CSCI 2011: Induction Proofs and Recursion

Chris Kauffman

Last Updated: Thu Jul 12 13:50:15 CDT 2018

Logistics

Reading: Rosen

Now: 5.1 - 5.5

Next: 6.1 - 6.5

Assignments

► A06: Post Thursday

▶ Due Tuesday

Quiz Thursday

- ► Big-O Algorithm Analysis
- Number Theory and Modulo
- Encryption
 - Caesar, Vigenere
 - ► Maybe some RSA
- Basic Induction Proofs

Goals

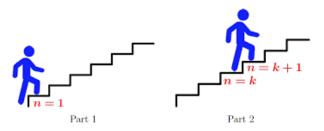
- Induction
- Recursive Structures
- Recursive Code

Principles of Mathematical Induction

▶ **Induction** is a proof technique based on the following principle

$$(P(1) \land \forall kP(k) \rightarrow P(k+1)) \rightarrow \forall nP(n)$$

- ► In English
 - 1. Show that P(1) is true (base case)
 - 2. Show that if P(k) is true for some value k, then P(k+1) is also true (**inductive step**)
 - 3. Conclude that P(n) is true for all positive integers n
- We will study applications induction to integers and also to structures such as trees which arise in CS



An Old Friend: Sum of 1 to n

Recall that we proved the following relation which has applications in algorithm analysis via a term pairing argument.

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Will now show this via induction instead

4

Proof by Mathematical Induction

Base Case

- ▶ n = 1, have $\sum_{i=1}^{1} i = 1$ and $\frac{1(1+1)}{2} = 1$.
- \triangleright So, both expressions equal 1, property holds at n=1.

Induction Case

- 1. Assume for k that $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$
- 2. Show $\sum_{i=1}^{k+1} i = \frac{(k+1)((k+1)+1)}{2}$
- 3. Start with right side of equality and show equivalent to left

$$\begin{array}{ll} \frac{(k+1)((k+1)+1)}{2} & = \frac{(k+1)(k+2)}{2} & \text{Expand} \\ & = \frac{(k+1)\cdot k + (k+1)\cdot 2}{2} & \text{Distribute} \\ & = \frac{k(k+1)}{2} + (k+1) & \text{Divide} \\ & = (\sum_{i=1}^{k} i) + (k+1) & \textbf{Inductive Hypothesis (1)} \\ & = \sum_{i=1}^{k+1} i & \text{Def. of Summation} \end{array}$$

By Base/Inductive Cases, true for all positive integers. ■

Exercise: Inductive Proof for Sums of Odds

Notice that sums first *n* odd integers seem to follow a pattern

$$\begin{array}{rcl}
1 & = 1 & 1+3+5+7 & = 16 \\
1+3 & = 4 & 1+3+5+7+9 & = 25 \\
1+3+5 & = 9 & 1+3+...+(2n-1) & = n^2
\end{array}$$

Use a Proof by Induction to show that

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

Clearly show both

- Base Case
 - \triangleright Show property holds for n=1
- Inductive Step
 - ► Assume fact $\sum_{i=1}^{k} (2i-1) = k^2$ ► Show that $\sum_{i=1}^{k+1} (2i-1) = (k+1)^2$

Answers: Inductive Proof for Sums of Odds

Base Case

- n=1, have $\sum_{i=1}^{1}(2i-1)=1$ and $1^2=1$.
- ▶ So, both expressions equal 1, property holds at n = 1.

Induction Case

- 1. Assume fact $\sum_{i=1}^{k} (2i-1) = k^2$
- 2. Show that $\sum_{i=1}^{k+1} (2i-1) = (k+1)^2$
- 3. Start with right side of equality and show equivalent to left

$$(k+1)^2 = k^2 + 2k + 1$$
 Expand
 $= (\sum_{i=1}^k (2i-1)) + 2k + 1$ IH (1)
 $= (\sum_{i=1}^k (2i-1)) + 2(k+1) - 1$ Rearrange
 $= (\sum_{i=1}^{k+1} (2i-1))$ Def. of Summation

By Base/Inductive Cases, true for all positive integers. ■

Exercise: Size of Power Set

- ▶ Recall the **power set** of A, $\mathcal{P}(A)$ is defined to be the set of all subsets of A
- For a finite set like $A = \{1, 2, 3\}$

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}\$$

▶ The size of the power set seems to follow a pattern:

$$\begin{aligned} |A| &= 0 & |\mathcal{P}(A)| &= 1 & |A| &= 4 & |\mathcal{P}(A)| &= 16 \\ |A| &= 1 & |\mathcal{P}(A)| &= 2 & |A| &= 5 & |\mathcal{P}(A)| &= 32 \\ |A| &= 2 & |\mathcal{P}(A)| &= 4 & ... & ... \\ |A| &= 3 & |\mathcal{P}(A)| &= 8 & |A| &= N & |\mathcal{P}(A)| &= 2^N \end{aligned}$$

- Prove this relation with proof by induction.
- Note the base case is at N=0 this time
- ▶ **Hint:** for A with |A| = N, add a new element a to get $|A \cup a| = N + 1$, consider all subsets of A with and without a

Answers: Size of Power Set (Base Case)

Show that for finite set A, IF |A| = N THEN $|\mathcal{P}(A)| = 2^N$ Base Case

- 1. For |A| = 0, A must be the empty set \emptyset .
- 2. The only subset of \emptyset is itself so $\mathcal{P}(\emptyset) = \{\emptyset\}$ which has 1 element.
- 3. So $|\mathcal{P}(A)|=1$ and $2^0=1$ so the property holds at N=0

Answers: Size of Power Set (Inductive Case)

Show that for finite set A, IF |A| = N THEN $|\mathcal{P}(A)| = 2^N$ Inductive Case

- 1. Assume fact IF |A| = k THEN $|\mathcal{P}(A)| = 2^k$
- 2. Show IF |A| = k + 1 THEN $|\mathcal{P}(A)| = 2^{k+1}$
- 3. Let $A = S \cup \{a\}$ so that |S| = k
 - S is one element smaller than A
- 4. From (3), know that $\mathcal{P}(A) = \mathcal{P}(S \cup \{a\})$
- 5. To form $\mathcal{P}(S \cup \{a\})$, use $\mathcal{P}(S)$: If set $X \subseteq \mathcal{P}(S)$ then
 - \triangleright $X \subset \mathcal{P}(S \cup \{a\})$
 - $X \cup \{a\} \subseteq \mathcal{P}(S \cup \{a\})$

So, 2 subsets in $\mathcal{P}(A)$ for every 1 in $\mathcal{P}(S)$

- 6. By 5, $|\mathcal{P}(A)| = |\mathcal{P}(S)| \cdot 2$.
- 7. By **IH** (1), know that $|\mathcal{P}(S)| = 2^k$.
- 8. Combine (6)/(7) to get $|\mathcal{P}(A)| = 2^k \cdot 2 = 2^{k+1}$.

By Base/Inductive Cases, true for all positive integers. ■

Stronger Induction Assumptions

- Standard induction assumes P(k) and shows P(k+1) in the Inductive Step
- Strong Induction makes a stronger assumption
 - Assume $P(1) \wedge P(2) \wedge \cdots \wedge P(k)$
 - Show P(k+1)
- Comes in handy when one needs to "look back" farther

Fibonacci Growth and Strong Induction

► The **Fibonacci Numbers** are defined recursively as

$$fib(0) = 0$$
, $fib(1) = 1$, $fib(N) = fib(N-1) + fib(N-2)$

▶ Show that fib(N) is $O(2^N)$

Base Cases

- 1. fib(0) = 0 and $2^0 = 1$, dominated
- 2. fib(1) = 1 and $2^1 = 2$, dominated

Inductive Case

- 1. Strong Inductive Hypothesis: Assume **both** fib(k) is $O(2^k)$ and fib(k-1) is $O(2^{k-1})$
- 2. Show fib(k + 1) is $O(2^{k+1})$
- 3. By definition fib(k+1) = fib(k) + fib(k-1)
- 4. By **IH** (1) fib(k+1) is then $O(2^k+2^{k-1})$
- 5. Rearranging gets $O(2^k + 2 \cdot 2^{k-1} 2^{k-1}) = O(2^{k+1} 2^{k-1})$ which is $O(2^{k+1})$

Exercise: Warm-up

- 1. What is Mathematical Induction? What parts appear in a proof involving induction?
- 2. What is the difference between Standard Induction and Strong Induction?
- 3. What kind of object is particularly well-suited for Proofs by Induction?

Answers: Warm-up

- 1. What is Mathematical Induction? What parts appear in a proof involving induction?
 - Induction is a proof technique that allows a properties be proved for all objects of a certain kind
 - Has a Base Case where the "smallest" objects are shown to have the property
 - Has an Induction Case where it is assumed that a smaller object has the property and this leads to a slightly larger object having the property
- 2. What is the difference between Standard Induction and **Strong** Induction?
 - Standard Induction assumes only P(k) and shows P(k+1) holds
 - Strong Induction assumes $P(1) \wedge P(2) \wedge P(3) \wedge \cdots \wedge P(k)$ and shows P(k+1) holds
 - Stronger because more is assumed but Standard/Strong are actually identical
- 3. What kind of object is particularly well-suited for Proofs by Induction?
 - Objects with recursive definitions often have induction proofs

Exercise: Fibonacci Lower Bound

Show that for $N \geq 3$,

$$fib(N) > \alpha^{N-2}$$

with $\alpha = \frac{1+\sqrt{5}}{2}$

- Use a proof by induction, strong hypothesis
- Multiple Base Cases to support strong induction
- ▶ Inductive Step exploits looking back by 2 fib numbers
- Use the fact that

$$\alpha^2 = \alpha + 1$$

Answer: Fibonacci Lower Bound

Show for
$$N \ge 3$$
 and $\alpha = \frac{1+\sqrt{5}}{2}$ with $\alpha^2 = \alpha + 1$, that fib(N) $> \alpha^{N-2}$

Base Case

1.
$$N = 3$$
, fib(3) = 2 and $\alpha^{3-2} = \alpha^1 = 1.618...$, check

2.
$$N = 4$$
, fib(4) = 3 and $\alpha^{4-2} = \alpha^2 = 2.618...$, check

Inductive Case

1. Strong IH: Assume facts

$$fib(k) > \alpha^{k-2}$$

 $fib(k-1) > \alpha^{k-3}$

- 2. Show fib $(k+1) > \alpha^{k-1}$
- 3. By def of fib(N) and IH (1)

$$fib(k+1) = fib(k) + fib(k-1)$$
$$> \alpha^{k-2} + \alpha^{k-3}$$

4. Fact:
$$\alpha^2 = \alpha + 1$$

5. RHS of (3) becomes

$$\alpha^{k-2} + \alpha^{k-3} = (\alpha + 1)\alpha^{k-3}$$
$$= \alpha^2 \cdot \alpha^{k-3}$$
$$= \alpha^{k-1}$$

6. So fib(
$$k+1$$
) > α^{k-1} ■

Exercise: Classes Scheduling

- A Classes Hall is open 09:00 (9am) to 17:00 (5pm)
- Professors have submitted classes they want to schedule
- ► Each submission has start/end times (s_i, e_i)
- Classroom management wants to maximize the number of classes offered
- Determine Max number of classess that can be scheduled sample data
- ► What algorithm works for this? *Hint: Try sorting...*

Class#	Start	End
1	15	17
2	9	12
3	11	14
4	13	17
5	14	17
6	9	10
7	11	12
8	12	14
9	12	15
10	9	11
11	11	13
12	16	17
13	14	16
14	10	14

Greedy Approaches to Class Scheduling

- Sort by a start or end time
- Greedy selection: earliest non-conflicting class

Sort by Start Time

-			
Class#	Start	End	
6	9	10	1
10	9	11	
2	9	12	
14	10	14	2
7	11	12	
11	11	13	
3	11	14	
8	12	14	
9	12	15	
4	13	17	
13	14	16	3
5	14	17	
1	15	17	
12	16	17	4

Sort by End Time

<i></i>			
Class#	Start	End	
6	9	10	1
10	9	11	
2	9	12	
7	11	12	2
11	11	13	
14	10	14	
3	11	14	
8	12	14	3
9	12	15	
13	14	16	4
4	13	17	
5	14	17	
1	15	17	
12	16	17	5
	6 10 2 7 11 14 3 8 9 13 4 5	6 9 10 9 2 9 7 11 11 11 14 10 3 11 8 12 9 12 13 14 4 13 5 14 1 15	6 9 10 10 9 11 2 9 12 7 11 12 11 11 13 14 10 14 3 11 14 8 12 14 9 12 15 13 14 16 4 13 17 5 14 17 1 15 17

⁴ classes scheduled

Exercise: Greedy Algorithm for Class Scheduling

- Previous example suggests the following algorithm
- Analyze complexity and give worst case Big-O runtime
- Speculate: Is this algorithm correct?
 - ➤ YES: will always schedule the maximum # classes
 - ► NO: Some array T will result in fewer than maximum classes scheduled
- How would one prove correctness

```
select_classes(T[] : int pair array){
  # T are (start, end) time pairs
  sort(L) by end times
  S = empty list
  (prev_start, prev_end) = (-1,-1)
  append(S, L[0])
                            # ????
  for(i=1; i<length(L); i++){</pre>
     (cur_start,cur_end) = T[i]
     if(T[i] COMPATIBLE){ # ????
       append(S, L[i])
                            # ????
       (prev_start,prev_end) = T[i]
     }
 }
  return S : list of scheduled classes
```

Answers: Greedy Algorithm for Class Scheduling

- Fastest general purpose sorting algorithms are O(Nlog N)
 - Quicksort, Mergesort, Heapsort, Timsort
- Appending to a list should be O(1)
- Compatibility check: one numerical comparison, constant time O(1)
- ► Total complexity: O(N log N)
- ► Algorithm **is correct**, use a Proof by Induction

```
select_classes(T[] : int pair array){
  # T are (start, end) time pairs
  sort(L) by end times # O(N log N)
  S = empty list
  (prev_start, prev_end) = (-1,-1)
  append(S, L[0])
                                 \# \Omega(1)
  for(i=0; i<length(L); i++){</pre>
     (cur_start,cur_end) = T[i]
     if(cur_start >= prev_end){ # 0(1)
       append(S, L[i])
                                 # 0(1)
       (prev_start,prev_end) = T[i]
     } # O(1) work per iteration
        # O(N) work for loop
  return S : list of scheduled classes
\} # N log N + N = O(N log N)
```

Correctness of select_classes(): Base Cases

Prove select_classes() algorithm

- ► Sort classes by end time
- Select earliest compatible classes

always schedules the maximum number of classes possible.

Proved by induction on the **maximum possible # classes** that can be scheduled.

Base Cases: Max Classes = 0 or 1

If there are no classes possible, the loop will not add any to the set and returns empty.

If there is only 1 talk possible, select_classess() picks the one which ends the earliest and adds it.

Correctness of select_classes(): Induction Case

- Assume if k classess is the max possible, select_classes() schedules k classes (works correctly)
- 2. Show if k+1 classes is the max possible, select_classes() will schedule k+1 classes.
- 3. select_classes() sorts classes by end time: $e_1 \le e_2 \le \cdots \le e_N$
- 4. Suppose classes with end time e_i is the earliest ending classes among the k+1 max classes possible.
- 5. Replace e_i with classes with end time e_1 which is what select_classes() picks first.
- 6. e_1 has an earlier or equal end time to e_i so still possible to schedule remaining k talks.
- 7. By IH (1), select_classes() works correctly when k classes is the max.

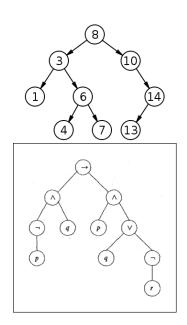
By proof of Base and Induction Cases, select_classes() is correct for all possible #'s of maximum classes. ■

Recursively Defined Structures

- Can define a variety of objects recursively
- Some of these are numeric such as sets of integers
 - \triangleright 3 is in *S*, if *x* and *y* are in *S*, x + y is in *S*
- Others lack numerical description
 - Binary Trees
 - Logical Formulas like

$$(((\neg p) \land q) \rightarrow (p \land (q \lor (\neg r))))$$

Note the parse tree for the above logic formula to the right



Structural Induction

Structural Induction is used on these objects to prove properties about them.

- Base Case deals with initial set of objects, shows property holds for all of them
- Induction Case deals with recursive definition to build up objects, shows that combining smaller objects maintains the property

Exercise: Even Parentheses

Define **well-formed logical formulas** recursively:

Base Cases

- ► The symbols T, F are well-formed
- Any single variables such as p or q is well-formed

Recursive Cases

If E and F are well-formed, then the following combinations are also well-formed, all of which are parenthesized

- ▶ Negation: $(\neg E)$
- ightharpoonup And: $(E \wedge F)$
- ightharpoonup Or: $(E \lor F)$
- ▶ Implies: $(E \rightarrow F)$

Prove that well-formed logic formulas have an even number of parentheses

Base Cases

- 1. ???
- 2. ???

Induction Cases

- Assume E, F are smaller formulas which have k logical connectives and have an even number of parentheses
- 2. Show larger formulas with k+1 connective symbols created from E,F have an even number of parentheses
- 3. ???

Answers: Even Parentheses Base Cases

Prove that well-formed logic formulas have an **even number of** parentheses

Base Cases

- 1. **T** and **F** have 0 parentheses, even
- 2. Single variables like *p* have 0 parentheses, even

Answers: Even Parentheses Induction Cases

Prove that well-formed logic formulas have an **even number of** parentheses

Induction Cases

- 1. Assume E, F are **smaller** formulas which have k logical connectives and have an even number of parentheses
- 2. Show **larger** formulas with k+1 connective symbols created from E, F have an even number of parentheses
- 3. Each way of combining symbols introduces 2 parentheses
 - \triangleright 2 for Negation: $(\neg E)$
 - ightharpoonup 2 for And: $(E \wedge F)$
 - \triangleright 2 for Or: $(E \lor F)$
 - ▶ 2 for Implies: $(E \rightarrow F)$
- 4. By IH (1), E, F both have even # parentheses so adding them and 2 more keeps the total even.

By combination of Base and Induction Cases, all well-formed formulas have an even # of parenthesis. \blacksquare

Full Binary Trees

- Binary trees are special kinds of graphs where each vertex (node) has at most two edges (connections) to other vertices (nodes) and no cycles are formed
- ► Full Binary Trees are binary trees in which each node has a 0 or 2 children
- The set of full binary trees can be recursively defined as follows

Base Case

A single node r is a full binary tree

Recursive Case

If T_L and T_R are both full binary trees, a new full binary tree is formed by creating a root r with left child T_L and right child T_R .

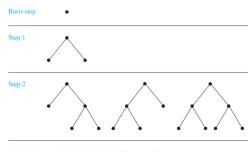


FIGURE 4 Building Up Full Binary Trees.

Exercise: Height of Binary Trees

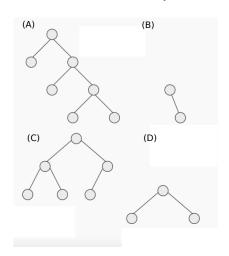
The **Height** of a binary tree is defined recursively as

- ▶ Base Cases: The height of the empty tree $h(\emptyset) = 0$, height of a single node/root h(r) = 1
- ▶ Recursive Case: The height of tree *T* with root *r*, left child tree *T_L* and right child tree *T_R* is

$$h(T) = 1 + \max(h(T_L), h(T_R))$$

Give a non-recursive description of the meaning of height involving the root of the tree and its leaves.

- What are the heights of the following binary trees?
- ► Which are full binary trees?

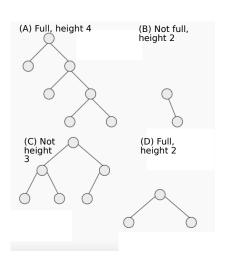


Answers: Height of Binary Trees

Non-recursive definition of height: Number of nodes on longest path from root to leaf.

Note: Height definitions vary

- ► Lecture will use height of 1 for a single node
- Textbook and others use height of 0 for a single node



Exercise: Number of Nodes in a Tree

Give a recursive definition for the number of nodes in a tree called n(T)

- ► Base Case(s)
- ► Recursive Case(s)

Exercise: Number of Nodes in a Tree

Give a recursive definition for the number of nodes in a tree called n(T)

Base Cases

The empty tree has $n(\emptyset) = 0$ nodes (Maybe) the single node tree r has n(r) = 1 nodes

Recursive Case

If T_L and T_R are binary trees, then the larger tree T with root r and T_L , T_R as left/right child trees has number of nodes

$$n(T) = 1 + n(T_L) + n(T_R)$$

Exercise: Height of Full Binary Trees

Prove that the number of nodes n(T) is bounded by the height h(T) for **full binary trees** according to the following formula.

$$n(T) \le 2^{h(T)} - 1$$

Use a **Proof by Induction** on the structure of Full Binary Trees.

- ▶ Base Case: Single node tree is full.
- ▶ **Induction Case:** Full tree formed from two other full trees.

Answers: Height of Full Binary Trees Base Case

Prove that the number of nodes n(T) is bounded by the height h(T) for **full binary trees** according to the following formula.

$$n(T) \le 2^{h(T)} - 1$$

Base Case

For the single node full binary tree we have

- ightharpoonup n(T) = 1 (single node)
- ▶ h(T) = 1 (one node on path from root to leaf)

Plugging into the formula gives

$$1 \le 2^1 - 1$$
$$1 \le 2 - 1$$
$$1 \le 1$$

Answers: Height of Full Binary Trees Induction Case

Prove that the number of nodes n(T) is bounded by the height h(T) for **full** binary trees according to the following formula.

$$n(T) \leq 2^{h(T)} - 1$$

Induction Case

- 1. Assume bound holds for smaller trees T_L and T_R
 - $n(T_L) \le 2^{h(T_L)} 1$ $n(T_R) \le 2^{h(T_R)} - 1$
- 2. Show bound holds for larger tree T formed by joining root r to left/right child trees T_L , T_R , that

$$n(T) \leq 2^{h(T)} - 1$$

3. Start with number of nodes and derive the following

$$n(T) = 1 + n(T_L) + n(T_R)$$
 Def of $n(T)$
 $\leq 1 + 2^{h(T_L)} - 1 + 2^{h(T_R)} - 1$ by IH (1)
 $\leq 2^{h(T_L)} + 2^{h(T_R)} - 1$ simplify
 $\leq 2 \cdot \max(2^{h(T_L)}, 2^{h(T_R)}) - 1$ Def of Max
 $= 2 \cdot 2^{\max(h(T_L), h(T_R))} - 1$ Def of Exp.
 $= 2 \cdot 2^{(1+\max(h(T_L), h(T_R)))-1} - 1 + 1$ and -1
 $= 2 \cdot 2^{h(T)-1} - 1$ Def of $h(T)$
 $= 2^{h(T)} - 1$ Simplify

By combination of Base and Induction Cases, node count holds.

Exercise: Iterative and Recursive Fibonacci

- Recall the Fibonacci numbers
- Below are two code implementations of them
- Which is Recursive and which is Iterative?
- ▶ Which has better big-O runtime?
- ▶ Which is easier to prove correct?
 - How would one prove correctness...)

```
int fib(int n){
                                      int fib(int n){
     if(n==0){
                                        int fi = 0:
3
                                        int f2 = 0;
        return 0;
4
     }
                                        int f1 = 1;
5
     if(n==1)
                                   5
                                        for(int i=0; i < n; i++){
6
        return 1;
                                   6
                                          f2 = f1;
                                          f1 = fi:
8
     else{
                                   8
                                          fi = f1 + f2;
        int tmp1 = fib(n-1);
10
        int tmp2 = fib(n-2);
                                 10
                                        return fi;
        return tmp1+tmp2;
                                  11 }
11
12
13
```

Answers: Iterative and Recursive Fibonacci

- ▶ Which is Recursive and which is Iterative?
 - ► Left Recursive, Right Iterative
- ▶ Which has better big-O runtime?
 - Iterative much more efficient as it avoids redundant computations
- ▶ Which is easier to prove **correct** via Induction
 - Recursive: easy follows the definition of Fibonacci very closely
 - Iterative: harder, perhaps proof by induction on iteration count

```
int fib recursive(int n){
                                               int fib iterative(int n){
      if(n==0){
                                                 int fi = 0;
3
        return 0;
                                                 int f2 = 0;
                                                 int f1 = 1;
5
      if(n==1){
                                                 for(int i=0: i < n: i++){
6
                                                   f2 = f1;
        return 1:
                                                   f1 = fi:
8
      else{
                                            8
                                                   fi = f1 + f2;
        int tmp1 = fib(n-1);
10
        int tmp2 = fib(n-2);
                                           10
                                                 return fi:
11
        return tmp1+tmp2;
                                           11
12
13
```

Proof of Correctness for Recursive Fibonacci

Base Case

- ► For fib(0) returns 0 check
- ► For fib(1) returns 1 check

Induction Case

- Assume fib(n-1) and fib(n-2) are correct
- 2. Show fib(n) is correct
- 3. Lines 9 and 10 return correct answers
- Combined correctly according to definition of fib(n) in line 11.

```
1 int fib_recursive(int n){
2    if(n==0){
3       return 0;
4    }
5    if(n==1){
6       return 1;
7    }
8    else{
9       int tmp1 = fib(n-1);
10       int tmp2 = fib(n-2);
11       return tmp1+tmp2;
12    }
13 }
```

By combination of Base and Induction cases, implementation works correctly.

Proof of Correctness of Iterative Fibonacci

Much trickier as only partly follows definition of sequence. **General strategy** is along the following lines

- Show correct for cases of n=0, n=1
- ► For n >= 2, prove at the end of loop iteration i at line 9, variables hold specific values
 - ▶ f2 is fib(i-2)
 - ▶ f1 is fib(i-1)
 - ► fi is fib(i)
- ► Induction on i with base case i=2 and induction shows updates to vars f2,f1,fi

```
1 int fib_iterative(int n){
2    int fi = 0;
3    int f2 = 0;
4    int f1 = 1;
5    for(int i=0; i < n; i++){
6       f2 = f1;
7       f1 = fi;
8       fi = f1 + f2;
9    }
10    return fi;
11 }</pre>
```

Formal Methods is the study of automatically proving correctness of code. UMN has very strong researchers in this area.