CSCI 2011: Induction Proofs and Recursion

Chris Kauffman

Last Updated:
Thu Jul 12 13:50:15 CDT 2018

Logistics

Reading: Rosen

» Now: 5.1-55
> Next: 6.1-6.5

Assignments

» AQ06: Post Thursday
» Due Tuesday

Quiz Thursday

> Big-O Algorithm Analysis
» Number Theory and Modulo

» Encryption

» Caesar, Vigenere
» Maybe some RSA

» Basic Induction Proofs

Goals

» Induction
» Recursive Structures

» Recursive Code

Principles of Mathematical Induction
» Induction is a proof technique based on the following principle
(P(1) AVKP(k) — P(k+ 1)) — VnP(n)

» In English
1. Show that P(1) is true (base case)
2. Show that if P(k) is true for some value k, then P(k+ 1) is
also true (inductive step)
3. Conclude that P(n) is true for all positive integers n
> We will study applications induction to integers and also to
structures such as trees which arise in CS

n 1

An Old Friend: Sum of 1 to n

Recall that we proved the following relation which has applications
in algorithm analysis via a term pairing argument.
i . n(n+1)
= ———
i=1 2

Will now show this via induction instead

Proof by Mathematical Induction
Base Case

» n=1, have >} ;i=1and (Hl) =1
» So, both expressions equal 1, property holds at n = 1.

Induction Case

1. Assume for k that Z, Li= k(k2+1)
k+1)((k+1)+1
2. Show fo;rll j— %

3. Start with right side of equality and show equivalent to left

(k+1)((k+1)+1) (k+1)(k+2)
2 (k+1) k+(k+1) 2

Expand

Distribute

— Hiki) +(k+ 1) Divide

=(f‘ 11+ (k+1) Inductive Hypothesis (1)
=Ykt Def. of Summation

By Base/Inductive Cases, true for all positive integers. Bl 5

Exercise: Inductive Proof for Sums of Odds

Notice that sums first n odd integers seem to follow a pattern

1 =1 1434547 =16
143 =4 14+3+54+7+9 =25
14345 =9 143+.+(2n—1) =n?

Use a Proof by Induction to show that

n

d@i-1)=n

i=1

Clearly show both
> Base Case
» Show property holds for n =1
» Inductive Step
> Assume fact Yk, (2i— 1) = K2
> Show that S KH(2i— 1) = (k4 1)?

Answers: Inductive Proof for Sums of Odds

Base Case
» n=1 have L (2i—1)=1and 12 =1.
» So, both expressions equal 1, property holds at n = 1.

Induction Case
1. Assume fact 2K (2i—1) =
2. Show that YK (2i—1) = (k+ 1)2
3. Start with right side of equality and show equivalent to left

(k+1)? =k +2k+1 Expand
= (,.k:l(zi—1))+2k+1 IH (1)
= (XK (2i—1))+2(k+1)—1 Rearrange
(ZkH(Ql 1)) Def. of Summation

By Base/Inductive Cases, true for all positive integers. Bl

Exercise: Size of Power Set

>

>

v

Recall the power set of A, P(A) is defined to be the set of all
subsets of A

For a finite set like A= {1,2,3}

P(A) = {0,{1},{2}, {3}, {1,2}, {1,3},{2,3},{1,2,3} }}

The size of the power set seems to follow a pattern:
Al=0 [P(A)l=1 |Al=4 [P(A)| =16
Al=1 [P(A)l=2 |Al=5 [P(A)| =32
|Al=2 [|P(A) =4 N
Al=3 [P(A)l=8 |Al=N [P(A)| =2

Prove this relation with proof by induction.

Note the base case is at N = 0 this time

Hint: for A with |[A| = N, add a new element a to get
|AU a| = N+ 1, consider all subsets of A with and without a

Answers: Size of Power Set (Base Case)

Show that for finite set A, IF |A| = N THEN |P(A)| = 2N

Base Case

1. For |A] =0, A must be the empty set 0.

2. The only subset of () is itself so P(0)) = {#} which has 1
element.

3. So |P(A)| =1 and 2° = 1 so the property holds at N = 0

Answers: Size of Power Set (Inductive Case)
Show that for finite set A, IF |A| = N THEN |P(A)| = 2N

Inductive Case

1.
2.
3.

Assume fact IF |A| = k THEN |P(A)| = 2k
Show IF |A| = k+ 1 THEN |P(A)| = 2k+1
Let A= SU{a} so that |S| = k

» Sis one element smaller than A

From (3), know that P(A) = P(SU {a})

. To form P(SU {a}), use P(S): If set X C P(S) then

> XC P(SU{a})
> XU{a} CP(SU{a})

So, 2 subsets in P(A) for every 1 in P(S)

6. By 5, [P(A)| =|P(S)| - 2.
7. By IH (1), know that |P(S)| = 2*.
8. Combine (6)/(7) to get |P(A)| = 2.2 = 2k+1,

By Base/Inductive Cases, true for all positive integers. Bl

10

Stronger Induction Assumptions

» Standard induction assumes P(k) and shows P(k+ 1) in the
Inductive Step
» Strong Induction makes a stronger assumption
> Assume P(1) A P(2) A -+ A P(K)
> Show P(k+ 1)

» Comes in handy when one needs to "look back” farther

11

Fibonacci Growth and Strong Induction
» The Fibonacci Numbers are defined recursively as
fib(0) = 0, fib(1) = 1, fib(N) = fib(N — 1) + fib(N — 2)
» Show that fib(N) is O(2")
Base Cases
1. fib(0) = 0 and 2° = 1, dominated
2. fib(1) = 1 and 2! = 2, dominated
Inductive Case
1. Strong Inductive Hypothesis: Assume both fib(k) is O(2X)
and fib(k — 1) is O(2k-1)
Show fib(k+ 1) is O(2k+1)
By definition fib(k + 1) = fib(k) + fib(k — 1)
By IH (1) fib(k + 1) is then O(2k 4 2k-1)

Rearranging gets O(2k 4 2. 2k=1 — 2k=1) — Q(2k+1 _ 2k=1)
which is O(2k+1) 12

A A

Exercise: Warm-up

1. What is Mathematical Induction? What parts appear in a
proof involving induction?

2. What is the difference between Standard Induction and
Strong Induction?

3. What kind of object is particularly well-suited for Proofs by
Induction?

13

Answers: Warm-up

1. What is Mathematical Induction? What parts appear in a
proof involving induction?
» Induction is a proof technique that allows a properties be
proved for all objects of a certain kind
» Has a Base Case where the "smallest” objects are shown to
have the property
» Has an Induction Case where it is assumed that a smaller
object has the property and this leads to a slightly larger
object having the property
2. What is the difference between Standard Induction and
Strong Induction?
» Standard Induction assumes only P(k) and shows P(k + 1)
holds
» Strong Induction assumes P(1) A P(2) A P(3) A --- A P(k) and
shows P(k+ 1) holds
» Stronger because more is assumed but Standard/Strong are
actually identical
3. What kind of object is particularly well-suited for Proofs by
Induction?
» Objects with recursive definitions often have induction proofs

Exercise: Fibonacci Lower Bound

Show that for N > 3,
fib(N) > N2

. _ 14+
with o« = >

S

» Use a proof by induction, strong hypothesis
» Multiple Base Cases to support strong induction
» Inductive Step exploits looking back by 2 fib numbers

» Use the fact that

®=a+1

15

Answer: Fibonacci Lower Bound

Show for N> 3 and a = % with o2 = a + 1, that
fib(N) > oV =2

Base Case

1. N=3,fib(3)=2and a® 2 =a! =1.618..., check

2. N=4,fib(4) =3 and a*~2 = a? = 2.618.. ., check

Inductive Case

1. Strong IH: Assume facts

fib(k)

fib(k — 1)
2. Show fib(k+ 1) > a1
3. By def of fib(NV) and IH (1)
fib(k+ 1) = fib(k) + fib(k — 1)

> Oék72 +O¢k73

4. Fact: o> = a + 1
5. RHS of (3) becomes

a"_2 + O/(—3

6. So fib(k+1) >

ouml |

16

Exercise: Classes Scheduling

» A Classes Hall is open 09:00

(9am) to 17:00 (5pm) Class# Start End

» Professors have submitted 1 15 17
classes they want to 2 9 12
schedule 3 11 14

4 13 17

» Each submission has 5 14 17
start/end times (s;, €;) 6 9 10

» Classroom management 7 11 12

.. 8 12 14
wants to maximize the 9 19 15
number of classes offered 10 9 11

» Determine Max number of 11 11 13
classess that can be 12 16 17
scheduled sample data 13 14 16

14 10 14

» What algorithm works for
this? Hint: Try sorting...

Greedy Approaches to Class Scheduling

» Sort by a start or end time
» Greedy selection: earliest non-conflicting class

Sort by Start Time Sort by End Time
Class# Start End Class# Start End
6 9 10 1 6 9 10
10 9 11 10 9 11
2 9 12 2 9 12
14 10 14 2 7 11 12
7 11 12 11 11 13
11 11 13 14 10 14
3 11 14 3 11 14
8 12 14 8 12 14
9 12 15 9 12 15
4 13 17 13 14 16
13 14 16 3 4 13 17
5 14 17 5 14 17
1 15 17 1 15 17
12 16 17 4 12 16 17

4 classes scheduled 5 classes scheduled

Exercise: Greedy Algorithm for Class Scheduling

P> Previous example suggests
the following algorithm

> Analyze complexity and give
worst case Big-O runtime
» Speculate: Is this algorithm
correct?
> YES: will always schedule
the maximum # classes
> NO: Some array T will
result in fewer than
maximum classes

scheduled

» How would one prove
correctness

select_classes(TI[]

: int pair array){
T are (start,end) time pairs
sort(L) by end times # 7777
S = empty list
(prev_start, prev_end) = (-1,-1)
append (S, L[01) # 7777
for(i=1; i<length(L); i++){
(cur_start,cur_end) = T[i]
if (T[i] COMPATIBLE){ # 7777
append(S, L[il)
(prev_start,prev_end) = T[i]
}

7777

}

return S : list of scheduled classes

19

Answers: Greedy Algorithm for Class Scheduling

| 2

Fastest general purpose
sorting algorithms are
O(Nlog N)

» Quicksort, Mergesort,
Heapsort, Timsort
Appending to a list should

be O(1)

Compatibility check: one
numerical comparison,
constant time O(1)

Total complexity:

O(Nlog N)

Algorithm is correct, use a
Proof by Induction

select_classes (T[]

: int pair array){
T are (start,end) time pairs
sort(L) by end times # 0(N log N)
S = empty list
(prev_start, prev_end) = (-1,-1)
append (S, L[0]) # 0(D
for(i=0; i<length(L); i++){
(cur_start,cur_end) = T[il
if (cur_start >= prev_end){ # 0(1)
append(S, L[il) # 0(1)
(prev_start,prev_end) = T[i]
} # 0(1) work per iteration
} # 0(N) work for loop
return S : list of scheduled classes

} # N log N+ N =0(log N)

20

Correctness of select classes(): Base Cases

Prove select_classes() algorithm
» Sort classes by end time
» Select earliest compatible classes

always schedules the maximum number of classes possible.
Proved by induction on the maximum possible # classes that
can be scheduled.

Base Cases: Max Classes = 0 or 1

If there are no classes possible, the loop will not add any to the set
and returns empty.

If there is only 1 talk possible, select_classess() picks the one
which ends the earliest and adds it.

21

Correctness of select classes(): Induction Case

1.

Assume if k classess is the max possible, select_classes()
schedules k classes (works correctly)

Show if k+ 1 classes is the max possible, select_classes()
will schedule k+ 1 classes.

select_classes() sorts classes by end time:
eg<e=<---<ey

. Suppose classes with end time ¢; is the earliest ending classes

among the k+ 1 max classes possible.

Replace e; with classes with end time e; which is what
select_classes() picks first.

e1 has an earlier or equal end time to ¢; so still possible to
schedule remaining k talks.

. By IH (1), select_classes() works correctly when k classes

is the max.

By proof of Base and Induction Cases, select_classes() is
correct for all possible #'s of maximum classes. W

22

Recursively Defined Structures

» Can define a variety of
objects recursively

» Some of these are numeric
such as sets of integers

» 3isin S, if xand y are in
S x+yisin S

» Others lack numerical

description

» Binary Trees
» Logical Formulas like

(((=p) N g) = (pA (g V(=0)))
» Note the parse tree for the
above logic formula to the
right

23

Structural Induction

Structural Induction is used on these objects to prove properties
about them.

> Base Case deals with initial set of objects, shows property
holds for all of them

» Induction Case deals with recursive definition to build up
objects, shows that combining smaller objects maintains the
property

24

Exercise: Even Parentheses

Define well-formed logical Prove that well-formed logic
formulas recursively: formulas have an even number of
arentheses
Base Cases P
Base Cases
» The symbols T, F are
well-formed 1. 777
» Any single variables such as p 2,777
or q is well-formed Induction Cases

Recursive Cases

If E and F are well-formed, then the
following combinations are also
well-formed, all of which are

parenthesized
. 2. Show larger formulas with
» Negation: (—
gation: (~E) k+ 1 connective symbols
> And: (EAF) created from E, F have an even
> Or: (EVF) number of parentheses

1. Assume E, F are smaller
formulas which have k logical
connectives and have an even
number of parentheses

> Implies: (E— F) 3.7 25

Answers: Even Parentheses Base Cases

Prove that well-formed logic formulas have an even number of
parentheses

Base Cases

1. T and F have 0 parentheses, even

2. Single variables like p have 0 parentheses, even

26

Answers: Even Parentheses Induction Cases

Prove that well-formed logic formulas have an even number of
parentheses

Induction Cases

1.

Assume E, F are smaller formulas which have k logical
connectives and have an even number of parentheses

. Show larger formulas with k+ 1 connective symbols created

from E, F have an even number of parentheses

Each way of combining symbols introduces 2 parentheses
» 2 for Negation: (—E)
» 2 for And: (EAF)
» 2 for Or: (EVF)
» 2 for Implies: (E— F)

By IH (1), E, F both have even # parentheses so adding them
and 2 more keeps the total even.

By combination of Base and Induction Cases, all well-formed
formulas have an even # of parenthesis. B

27

Full Binary Trees

» Binary trees are special kinds of graphs where each vertex
(node) has at most two edges (connections) to other vertices
(nodes) and no cycles are formed

» Full Binary Trees are binary trees in which each node has a 0
or 2 children

» The set of full binary trees can be recursively defined as

follows
Basis step
Base Case ‘)
A single node ris a full Step 1
binary tree /\
Recursive Case o

If T, and Tgr are both full
binary trees, a new full
binary tree is formed by

creating a root r with left
child TL and right child TR FIGURE 4 Building Up Full Binary Trees.

28

Exercise: Height of Binary Trees

The Height of a binary tree is > What are the heights of the
defined recursively as following binary trees?
» Base Cases: The height of » Which are full binary trees?

the empty tree h(()) = 0,
height of a single node/root
h(r)=1

» Recursive Case: The
height of tree T with root r, %

(A) (B)

left child tree T, and right
child tree Tg is

h(T) = 1+max(h(T.), h(Tgr))
Give a non-recursive description
of the meaning of height
involving the root of the tree and
its leaves.

Answers: Height of Binary Trees

Non-recursive definition of
height: Number of nodes on
longest path from root to leaf.
Note: Height definitions vary

» Lecture will use height of 1
for a single node

» Textbook and others use
height of 0 for a single node

(A) Full, height 4

(C) Not
height
3

(B) Not full,
height 2

b

(D) Full,
height 2

"

30

Exercise: Number of Nodes in a Tree

Give a recursive definition for the number of nodes in a tree called

n(T)
» Base Case(s)

» Recursive Case(s)

31

Exercise: Number of Nodes in a Tree

Give a recursive definition for the number of nodes in a tree called
n(T)

Base Cases
The empty tree has n(()) = 0 nodes
(Maybe) the single node tree r has n(r) = 1 nodes

Recursive Case
If T, and Tg are binary trees, then the larger tree T with root r
and Ty, Tg as left/right child trees has number of nodes

n(T)=14+n(T.)+ n(Tg)

32

Exercise: Height of Full Binary Trees

Prove that the number of nodes n(T) is bounded by the height
h(T) for full binary trees according to the following formula.

n(T) <21 —1

Use a Proof by Induction on the structure of Full Binary Trees.

> Base Case: Single node tree is full.

» Induction Case: Full tree formed from two other full trees.

33

Answers: Height of Full Binary Trees Base Case
Prove that the number of nodes n(T) is bounded by the height

h(T) for full binary trees according to the following formula.

n(T) <21 —1

Base Case
For the single node full binary tree we have

» n(T) =1 (single node)
» h(T) =1 (one node on path from root to leaf)
Plugging into the formula gives

1<2t -1

1<2-1

1<1

34

Answers: Height of Full Binary Trees Induction Case
Prove that the number of nodes n(T) is bounded by the height hA(T) for full

binary trees according to the following formula.
n(T) <2"D —1

Induction Case

1. Assume bound holds for 3. Start with number of nodes and derive
smaller trees T; and Tg the following
> n(T.) < 2:((?))— 1 n(T) =1+ n(T.) + n(Tg) Def of n(T)
> n(Tr) <2700 —1 <1+2M0 14 2"TR 1 by IH (1)
2. Show bound holds for WT) | ~h(TR) o
larger tree T formed by =2 +2 -1 simplify
joining root r to left/right < 2 max(2"T 2h(TR)) _ 1 Def of Max
child trees T;, Tg, that — . omax(h(TL)A(TR)) _ q Def of Exp.
n(T) < oMM _q = 9. pUEmax(h(TL)A(TRD) =L _ 1 41 and -1
=2.2MD"1 4 Def of h(T)
=2/N _1 Simplify

By combination of Base and Induction Cases, node count holds. B

35

Exercise: Iterative and Recursive Fibonacci

» Recall the Fibonacci numbers
Below are two code implementations of them
Which is Recursive and which is Iterative?

>
>
» Which has better big-O runtime?
» Which is easier to prove correct?
» How would one prove correctness...)

1 int fib(int n){ 1 int fib(int n){
2 if (n==0){ 2 int fi = 0;

3 return O; 3 int £f2 = 0;

4 } 4 int f1 = 1;

5 if (n==1){ 5 for(int i=0; i < n; i++){
6 return 1; 6 f2 = f1;

7 } 7 f1 = fi;

8 elseq{ 8 fi = f1 + £2;
9 int tmpl = fib(n-1); 9 }

10 int tmp2 = fib(n-2); 10 return fi;

11 return tmpl+tmp2; 11}

12 }

13}

Answers: lterative and Recursive Fibonacci

» Which is Recursive and which is lterative?
P |eft Recursive, Right Iterative
» Which has better big-O runtime?
» Iterative much more efficient as it avoids redundant
computations
» Which is easier to prove correct - via Induction
» Recursive: easy follows the definition of Fibonacci very closely
P [terative: harder, perhaps proof by induction on iteration count

1 int fib_recursive(int n){ 1 int fib_iterative(int n){
2 if (n==0){ 2 int fi = 0;

3 return O; 3 int £f2 = 0;

4 } 4 int f1 = 1;

5 if (n==1){ 5 for(int i=0; i < n; i++){
6 return 1; 6 f2 = f1;

7 } 7 fl1 = fi;

8 else{ 8 fi = f1 + £2;

9 int tmpl = fib(n-1); 9 }

10 int tmp2 = fib(n-2); 10 return fi;

11 return tmpl+tmp2; 11}

12 }

13 }

37

Proof of Correctness for Recursive Fibonacci

Base Case

» For fib(0) returns 0 - check
» For fib(1) returns 1 - check

Induction Case

1. Assume fib(n-1) and
fib(n-2) are correct

2. Show fib(n) is correct

3. Lines 9 and 10 return correct
answers

4. Combined correctly according
to definition of £ib(n) in line
11.

1 int fib_recursive(int n){

2 if (n==0){

3 return O;

4 }

5 if (n==1){

6 return 1;

7 }

8 elsed{

9 int tmpl = fib(n-1);
10 int tmp2 = fib(n-2);
11 return tmpl+tmp2;

12 }
13}

By combination of Base and
Induction cases, implementation
works correctly. H

38

Proof of Correctness of lterative Fibonacci

Much trickier as only partly follows

definition of sequence. General

strategy is along the following lines

» Show correct for cases of
n=0, n=1

» Forn >= 2, prove at the end
of loop iteration i at line 9,
variables hold specific values

> £2is fib(i — 2)
> f1is fib(i—1)
> fiis fib(i)
» Induction on i with base case

i=2 and induction shows
updates to vars £2,f1,fi

1 int fib_iterative(int n){

2 int fi = 0O;

3 int f2 = 0;

4 int f1 1;

5 for(int i=0; i < n; i++){
6 f2 = f1;
7

8

9

0

1

f1 = fi;
fi

f1 + £2;
b

1 return fi;

1

Formal Methods is the study of
automatically proving correctness

of code. UMN has very strong
researchers in this area.

39

