
7T+-2=3 rem 1
3+2=1 rem 1
1+-2=0 rem 1

» Remainders in reverse
» 12449 = 1111100,

v

Convert 191p to base 2

Estimate # of steps it takes
for the conversion of any
number

Speculate on an algorithm
to convert numbers from
base 10 to base 7, base 9,
and base 13

Answers: Decimal to Binary

1949 to Base 2

19+2=9
9+-2=4
4 -2=2
2+-2=1
1+-2=0

> 19;0 = 10011,

rem 1
rem 1
rem 0
rem 0

rem 1

» Convert 1919 to base 2
» 19,0 = 10011,

» Estimate # of steps it takes
for the conversion of any
number

> Takes log, N steps where
N is the number to
convert

> Speculate on an algorithm
to convert numbers from
base 10 to base 7, base 9,
and base 13

» Repeatedly divide by the
base, answer is remainder
digits in reverse

Decimal, Hexadecimal, Octal, Binary

» Numbers exist independent of any writing system

» Can write the same number in a variety of bases

» Most common in computing are below

» Most programming languages have constant syntax for
different bases such as the C examples below

» Expectation: Gain familiarity with doing conversions between
bases as it will be useful in practice

Decimal Binary Hexadecimal Octal
Base 10 2 16 8
Mathematical 125 1111101, 7D16 175g
C Prefix None Ob. 0x. . 0

C Example 125 0b1111101 0x7D 0175

Octal: Base 8

Octal Basics
» Easy to convert Binary to
Octal by grouping bits in
groups of 3

100 111 101 011
4 7 5 3

> So 100111101011, = 47535

File Permissions
» Octal commonly used for
Unix file permissions
» 3 entities: user, group, other

» 3 permissions: read, write,
execute

> chmod 665 somefile.txt

RESULT:

binary octal
110110101 = 665
rw-rw-r-x somefile.txt

Uu G 0
S R T
E 0 H
R U E

P R

Readable chmod version:
> chmod u=rw,g=rw,o=rx somefile.txt

Make file read/write/execute
by everyone on the system
> chmod 777 ur_mom.txt

10

Hexadecimal: Base 16

» Hex: compact way to write

bit sequences
» One byte is 8 bits

» Hex uses 2 written
characters per byte

» Each hex character
represents 4 bits

___________ e
Byte | Hex | Dec
___________ e
0101 0111 | 57 = 5x16 + 7 | 87
5 7 | I

0011 1100 | 3C = 3*16 + 12 | 60
3 Cc=12 | |

1110 0010 | E2 = 14x16 + 2 | 226
E=14 2 | I

_____ _+___ + -

Hex to 4 bit equivalence

Dec Bits Hex
0 0000 O
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 38
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

11

Binary Integer Addition/Subtraction

Adding/subtracting in binary works the same as with decimal
EXCEPT that carries occur on values of 2 rather than 10j

ADDITION #1 SUBTRACTION #1
111 <-carries ? <-carries
0100 1010 = 74 0111 1001 = 121
+ 0101 1001 = 89 - 0001 0011 = 19
1010 0011 = 163 VVVVVVVVVVVVV
VVVVVVVVVVVVV
ADDITION #2 VVVVVVVVVVVVV
1111 1 <-carries x12 <-carries
0110 1101 = 109 0111 0001 = 119
+ 0111 1001 = 121 - 0001 0011 = 19
1110 0110 = 230 0110 0110 = 102

12

Exponentiation Algorithms

» Recall discussion of the
pow(x,y) function for
positive integers,

» Computes x/

» Naive algorithm for this is to
multiply in a loop

pow_linear(int base, int exp){
ans = 1
while(exp > 0){
ans = ans * base
exp = exp-1
}
return ans

}

Speedier version of this
exploits repeated squaring

Example: compute 714 =
(7°) - (7%) = (7°) - ((7%)?)?
Latter term is squares 7,
then squares result (49?),
then squares again

Fast Exponentiation
Algorithm exploits this via
add/even powers

13

Fast Exponentiation Algorithm

pow_fast(int base, int exp){

ans = 1
power = base
while(exp > 0){
if(exp even){ # even
power = power*power
exp = exp / 2
}
elseq{ # odd
ans = ans*power
power = powerkpower
exp = (exp-1) / 2
}
}
return ans

}

Variable values at the end of loop

iterations
Iter exp ans power
init 14 1=7° 7="7"
1 7 1=7° 49 =72
2 3 49 =72 2401 =T7*
3 1 117649 = 7° =Tt
4 0 =T =79

14

Exponentiation in Binary

» Easy to detect even/odd in binary by examining bits
P Leads to the following adaptation of the algorithm
» What is the runtime complexity of this equivalent version?

pow_fast_bin(int base, int

ans = 1
power = base
for(i=0; i < #bits(exp)
if (exp_bits[i] == 0){
power = power*power
}
else{
power = power*power
ans = ans*power
}
}

return ans

’

#

#

){
“P’% b Variable values at the end of loop

iterations
91 b Binary exp = 1440 = 1110,

even
bits
odd Iter exp ani powef
init 14 1=7 7=7
1 0 1=7° 49 =72
2 1 49 =72 2401 =T7*
3 1 117649 = 7° =Tt
4 1 =T =79

15

Modular Arithmetic

» Recall Modulo: 30 mod4 = 2 mod 4 as remainder of
30-4=7rem?2

» Fact: in modulo systems,
c=a-b,cmodm= (amodm)- (b modm) modm

> Example

30=2-15
30 mod4 = (2 mod4) - (15 mod 4) mod 4
=2-3 mod4, because 15+-4=3rem 3
=6 mod4
=2 mod4

16

Fast Modular Exponentiation

» Important Applications in Cryptography
> Will Examine them next week

pow_fast_mod(int base, int exp,
int d .
int mod) » Binary exp = 1419 = 1110,
ans = 1 » Compute 7% mod 9
power = base 7 mod
for(i=0; i < #bits(exp); i++){ > pow_fast_mod(7,14,9)
if (exp_bits[i]==0){ # even

{

power = power*power % mod bits
} Iter exp ans power
else{ 4 odd init 14 1=7"%9 7=7"%9

power = power*power % mod 1 0 1=7"%9 4=7"%9
ans = ans*power % mod 2 1 4=7"%9 7=7"%9
} 3 1 1=7"%9 4=7%9
41

} 4=7"%9 7=7"%9

return ans

Modulo and Negative Numbers

Definition: a~b=qgremr<a=qgx b+ r
» g is the quotient
» ris the remainder

Differences arise in practice

Mathematical Modulus Defined to have only positive remainders
in most mathematical contexts

Programming Modulus a % b may produce negatives, properly the
"remainder operator”, truncates division towards 0

Math Quot Rem | Programming Quot Rem
—11=3 -4 +1 | g=-11/3; 1r=-11%3; -3 -2
_10=4 -3 42| q=-10/4; r=-10%4; -2 -2
-20+11 -2 42| g=-20/11; r=-20%11; -1 -9

18

Hash Tables use Modulus

> A Hash Table is an array,))
. i h.itemCount h.tableSize
usually with Prime Number &)
|ength Eh.array sHhashCodes
» Objects entering table have

0 Asami 0| "Korra".hashCode() =1
associated key, their Hash 1\ Xorra 1
Code zfzﬁﬁﬁzzﬁ 2[["Bolin".hashcCode() = 49
» Hash Codes may be large, 3 . 3| AsamihashCoden - 22
modulus used to locate their a[_ Mako 4| Tenzin’.hashCodel) = 42
slot in table, must resolve s[__Botin | 5|_00gt" hashCode() = 57 |
collisions 6 6|[“Amon".hashCode() = 56 |
» Why is Mako at slot 4? 7
» Tenzin at slot 9? 8 :
» Where will Amon go? 9| Tenzin
» Algorithm to compute 10

codes?

Modulus to Generate Pseudorandom Numbers

A classic random number generator from The C Programming
Language by Kernighan and Ritchie
» Example of a linear congruential method: modulo used to
restrict range to int
» |s there anything random about it? How could one introduce
randomness?

/* Tracks state of random number generator */
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand() {

next = next * 1103515245 + 12345;

return (unsigned int) (next/65536) I 32768;
}

/* srand: set seed for rand() */
void srand(unsigned int seed) {
next = seed;

}

20

http://en.wikipedia.org/wiki/The_C_Programming_Language
http://en.wikipedia.org/wiki/The_C_Programming_Language

Encryption

Modular Arithmetic has big play in cryptography

Usually involves a shared secret or private key
Caesar Cipher

» Constant shift of characters
» Secret key is the shift amount
> Not very strong encryption

>

» Obscure information except for the intended recipient
| 2

>

> Vigenere Cipher

» Variable shift of characters
» Secret key is the pass phrase

» A good video on Caesar and Vigenere Ciphers for beginners

21

http://cs50.tv/2012/fall/shorts/vigenere_cipher/vigenere_cipher-720p.mp4

Exercise: Caesar Cipher Example

1 2 3 4 5 6 7 8 9 10 11 12
G H I J K L M
13 14 15 16 17 18 19 20 21 22 23 24 25

> o
w
(@)
O
m
T

N O P Q R S T U V W X Y Z
Example 1 Example 2
Secret Key +4 Secret Key +7
Plain Text MARIO Plain Text LUIGI
Encrypted QEVMS Encrypted SBPNP
Work It Notice the wrapping of U
> U— 21;
Secret Key +9 > (20+7) % 26 = 27 % 26 = 1
Encrypted CXJM » 1B

Plain Text ?777?

22

Vigenere Cipher

0 1 2 3 4 5 6 7 8 9 10 11 12
A B cC D E F G H | J K L M
13 14 15 16 17 18 19 20 21 22 23 24 25
N O P Q R S T U v W X Y Z
Don't use a single key, use a passphrase
Secret Key TOAD — [19, 14, 0, 3]
Plain Text PRINCESS
Encrypted IFJQVSSV
Original P R | N C E S S
Numbers 15 17 8 13 2 4 18 18
SecretKey T O A D T O A D
Numbers 19 14 0 3 19 14 0 3
Sums 34 31 8 16 21 18 18 21
modulo26 8 5 | 16 21 18 18 21
Encrypted I FJ Q VvV S S V

23

Limits of Classical Cryptography

» Caesar and Vigenere are weak ciphers: how would one crack
them?

» Improved versions are extremely strong: takes millenia to
crack

» Drawback: shared secrets like single private key limits
applicability - WHY?

» Modern commerce requires no a priori shared secret, must be
able to develop a shared secret as part of the system

> Public Key Cryptography solves this

24

The RSA System

Based on the following scheme

(m®)¥ = m modn

m is a message, numeric form, to be encrypted/decrypted
n is very large number, product of two primes

e is a public key, used for encryption, shared freely

vvvyyypy

d is a private key, used for decryption, kept secret

» e, d are chosen as inverses of one another under modulo n
Notice the following

» Need for fast modular exponentiation

» Need to know how to find d, e efficiently

25

Encryption in RSA

» Alice wants to send Bob a

message

m=HELP =HE LP
m = 0704 1115
block# 1 2

» Requests Bob's

» Public Encryption Key
e=13
» Modulo base n = 2537

» Alice computes ciphered
message in two blocks

c=m*modn

¢; = 070413 mod 2537 = 0981
¢ = 111513 mod 2537 = 0461

Security

>

| 2

Alice sends Bob message
0981 0461 over an open
channel like the internet

Evil Eve intercepts the
messages so has e, n, ¢

Eve tries decrypting with e
which yields gibberish
098113 mod 2537 = 1607
046113 mod 2537 = 1244
1607 1244 = QHMS 777
Eve cannot determine m as
she lacks the decryption key

d Bob has kept secret
26

Decryption in RSA

» Bob receives the message 0981 0461 from Alice
> Bob decrypts it using his secret decryption key d = 937
m = c? mod n = (m*)? modn
my = 0981°%7 mod 2537 = 0704
my = 0461°%" mod 2537 = 1115
0704 1115 = HELP

» If Bob wants to send a safe return message, requests from
Alice

» Alice's public encryption key
» Alice’s modulo base

» Bob encrypts with Alice's key and replies
Fast Modular Exponentiation

» Encryption and Decryption use fast modular exponentiation

» Actual keys/modulo base are not 4 digits but 100-300 digits
long or 1024-4096 bits long

27

Aspects of RSA

Key Generation

» RSAs successful because
trios e, d, n can be
efficiently produced such
that for all m

(m®)¥ mod n = m mod n

» Involves picking two large
prime numbers p, g

28

Key Generation: Finding Encryption/Decryption Pairs
Part of RSAs success that trios e, d, n can be efficiently produced
such that for all m: (m®)? mod n = m mod n
Key Generation involves the following steps

1. Pick two large prime numbers 4. Find dsothat e-dmodt=1
p, q: use primality tests such as

. » d, e are modular
the Sieve of Eranthoses ’

multiplicative inverses

(super-linear time) > Use the Extended

2. Find the least common Euclidean Algorithm
multiple t = lem(p— 1,9 — 1), (log time)
called totient (log time) 5. Publish public modular base

3. Pick encryption key e < t such n= p-q and public encryption
that e is relatively prime to t key e

(no common factors, log time) 6. Keep private decryption key d

secret

Fermat’s Little Theorem used to show e, d, n have desired properties if
chose by the above scheme

29

Strength of RSA

>

>

Strength of RSA is based on the difficulty of factoring large
integers: determine n=Ff - f, - f3--- with f; prime

During key selection, picked primes p, g, published base
n=p-q

During key selection used secret knowledge of p, g to generate
encryption/decryption pair

Attackers only know n: may try to factor n to determine p, q
but no polynomial time algorithm exists for integer
factorization on deterministic CPUs

Largest published cracked RSA key is 768 bits, took 1500
CPU years (2 years with many parallel computers)

Practical keys/modulo base are 100-300 digits / 1024-4096
bits long making them relatively secure

On the horizon: Shor's Algorithm factors numbers in
polynomial time on non-deterministic machines like Quantum
computers, may someday practically impact your Amazon
orders

30

https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Quantum_computing

Take-Home

» Number theory was once thought the last bastion of truly
pure mathematics

> Many interesting algorithms exist within it

> With the advent of computing and communication networks,
number theory has many practical applications these days

31

