CSCI 2011: Integers and Modular Arithmetic

Chris Kauffman

Last Updated: Thu Jul 5 13:42:49 CDT 2018

Logistics

Reading: Rosen

Now: 4.1 - 4.6

► Next: 5.1 - 5.3

Assignments

► A04: Due Tonight

► A05: Post Thursday

Due Tuesday

Holiday Week

- No Discussion Wed
- ► No Quiz Thursday

Goals

- ► Finish Algorithms/Big-O
- Numbers, Bits, Encryption

Number Systems

- Must recall how decimal numbers "work"
- ▶ Digits 0-9 denote value, right-to-left placement indicates power of 10: base 10 system
- ightharpoonup Works just as well for base 2 with digits 0/1

Decimal: Base 10 Example

Each digit adds on a power 10

Binary: Base 2 Example

Each digit adds on a power 2

$$80,345 = 5 \times 10^{0} + \qquad 5 \text{ ones}$$

$$4 \times 10^{1} + \qquad 40 \text{ tens}$$

$$3 \times 10^{2} + \qquad 300 \text{ hundreds}$$

$$0 \times 10^{3} + \qquad 0 \text{ thousands}$$

$$8 \times 10^{4} \qquad 80,000 \dots$$

$$11001_2 = 1 \times 2^0 + 1$$
 ones $0 \times 2^1 + 0$ twos $0 \times 2^2 + 0$ fours $1 \times 2^3 + 8$ eights $1 \times 2^4 + 16$ sixteens $= 1 + 8 + 16 = 25$

So
$$5 + 40 + 300 + 80,000$$

So,
$$11001_2 = 25_{10}$$

Exercise: Convert Binary to Decimal

Base 2 Example:

So, $11001_2 = 25_{10}$

$$11001 = 1 \times 2^{0} + 1 \\
0 \times 2^{1} + 0 \\
0 \times 2^{2} + 0 \\
1 \times 2^{3} + 8 \\
1 \times 2^{4} + 16 \\
= 1 + 8 + 16 = 25$$

Try With a Pal

Convert the following two numbers from base 2 (binary) to base 10 (decimal)

- **111**
- **11010**
- **>** 01100001

2

Answers: Convert Binary to Decimal

$$\begin{aligned} 111_2 &= 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \\ &= 1 \times 4 + 1 \times 2 + 1 \times 1 \\ &= 7_{10} \\ 11010_2 &= 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 \\ &= 1 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1 \\ &= 26_{10} \\ 01100001_2 &= 0 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 \\ &+ 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \\ &= 0 \times 128 + \times 64 + 1 \times 32 + 0 \times 16 \\ &+ 0 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1 \\ &= 97_{10} \end{aligned}$$

Note: last example ignores leading 0's

5

The Other Direction: Base 10 to Base 2

Converting a number from base 10 to base 2 is easily done using repeated division by 2; keep track of **remainders**

Convert 124 to base 2:

$$124 \div 2 = 62$$
 rem 0

 $62 \div 2 = 31$
 rem 0

 $31 \div 2 = 15$
 rem 1

 $15 \div 2 = 7$
 rem 1

 $7 \div 2 = 3$
 rem 1

 $3 \div 2 = 1$
 rem 1

 $1 \div 2 = 0$
 rem 1

- ► Last step got 0 so we're done.
- ▶ Binary digits are in remainders in reverse
- Answer: 1111100
- ► Check:

$$0 + 0 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 = 4 + 8 + 16 + 32 + 64 = 124$$

Exercise: Decimal to Binary

124₁₀ to Base 2

$$124 \div 2 = 62$$
 rem 0
 $62 \div 2 = 31$ rem 0
 $31 \div 2 = 15$ rem 1
 $15 \div 2 = 7$ rem 1
 $7 \div 2 = 3$ rem 1
 $3 \div 2 = 1$ rem 1
 $1 \div 2 = 0$ rem 1

- ► Convert 19₁₀ to base 2
- ► Estimate # of steps it takes for the conversion of any number
- ► Speculate on an algorithm to convert numbers from base 10 to base 7, base 9, and base 13

- Remainders in reverse
- ightharpoonup 124₁₀ = 1111100₂

Answers: Decimal to Binary

19₁₀ to Base 2

$$19 \div 2 = 9$$
 rem 1
 $9 \div 2 = 4$ rem 1
 $4 \div 2 = 2$ rem 0
 $2 \div 2 = 1$ rem 0
 $1 \div 2 = 0$ rem 1

 $ightharpoonup 19_{10} = 10011_2$

- ► Convert 19₁₀ to base 2
 - ightharpoonup 19₁₀ = 10011₂
- Estimate # of steps it takes for the conversion of any number
 - Takes log₂ N steps where N is the number to convert
- ➤ Speculate on an algorithm to convert numbers from base 10 to base 7, base 9, and base 13
 - Repeatedly divide by the base, answer is remainder digits in reverse

Decimal, Hexadecimal, Octal, Binary

- Numbers exist independent of any writing system
- Can write the same number in a variety of bases
- Most common in computing are below
- Most programming languages have constant syntax for different bases such as the C examples below
- ► **Expectation**: Gain familiarity with doing conversions between bases as it will be useful in practice

Decimal	Binary	Hexadecimal	Octal
10	2	16	8
125	1111101_2	7D ₁₆	175 ₈
None	0b	0x	0
125	0b1111101	0x7D	0175
	10 125 None	125 1111101 ₂ None 0b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Octal: Base 8

Octal Basics

Easy to convert Binary to Octal by grouping bits in groups of 3

ightharpoonup So $100111101011_2 = 4753_8$

File Permissions

- Octal commonly used for Unix file permissions
- 3 entities: user, group, other
- ➤ 3 permissions: read, write, execute

> chmod 665 somefile.txt

```
RESULT:
binary octal
110110101 = 665
rw-rw-r-x somefile.txt
U G O
S R T
E O H
R U E
```

R.

Readable chmod version:
> chmod u=rw,g=rw,o=rx somefile.txt

Make file read/write/execute by everyone on the system > chmod 777 ur_mom.txt

Hexadecimal: Base 16

- Hex: compact way to write bit sequences
- ▶ One byte is 8 bits
- Hex uses 2 written characters per byte
- Each hex character represents 4 bits

Byte	Hex	Dec
0101 0111	57 = 5*16 + 7	87
5 7		
0011 1100	3C = 3*16 + 12	60 l
3 C=12		
1110 0010	E2 = 14*16 + 2	226
E=14 2		

Hex to 4 bit equivalence

Dec	Bits	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	C
13	1101	D
14	1110	Ε
15	1111	F

Binary Integer Addition/Subtraction

Adding/subtracting in binary works the same as with decimal EXCEPT that carries occur on values of 2 rather than 10j

```
ADDITION #1
                         SUBTRACTION #1
   1 11 <-carries
                                   ? <-carries
  0100 \ 1010 = 74
                           0111 \ 1001 = 121
+ 0101 1001 = 89
                         - 0001 0011 = 19
   1010\ 0011 = 163
                            VVVVVVVVVVVVVVV
                            VVVVVVVVVVVVV
ADDITION #2
                            VVVVVVVVVVVVV
   1111 1 <-carries
                                 x12 <-carries
  0110 \ 1101 = 109
                          0111 0001 = 119
+ 0111 1001 = 121
                         - 0001 0011 = 19
  1110\ 0110 = 230
                         0110 0110 = 102
```

Exponentiation Algorithms

- Recall discussion of the pow(x,y) function for positive integers,
- ightharpoonup Computes x^y
- Naive algorithm for this is to multiply in a loop

```
pow_linear(int base, int exp){
  ans = 1
  while(exp > 0){
    ans = ans * base
    exp = exp-1
  }
  return ans
}
```

- Speedier version of this exploits repeated squaring
- Example: compute $7^{14} = (7^6) \cdot (7^8) = (7^6) \cdot ((7^2)^2)^2$
- ► Latter term is squares 7, then squares result (49²), then squares again
- ► Fast Exponentiation Algorithm exploits this via add/even powers

Fast Exponentiation Algorithm

```
pow_fast(int base, int exp){
  ans = 1
  power = base
  while(exp > 0){
    if(exp even){ # even
      power = power*power
      exp = exp / 2
    else{
                   # odd
      ans = ans*power
      power = power*power
      exp = (exp-1) / 2
  return ans
```

Variable values at the end of loop iterations

Iter	exp	ans	power
init	14	$1 = 7^{0}$	$7 = 7^1$
1	7	$1 = 7^0$	$49 = 7^2$
2	3	$49 = 7^2$	$2401 = 7^4$
3	1	$117649 = 7^6$	$ = 7^8$
4	0	$ = 7^{14}$	$ = 7^{16}$

Exponentiation in Binary

- ► Easy to detect even/odd in binary by examining bits
- ▶ Leads to the following adaptation of the algorithm
- ▶ What is the runtime complexity of this equivalent version?

```
pow_fast_bin(int base, int exp){
  ans = 1
  power = base
  for(i=0; i < #bits(exp); i++){</pre>
    if(exp_bits[i] == 0){# even
      power = power*power
    else{
                            odd
      power = power*power
      ans = ans*power
  return ans
```

- Variable values at the end of loop iterations
- ▶ Binary $\exp = 14_{10} = 1110_2$

	bits		
Iter	exp	ans	power
init	14	$1 = 7^0$	$7 = 7^1$
1	0	$1 = 7^0$	$49 = 7^2$
2	1	$49 = 7^2$	$2401 = 7^4$
3	1	$117649 = 7^6$	$ = 7^8$
4	1	$ = 7^{14}$	$ = 7^{16}$

Modular Arithmetic

- Recall Modulo: $30 \mod 4 = 2 \mod 4$ as remainder of $30 \div 4 = 7 \text{ rem } 2$
- Fact: in modulo systems,

$$c = a \cdot b, c \mod m = (a \mod m) \cdot (b \mod m) \mod m$$

Example

$$30 = 2 \cdot 15$$

 $30 \mod 4 = (2 \mod 4) \cdot (15 \mod 4) \mod 4$
 $= 2 \cdot 3 \mod 4$, because $15 \div 4 = 3 \text{ rem } 3$
 $= 6 \mod 4$
 $= 2 \mod 4$

Fast Modular Exponentiation

- Important Applications in Cryptography
- ▶ Will Examine them next week

```
pow_fast_mod(int base, int exp,
              int mod)
  ans = 1
  power = base % mod
  for(i=0; i < #bits(exp); i++){</pre>
    if(exp_bits[i]==0){ # even
      power = power*power % mod
    else{
                         # odd
      power = power*power % mod
      ans = ans*power % mod
  return ans
```

- ▶ Binary $\exp = 14_{10} = 1110_2$
- ► Compute 7¹⁴ **mod** 9
- pow_fast_mod(7,14,9)

	bits		
lter	exp	ans	power
init	14	$1 = 7^0 \% 9$	$7 = 7^1 \% 9$
1	0	$1 = 7^0 \% 9$	$4 = 7^2 \% 9$
2	1	$4 = 7^2 \% 9$	$7 = 7^4 \% 9$
3	1	$1=7^6~\%~9$	$4 = 7^8 \% 9$
4	1	$4 = 7^{14} \% 9$	$7 = 7^{16} \% 9$

Modulo and Negative Numbers

Definition: $a \div b = q \operatorname{rem} r \leftrightarrow a = q \times b + r$

- q is the quotient
- r is the remainder

Differences arise in practice

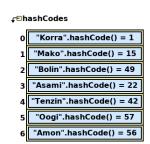
Mathematical Modulus Defined to have only positive remainders in most mathematical contexts

Programming Modulus a % b may produce negatives, properly the "remainder operator", truncates division towards 0

Math	Quot	Rem	Programming	Quot	Rem
$-11 \div 3$	-4	+1	q=-11/3; r=-11%3;	-3	-2
$-10 \div 4$	-3	+2	q=-10/4; r=-10%4;	-2	-2
$-20 \div 11$	-2	+2	q=-20/11; r=-20%11;	-1	-9

Hash Tables use Modulus

- A Hash Table is an array, usually with Prime Number length
- Objects entering table have associated key, their Hash Code
- Hash Codes may be large, modulus used to locate their slot in table, must resolve collisions
 - ► Why is Mako at slot 4?
 - ► Tenzin at slot 9?
 - Where will Amon go?
 - Algorithm to compute codes?



Modulus to Generate Pseudorandom Numbers

A classic random number generator from *The C Programming Language* by Kernighan and Ritchie

- Example of a linear congruential method: modulo used to restrict range to int
- ► Is there anything random about it? How could one introduce randomness?

```
/* Tracks state of random number generator */
unsigned long int next = 1;
/* rand: return pseudo-random integer on 0..32767 */
int rand() {
 next = next * 1103515245 + 12345;
 return (unsigned int) (next/65536) % 32768;
/* srand: set seed for rand() */
void srand(unsigned int seed) {
 next = seed;
```

Encryption

- Modular Arithmetic has big play in cryptography
- Obscure information except for the intended recipient
- Usually involves a shared secret or private key
- Caesar Cipher
 - Constant shift of characters
 - Secret key is the shift amount
 - Not very strong encryption
- Vigenere Cipher
 - Variable shift of characters
 - Secret key is the pass phrase
- ► A good video on Caesar and Vigenere Ciphers for beginners

Exercise: Caesar Cipher Example

0	1	2	3	4	5	6	7	8	9	10	11	12
Α	В	C	D	Ε	F	G	Н	I	J	K	L	Μ
13	14	15	16	17	18	19	20	21	22	23	24	25
Ν	Ο	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z

Example 1

Secret Key +4

Plain Text MARIO

Encrypted QEVMS

Work It

Secret Key +9

Encrypted CXJM

Plain Text ????

Example 2

Secret Key +7

Plain Text LUIGI

Encrypted SBPNP

Notice the wrapping of U

- ► U→ 21;
- \triangleright (20+7) % 26 = 27 % 26 = 1
- ▶ 1 → B

Vigenere Cipher

0	1	2	3	4	5	6	7	8	9	10	11	12
Α	В	C	D	Ε	F	G	Н	- 1	J	K	L	М
13	14	15	16	17	18	19	20	21	22	23	24	25
N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z

Don't use a single key, use a passphrase

Secret Key TOAD \rightarrow [19, 14, 0, 3]

Plain Text PRINCESS

Encrypted IFJQVSSV

Original	Р	R		N	С	Ε	S	S
Numbers	15	17	8	13	2	4	18	18
Secret Key	Т	0	Α	D	Т	0	Α	D
Numbers	19	14	0	3	19	14	0	3
Sums	34	31	8	16	21	18	18	21
modulo 26	8	5	I	16	21	18	18	21
Encrypted	I	F	J	Q	V	S	S	V

Limits of Classical Cryptography

- Caesar and Vigenere are weak ciphers: how would one crack them?
- Improved versions are extremely strong: takes millenia to crack
- Drawback: shared secrets like single private key limits applicability - WHY?
- Modern commerce requires no a priori shared secret, must be able to develop a shared secret as part of the system
- Public Key Cryptography solves this

The RSA System

Based on the following scheme

$$(m^e)^d \equiv m \bmod n$$

- m is a message, numeric form, to be encrypted/decrypted
- n is very large number, product of two primes
- e is a public key, used for encryption, shared freely
- d is a private key, used for decryption, kept secret
- e, d are chosen as **inverses** of one another under modulo n

Notice the following

- Need for fast modular exponentiation
- ▶ Need to know how to find *d*, *e* efficiently

Encryption in RSA

 Alice wants to send Bob a message

```
m = HELP = H E L P
m = 0704 1115
block# 1 2
```

- ► Requests Bob's
 - Public Encryption Keye = 13
 - Modulo base n = 2537
- Alice computes ciphered message in two blocks

```
c = m^e \mod n

c_1 = 0704^{13} \mod 2537 = 0981

c_2 = 1115^{13} \mod 2537 = 0461
```

Security

- Alice sends Bob message 0981 0461 over an open channel like the internet
- Evil Eve intercepts the messages so has e, n, c
- Eve tries decrypting with *e* which yields gibberish
 0981¹³ mod 2537 = 1607
 0461¹³ mod 2537 = 1244
 1607 1244 = QHMS ???
- Eve cannot determine m as she lacks the decryption key d Bob has kept secret

Decryption in RSA

- ▶ Bob receives the message 0981 0461 from Alice
- ▶ Bob decrypts it using his secret decryption key d = 937

```
m = c^d \mod n = (m^e)^d \mod n

m_1 = 0981^{937} \mod 2537 = 0704

m_2 = 0461^{937} \mod 2537 = 1115

0704 \ 1115 = \text{HELP}
```

- If Bob wants to send a safe return message, requests from Alice
 - ► Alice's public encryption key
 - Alice's modulo base
- Bob encrypts with Alice's key and replies

Fast Modular Exponentiation

- Encryption and Decryption use fast modular exponentiation
- Actual keys/modulo base are not 4 digits but 100-300 digits long or 1024-4096 bits long

Aspects of RSA

Key Generation

 RSAs successful because trios e, d, n can be efficiently produced such that for all m

$$(m^e)^d \mod n = m \mod n$$

► Involves picking two large prime numbers *p*, *q*

Key Generation: Finding Encryption/Decryption Pairs

Part of RSAs success that trios e, d, n can be **efficiently** produced such that for all m: $(m^e)^d \mod n = m \mod n$ **Key Generation** involves the following steps

- Pick two large prime numbers p, q: use primality tests such as the Sieve of Eranthoses (super-linear time)
- 2. Find the least common multiple t = lcm(p-1, q-1), called **totient** (log time)
- Pick encryption key e < t such that e is relatively prime to t (no common factors, log time)

- 4. Find d so that $e \cdot d \mod t = 1$
 - d, e are modular multiplicative inverses
 - Use the Extended Euclidean Algorithm (log time)
- 5. Publish public modular base $n = p \cdot q$ and public encryption key e
- Keep private decryption key d secret

Fermat's Little Theorem used to show e, d, n have desired properties if chose by the above scheme

Strength of RSA

- Strength of RSA is based on the difficulty of **factoring** large integers: determine $n = f_1 \cdot f_2 \cdot f_3 \cdots$ with f_i prime
- During key selection, picked primes p, q, published base $n = p \cdot q$
- ▶ During key selection used secret knowledge of p, q to generate encryption/decryption pair
- Attackers only know n: may try to factor n to determine p, q but no polynomial time algorithm exists for integer factorization on deterministic CPUs
- ► Largest published cracked RSA key is 768 bits, took 1500 CPU **years** (2 years with many parallel computers)
- Practical keys/modulo base are 100-300 digits / 1024-4096 bits long making them relatively secure
- On the horizon: Shor's Algorithm factors numbers in polynomial time on non-deterministic machines like Quantum computers, may someday practically impact your Amazon orders

Take-Home

- Number theory was once thought the last bastion of truly pure mathematics
- Many interesting algorithms exist within it
- With the advent of computing and communication networks, number theory has many practical applications these days