
CSCI 2011: Induction Proofs and Recursion

Chris Kauffman

Last Updated:
Thu Jul 12 13:50:15 CDT 2018

1

Logistics

Reading: Rosen
▶ Now: 5.1 - 5.5
▶ Next: 6.1 - 6.5

Assignments
▶ A06: Post Thursday
▶ Due Tuesday

Quiz Thursday
▶ Big-O Algorithm Analysis
▶ Number Theory and Modulo
▶ Encryption

▶ Caesar, Vigenere
▶ Maybe some RSA

▶ Basic Induction Proofs

Goals
▶ Induction
▶ Recursive Structures
▶ Recursive Code

2

Principles of Mathematical Induction
▶ Induction is a proof technique based on the following principle

(P(1) ∧ ∀kP(k) → P(k + 1)) → ∀nP(n)
▶ In English

1. Show that P(1) is true (base case)
2. Show that if P(k) is true for some value k, then P(k + 1) is

also true (inductive step)
3. Conclude that P(n) is true for all positive integers n

▶ We will study applications induction to integers and also to
structures such as trees which arise in CS

3

An Old Friend: Sum of 1 to n

Recall that we proved the following relation which has applications
in algorithm analysis via a term pairing argument.

n∑
i=1

i = n(n + 1)
2

Will now show this via induction instead

4

Proof by Mathematical Induction
Base Case
▶ n = 1, have ∑1

i=1 i = 1 and 1(1+1)
2 = 1.

▶ So, both expressions equal 1, property holds at n = 1.

Induction Case
1. Assume for k that ∑k

i=1 i = k(k+1)
2

2. Show ∑k+1
i=1 i = (k+1)((k+1)+1)

2
3. Start with right side of equality and show equivalent to left

(k+1)((k+1)+1)
2 = (k+1)(k+2)

2 Expand
= (k+1)·k+(k+1)·2

2 Distribute
= k(k+1)

2 + (k + 1) Divide
= (

∑k
i=1 i) + (k + 1) Inductive Hypothesis (1)

=
∑k+1

i=1 i Def. of Summation
By Base/Inductive Cases, true for all positive integers. ■ 5

Exercise: Inductive Proof for Sums of Odds
Notice that sums first n odd integers seem to follow a pattern

1 = 1 1+3+5+7 = 16
1+3 = 4 1+3+5+7+9 = 25

1+3+5 = 9 1+3+…+(2n − 1) = n2

Use a Proof by Induction to show that
n∑

i=1
(2i − 1) = n2

Clearly show both
▶ Base Case

▶ Show property holds for n = 1
▶ Inductive Step

▶ Assume fact
∑k

i=1(2i − 1) = k2

▶ Show that
∑k+1

i=1 (2i − 1) = (k + 1)2

6

Answers: Inductive Proof for Sums of Odds
Base Case
▶ n = 1, have ∑1

i=1(2i − 1) = 1 and 12 = 1.
▶ So, both expressions equal 1, property holds at n = 1.

Induction Case
1. Assume fact ∑k

i=1(2i − 1) = k2

2. Show that ∑k+1
i=1 (2i − 1) = (k + 1)2

3. Start with right side of equality and show equivalent to left

(k + 1)2 = k2 + 2k + 1 Expand
= (

∑k
i=1(2i − 1)) + 2k + 1 IH (1)

= (
∑k

i=1(2i − 1)) + 2(k + 1) − 1 Rearrange
= (

∑k+1
i=1 (2i − 1)) Def. of Summation

By Base/Inductive Cases, true for all positive integers. ■
7

Exercise: Size of Power Set
▶ Recall the power set of A, P(A) is defined to be the set of all

subsets of A
▶ For a finite set like A = {1, 2, 3}

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}}

▶ The size of the power set seems to follow a pattern:
|A| = 0 |P(A)| = 1 |A| = 4 |P(A)| = 16
|A| = 1 |P(A)| = 2 |A| = 5 |P(A)| = 32
|A| = 2 |P(A)| = 4 … …
|A| = 3 |P(A)| = 8 |A| = N |P(A)| = 2N

▶ Prove this relation with proof by induction.
▶ Note the base case is at N = 0 this time
▶ Hint: for A with |A| = N, add a new element a to get

|A ∪ a| = N + 1, consider all subsets of A with and without a

8

Answers: Size of Power Set (Base Case)

Show that for finite set A, IF |A| = N THEN |P(A)| = 2N

Base Case
1. For |A| = 0, A must be the empty set ∅.
2. The only subset of ∅ is itself so P(∅) = {∅} which has 1

element.
3. So |P(A)| = 1 and 20 = 1 so the property holds at N = 0

9

Answers: Size of Power Set (Inductive Case)
Show that for finite set A, IF |A| = N THEN |P(A)| = 2N

Inductive Case
1. Assume fact IF |A| = k THEN |P(A)| = 2k

2. Show IF |A| = k + 1 THEN |P(A)| = 2k+1

3. Let A = S ∪ {a} so that |S| = k
▶ S is one element smaller than A

4. From (3), know that P(A) = P(S ∪ {a})
5. To form P(S ∪ {a}), use P(S): If set X ⊆ P(S) then

▶ X ⊆ P(S ∪ {a})
▶ X ∪ {a} ⊆ P(S ∪ {a})

So, 2 subsets in P(A) for every 1 in P(S)
6. By 5, |P(A)| = |P(S)| · 2.
7. By IH (1), know that |P(S)| = 2k.
8. Combine (6)/(7) to get |P(A)| = 2k · 2 = 2k+1.

By Base/Inductive Cases, true for all positive integers. ■
10

Stronger Induction Assumptions

▶ Standard induction assumes P(k) and shows P(k + 1) in the
Inductive Step

▶ Strong Induction makes a stronger assumption
▶ Assume P(1) ∧ P(2) ∧ · · · ∧ P(k)
▶ Show P(k + 1)

▶ Comes in handy when one needs to ”look back” farther

11

Fibonacci Growth and Strong Induction
▶ The Fibonacci Numbers are defined recursively as

fib(0) = 0, fib(1) = 1, fib(N) = fib(N − 1) + fib(N − 2)
▶ Show that fib(N) is O(2N)

Base Cases
1. fib(0) = 0 and 20 = 1, dominated
2. fib(1) = 1 and 21 = 2, dominated

Inductive Case
1. Strong Inductive Hypothesis: Assume both fib(k) is O(2k)

and fib(k − 1) is O(2k−1)
2. Show fib(k + 1) is O(2k+1)
3. By definition fib(k + 1) = fib(k) + fib(k − 1)
4. By IH (1) fib(k + 1) is then O(2k + 2k−1)
5. Rearranging gets O(2k + 2 · 2k−1 − 2k−1) = O(2k+1 − 2k−1)

which is O(2k+1) 12

Exercise: Warm-up

1. What is Mathematical Induction? What parts appear in a
proof involving induction?

2. What is the difference between Standard Induction and
Strong Induction?

3. What kind of object is particularly well-suited for Proofs by
Induction?

13

Answers: Warm-up
1. What is Mathematical Induction? What parts appear in a

proof involving induction?
▶ Induction is a proof technique that allows a properties be

proved for all objects of a certain kind
▶ Has a Base Case where the ”smallest” objects are shown to

have the property
▶ Has an Induction Case where it is assumed that a smaller

object has the property and this leads to a slightly larger
object having the property

2. What is the difference between Standard Induction and
Strong Induction?
▶ Standard Induction assumes only P(k) and shows P(k + 1)

holds
▶ Strong Induction assumes P(1) ∧ P(2) ∧ P(3) ∧ · · · ∧ P(k) and

shows P(k + 1) holds
▶ Stronger because more is assumed but Standard/Strong are

actually identical
3. What kind of object is particularly well-suited for Proofs by

Induction?
▶ Objects with recursive definitions often have induction proofs 14

Exercise: Fibonacci Lower Bound

Show that for N ≥ 3,
fib(N) > αN−2

with α = 1+
√

5
2

▶ Use a proof by induction, strong hypothesis
▶ Multiple Base Cases to support strong induction
▶ Inductive Step exploits looking back by 2 fib numbers
▶ Use the fact that

α2 = α + 1

15

Answer: Fibonacci Lower Bound
Show for N ≥ 3 and α = 1+

√
5

2 with α2 = α + 1, that
fib(N) > αN−2

Base Case
1. N = 3, fib(3) = 2 and α3−2 = α1 = 1.618 . . ., check
2. N = 4, fib(4) = 3 and α4−2 = α2 = 2.618 . . ., check

Inductive Case
1. Strong IH: Assume facts

fib(k) > αk−2

fib(k − 1) > αk−3

2. Show fib(k + 1) > αk−1

3. By def of fib(N) and IH (1)

fib(k + 1) = fib(k) + fib(k − 1)
> αk−2 + αk−3

4. Fact: α2 = α + 1
5. RHS of (3) becomes

αk−2 + αk−3 = (α + 1)αk−3

= α2 · αk−3

= αk−1

6. So fib(k + 1) > αk−1 ■

16

Exercise: Classes Scheduling
▶ A Classes Hall is open 09:00

(9am) to 17:00 (5pm)
▶ Professors have submitted

classes they want to
schedule

▶ Each submission has
start/end times (si, ei)

▶ Classroom management
wants to maximize the
number of classes offered

▶ Determine Max number of
classess that can be
scheduled sample data

▶ What algorithm works for
this? Hint: Try sorting…

Class# Start End
1 15 17
2 9 12
3 11 14
4 13 17
5 14 17
6 9 10
7 11 12
8 12 14
9 12 15

10 9 11
11 11 13
12 16 17
13 14 16
14 10 14

17

Greedy Approaches to Class Scheduling
▶ Sort by a start or end time
▶ Greedy selection: earliest non-conflicting class

Sort by Start Time
Class# Start End

6 9 10 1
10 9 11
2 9 12

14 10 14 2
7 11 12

11 11 13
3 11 14
8 12 14
9 12 15
4 13 17

13 14 16 3
5 14 17
1 15 17

12 16 17 4

4 classes scheduled

Sort by End Time
Class# Start End

6 9 10 1
10 9 11
2 9 12
7 11 12 2

11 11 13
14 10 14
3 11 14
8 12 14 3
9 12 15

13 14 16 4
4 13 17
5 14 17
1 15 17

12 16 17 5

5 classes scheduled 18

Exercise: Greedy Algorithm for Class Scheduling

▶ Previous example suggests
the following algorithm

▶ Analyze complexity and give
worst case Big-O runtime

▶ Speculate: Is this algorithm
correct?
▶ YES: will always schedule

the maximum # classes
▶ NO: Some array T will

result in fewer than
maximum classes
scheduled

▶ How would one prove
correctness

select_classes(T[] : int pair array){
T are (start,end) time pairs
sort(L) by end times # ????
S = empty list
(prev_start, prev_end) = (-1,-1)
append(S, L[0]) # ????
for(i=1; i<length(L); i++){

(cur_start,cur_end) = T[i]
if(T[i] COMPATIBLE){ # ????

append(S, L[i]) # ????
(prev_start,prev_end) = T[i]

}
}
return S : list of scheduled classes

}

19

Answers: Greedy Algorithm for Class Scheduling

▶ Fastest general purpose
sorting algorithms are
O(N log N)
▶ Quicksort, Mergesort,

Heapsort, Timsort
▶ Appending to a list should

be O(1)
▶ Compatibility check: one

numerical comparison,
constant time O(1)

▶ Total complexity:
O(N log N)

▶ Algorithm is correct, use a
Proof by Induction

select_classes(T[] : int pair array){
T are (start,end) time pairs
sort(L) by end times # O(N log N)
S = empty list
(prev_start, prev_end) = (-1,-1)
append(S, L[0]) # O(1)
for(i=0; i<length(L); i++){

(cur_start,cur_end) = T[i]
if(cur_start >= prev_end){ # O(1)

append(S, L[i]) # O(1)
(prev_start,prev_end) = T[i]

} # O(1) work per iteration
} # O(N) work for loop
return S : list of scheduled classes

} # N log N + N = O(N log N)

20

Correctness of select_classes(): Base Cases

Prove select_classes() algorithm
▶ Sort classes by end time
▶ Select earliest compatible classes

always schedules the maximum number of classes possible.
Proved by induction on the maximum possible # classes that
can be scheduled.
Base Cases: Max Classes = 0 or 1
If there are no classes possible, the loop will not add any to the set
and returns empty.
If there is only 1 talk possible, select_classess() picks the one
which ends the earliest and adds it.

21

Correctness of select_classes(): Induction Case
1. Assume if k classess is the max possible, select_classes()

schedules k classes (works correctly)
2. Show if k + 1 classes is the max possible, select_classes()

will schedule k + 1 classes.
3. select_classes() sorts classes by end time:

e1 ≤ e2 ≤ · · · ≤ eN
4. Suppose classes with end time ei is the earliest ending classes

among the k + 1 max classes possible.
5. Replace ei with classes with end time e1 which is what

select_classes() picks first.
6. e1 has an earlier or equal end time to ei so still possible to

schedule remaining k talks.
7. By IH (1), select_classes() works correctly when k classes

is the max.
By proof of Base and Induction Cases, select_classes() is
correct for all possible #’s of maximum classes. ■

22

Recursively Defined Structures

▶ Can define a variety of
objects recursively

▶ Some of these are numeric
such as sets of integers
▶ 3 is in S, if x and y are in

S, x + y is in S
▶ Others lack numerical

description
▶ Binary Trees
▶ Logical Formulas like

(((¬p) ∧ q) → (p ∧ (q ∨ (¬r))))
▶ Note the parse tree for the

above logic formula to the
right

23

Structural Induction

Structural Induction is used on these objects to prove properties
about them.
▶ Base Case deals with initial set of objects, shows property

holds for all of them
▶ Induction Case deals with recursive definition to build up

objects, shows that combining smaller objects maintains the
property

24

Exercise: Even Parentheses
Define well-formed logical
formulas recursively:
Base Cases
▶ The symbols T, F are

well-formed
▶ Any single variables such as p

or q is well-formed
Recursive Cases
If E and F are well-formed, then the
following combinations are also
well-formed, all of which are
parenthesized
▶ Negation: (¬E)
▶ And: (E ∧ F)
▶ Or: (E ∨ F)
▶ Implies: (E → F)

Prove that well-formed logic
formulas have an even number of
parentheses

Base Cases
1. ???
2. ???

Induction Cases
1. Assume E, F are smaller

formulas which have k logical
connectives and have an even
number of parentheses

2. Show larger formulas with
k + 1 connective symbols
created from E, F have an even
number of parentheses

3. ??? 25

Answers: Even Parentheses Base Cases

Prove that well-formed logic formulas have an even number of
parentheses

Base Cases
1. T and F have 0 parentheses, even
2. Single variables like p have 0 parentheses, even

26

Answers: Even Parentheses Induction Cases
Prove that well-formed logic formulas have an even number of
parentheses
Induction Cases

1. Assume E, F are smaller formulas which have k logical
connectives and have an even number of parentheses

2. Show larger formulas with k + 1 connective symbols created
from E, F have an even number of parentheses

3. Each way of combining symbols introduces 2 parentheses
▶ 2 for Negation: (¬E)
▶ 2 for And: (E ∧ F)
▶ 2 for Or: (E ∨ F)
▶ 2 for Implies: (E → F)

4. By IH (1), E, F both have even # parentheses so adding them
and 2 more keeps the total even.

By combination of Base and Induction Cases, all well-formed
formulas have an even # of parenthesis. ■

27

Full Binary Trees
▶ Binary trees are special kinds of graphs where each vertex

(node) has at most two edges (connections) to other vertices
(nodes) and no cycles are formed

▶ Full Binary Trees are binary trees in which each node has a 0
or 2 children

▶ The set of full binary trees can be recursively defined as
follows

Base Case
A single node r is a full
binary tree

Recursive Case
If TL and TR are both full
binary trees, a new full
binary tree is formed by
creating a root r with left
child TL and right child TR.

28

Exercise: Height of Binary Trees

The Height of a binary tree is
defined recursively as
▶ Base Cases: The height of

the empty tree h(∅) = 0,
height of a single node/root
h(r) = 1

▶ Recursive Case: The
height of tree T with root r,
left child tree TL and right
child tree TR is

h(T) = 1+max(h(TL), h(TR))

Give a non-recursive description
of the meaning of height
involving the root of the tree and
its leaves.

▶ What are the heights of the
following binary trees?

▶ Which are full binary trees?

(A) (B)

(C) (D)

29

Answers: Height of Binary Trees

Non-recursive definition of
height: Number of nodes on
longest path from root to leaf.
Note: Height definitions vary
▶ Lecture will use height of 1

for a single node
▶ Textbook and others use

height of 0 for a single node

(A) Full, height 4 (B) Not full,
height 2

(C) Not
height
3

(D) Full,
height 2

30

Exercise: Number of Nodes in a Tree

Give a recursive definition for the number of nodes in a tree called
n(T)
▶ Base Case(s)
▶ Recursive Case(s)

31

Exercise: Number of Nodes in a Tree

Give a recursive definition for the number of nodes in a tree called
n(T)

Base Cases
The empty tree has n(∅) = 0 nodes
(Maybe) the single node tree r has n(r) = 1 nodes

Recursive Case
If TL and TR are binary trees, then the larger tree T with root r
and TL, TR as left/right child trees has number of nodes

n(T) = 1 + n(TL) + n(TR)

32

Exercise: Height of Full Binary Trees

Prove that the number of nodes n(T) is bounded by the height
h(T) for full binary trees according to the following formula.

n(T) ≤ 2h(T) − 1

Use a Proof by Induction on the structure of Full Binary Trees.
▶ Base Case: Single node tree is full.
▶ Induction Case: Full tree formed from two other full trees.

33

Answers: Height of Full Binary Trees Base Case
Prove that the number of nodes n(T) is bounded by the height
h(T) for full binary trees according to the following formula.

n(T) ≤ 2h(T) − 1

Base Case
For the single node full binary tree we have
▶ n(T) = 1 (single node)
▶ h(T) = 1 (one node on path from root to leaf)

Plugging into the formula gives

1 ≤ 21 − 1

1 ≤ 2 − 1

1 ≤ 1

34

Answers: Height of Full Binary Trees Induction Case
Prove that the number of nodes n(T) is bounded by the height h(T) for full
binary trees according to the following formula.

n(T) ≤ 2h(T) − 1

Induction Case
1. Assume bound holds for

smaller trees TL and TR

▶ n(TL) ≤ 2h(TL) − 1
▶ n(TR) ≤ 2h(TR) − 1

2. Show bound holds for
larger tree T formed by
joining root r to left/right
child trees TL, TR, that

n(T) ≤ 2h(T) − 1

3. Start with number of nodes and derive
the following

n(T) = 1 + n(TL) + n(TR) Def of n(T)

≤ 1 + 2h(TL) − 1 + 2h(TR) − 1 by IH (1)
≤ 2h(TL) + 2h(TR) − 1 simplify
≤ 2 · max(2h(TL), 2h(TR)) − 1 Def of Max
= 2 · 2max(h(TL),h(TR)) − 1 Def of Exp.
= 2 · 2(1+max(h(TL),h(TR)))−1 − 1 +1 and -1
= 2 · 2h(T)−1 − 1 Def of h(T)

= 2h(T) − 1 Simplify

By combination of Base and Induction Cases, node count holds. ■
35

Exercise: Iterative and Recursive Fibonacci
▶ Recall the Fibonacci numbers
▶ Below are two code implementations of them
▶ Which is Recursive and which is Iterative?
▶ Which has better big-O runtime?
▶ Which is easier to prove correct?

▶ How would one prove correctness…)

1 int fib(int n){
2 if(n==0){
3 return 0;
4 }
5 if(n==1){
6 return 1;
7 }
8 else{
9 int tmp1 = fib(n-1);

10 int tmp2 = fib(n-2);
11 return tmp1+tmp2;
12 }
13 }

1 int fib(int n){
2 int fi = 0;
3 int f2 = 0;
4 int f1 = 1;
5 for(int i=0; i < n; i++){
6 f2 = f1;
7 f1 = fi;
8 fi = f1 + f2;
9 }

10 return fi;
11 }

36

Answers: Iterative and Recursive Fibonacci
▶ Which is Recursive and which is Iterative?

▶ Left Recursive, Right Iterative
▶ Which has better big-O runtime?

▶ Iterative much more efficient as it avoids redundant
computations

▶ Which is easier to prove correct - via Induction
▶ Recursive: easy follows the definition of Fibonacci very closely
▶ Iterative: harder, perhaps proof by induction on iteration count

1 int fib_recursive(int n){
2 if(n==0){
3 return 0;
4 }
5 if(n==1){
6 return 1;
7 }
8 else{
9 int tmp1 = fib(n-1);

10 int tmp2 = fib(n-2);
11 return tmp1+tmp2;
12 }
13 }

1 int fib_iterative(int n){
2 int fi = 0;
3 int f2 = 0;
4 int f1 = 1;
5 for(int i=0; i < n; i++){
6 f2 = f1;
7 f1 = fi;
8 fi = f1 + f2;
9 }

10 return fi;
11 }

37

Proof of Correctness for Recursive Fibonacci

Base Case
▶ For fib(0) returns 0 - check
▶ For fib(1) returns 1 - check

Induction Case
1. Assume fib(n-1) and

fib(n-2) are correct
2. Show fib(n) is correct
3. Lines 9 and 10 return correct

answers
4. Combined correctly according

to definition of fib(n) in line
11.

1 int fib_recursive(int n){
2 if(n==0){
3 return 0;
4 }
5 if(n==1){
6 return 1;
7 }
8 else{
9 int tmp1 = fib(n-1);

10 int tmp2 = fib(n-2);
11 return tmp1+tmp2;
12 }
13 }

By combination of Base and
Induction cases, implementation
works correctly. ■

38

Proof of Correctness of Iterative Fibonacci

Much trickier as only partly follows
definition of sequence. General
strategy is along the following lines
▶ Show correct for cases of

n=0, n=1

▶ For n >= 2, prove at the end
of loop iteration i at line 9,
variables hold specific values
▶ f2 is fib(i − 2)
▶ f1 is fib(i − 1)
▶ fi is fib(i)

▶ Induction on i with base case
i=2 and induction shows
updates to vars f2,f1,fi

1 int fib_iterative(int n){
2 int fi = 0;
3 int f2 = 0;
4 int f1 = 1;
5 for(int i=0; i < n; i++){
6 f2 = f1;
7 f1 = fi;
8 fi = f1 + f2;
9 }

10 return fi;
11 }

Formal Methods is the study of
automatically proving correctness
of code. UMN has very strong
researchers in this area.

39

