
CSCI 2011: Counting and Combinatorics

Chris Kauffman

Last Updated:
Tue Jul 17 16:08:51 CDT 2018

1

Logistics

Reading: Rosen
▶ Now: 6.1 - 6.5, 8.5
▶ Next: 7.1 - 7.4

Assignments
▶ A06: Post today
▶ Due Tuesday

Goals
▶ Induction Wrap-up (Trees)
▶ Counting/Combinatorics

2

Counting Stuff

Principles for counting combinations of objects where

Set A has m elements |A| = m
Set B has n elements |B| = n

Product Rule Choosing a pair of items from A, B yields n · m
possibilities.

Sum Rule A ∩ B = ∅ (no common elements), choosing a single
item from either set A or B yields n + m possibilities.

Difference Rule A ∩ B ̸= ∅ (some common elements) choosing a
single item from either set A or B yields
n + m − |A ∩ B| possibilities.

Most folks in college have an intuitive understanding of this
already but we’ll look at some examples and then exercise it.

3

Exercise: Counting Telephone #s
▶ Local Telephone Numbers have format XYZ-ABCD
▶ For each digit X, Y, . . . , D there are 10 choices: 0,1,2,...,9
▶ There are 6 digits in a local phone number
▶ Total local numbers: 10 · 10 · 10︸ ︷︷ ︸

7 times
= 107

▶ Original North American Telephone Numbering Plan (NATP):
digits X,Y are restricted to 2,3,...,9, 8 choices

▶ Total valid local number: 82 · 105 = 6, 400, 000
▶ Applications of the Product Rule

Long Distance Numbers
▶ Long Distance #s have the form QRS-XYZ-ABCD
▶ Under NATP, Q is 2-9, R is 0-1, S is 0-9
▶ How many valid long distance #s are there?

4

Answers: Counting Telephone #s

Long Distance Numbers
▶ Long Distance #s have the form QRS-XYZ-ABCD
▶ Under NATP, Q is 2-9, R is 0-1, S is 0-9
▶ How many valid long distance #s are there?

▶ $8· 2 · 10 · (82 · 105) = 1,024,000,000

5

Exercise: Counting Functions
▶ A function from m elements to n elements maps each of the

m to one of the n
▶ So m choices with n possibilities each
▶ Total possible functions: n · n · . . . · n︸ ︷︷ ︸

m times
= nm

▶ If the function is one-to-one, m ≤ n and once an element is
chosen, can’t pick it again

▶ Leads to (n) · (n − 1) · (n − 2) · . . . · (n − m + 1)︸ ︷︷ ︸
m times

▶ Applications of the Product Rule

One-to-One Calculations
▶ How many one-to-one functions are there from

▶ 3 elements to 7 elements
▶ 8 elements to 12 elements

▶ Derive an expression for this using the factorial notation
6

Answers: Counting Functions

One-to-One Calculations
▶ How many one-to-one functions are there from

▶ 3 elements to 7 elements: 7 · 6 · 5 = 210
▶ 8 elements to 12 elements:

12 · 11 · 10 · 9 · 8 · 7 · 6 · 5 = 19, 958, 400
▶ Derive an expression for this using the factorial notation

n!
(n − m)! = (n) · (n − 1) · . . . · (n − m + 1) · (n − m) · (n − m − 1) · . . . · 2 · 1

(n − m) · (n − m − 1) · . . . · 2 · 1
= (n) · (n − 1) · (n − 2) · . . . · (n − m + 1)︸ ︷︷ ︸

n−m times

7

Exercise: Project Choices

▶ CS course requires a
single final project from
one of three categories
with differing lists
projects

Subject Count
AI 23 projects
Robotics 15 projects
Vision 19 projects

▶ No project appears on
two lists

▶ Total possibilities:
23 + 15 + 19 = 57

▶ Application of the Sum
Rule

▶ For Extra Credit, student can do 2
projects from different lists

▶ Possibilities
▶ AI/Robotics: 23 · 15 = 345
▶ AI/Vision: 23 · 19 = 437
▶ Robotics/Vision: 23 · 19 = 285
▶ Total: 345 + 437 + 285 = 1067

More Choices
How many possibilities if 2 different
projects
▶ Both could be from the same list?
▶ Both must be from the same list?

Important: Picking projects (A,B)
same as (B,A)

8

Answers: Project Choices
How many possibilities if 2 different projects

Subject Count
AI 23 projects
Robotics 15 projects
Vision 19 projects

Both could be from the same list?
▶ 57 total projects
▶ Two choices

1. 57 possibilities
2. 56 possibilities

Two orderings of projects
▶ 57 · 56/2 = 3192/2 = 1596

Both must be from the same list?
Pick category, then pick two projects

AI 24 · 23/2 = 276
Robotics 15 · 14/2 = 105
Vision 19 · 18/2 = 171
Total (210+342+552) / 2

= 552

9

Exercise: Difference Rule Applications

▶ Startup posts 2 jobs: Web
Developer and Database
Administrator

▶ Receives applicants for both
jobs with some redundancy

Web Dev 220 Applicants
DB Admin 147 Applicants
Both 57 Applicants

▶ The Total number of
applicants to be evaluated:

220 + 147 − 57 = 310

Subject Count
AI 23 projects
Robotics 15 projects
Vision 19 projects
AI/Robotics 3 in common
AI/Vision 8 in common
Robotics/Vision 4 in common
On all 2 in common

How many possibilities if:
▶ Pick 2 unique projects, 2nd

not on first list
▶ Pick 1 project from any list

Hint: Careful with
subtracting twice

10

Answers: Difference Rule Applications
Subject Count
AI 23 projects
Robotics 15 projects
Vision 19 projects
AI/Robotics 3 in common
AI/Vision 8 in common
Robotics/Vision 4 in common
On all 2 in common

How many possibilities if:
▶ Pick 2 unique projects, 2nd not on first list

AI/Robotics 23 · (15 − 3) = 276
AI/Vision 23 · (19 − 8) = 253
Robotics/Vision 15 · (19 − 4) = 225
Total 276+253+225 = 754

▶ Pick 1 project from any list
Total possible: (23 + 15 + 19) − (3 + 8 + 4)+2 = 46
Last term re-adds overlap of all, see next slide 11

Principle of Inclusion/Exclusion (Rosen Sec 8.5)

▶ Following identity holds for sets A, B as part of the Difference
Rule: |A ∪ B| = |A| + |B| − |A ∩ B|

▶ This Case Involves 2 sets
▶ Intersection added by both |A| and |B|
▶ Subtracted to correct for this

▶ More sets requires more careful consideration of which
overlaps are added multiple times

▶ Example: Size of Union of 3 sets gives
|A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|

12

3-way intersection calculation

|A∪B∪C| = |A|+ |B|+ |C|−|A∩B|−|A∩C|−|B∩C|+ |A∩B∩C|

13

Examples of Inclusion/Exclusion

▶ This is the simplest case: 2 sets with intersection size known
▶ How many ints 1 to 1000 are divisible by 7 or 11?
▶ Apply |A ∪ B| = |A| + |B| − |A ∩ B|
▶ ⌊1000/7⌋ + ⌊1000/11⌋ − ⌊1000/(7 · 11)⌋

▶ More complex cases require care:
▶ How many ints 1 to 1000 are divisible by 7 or 11 or 13? Apply…
▶ |A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C|

⌊1000/7⌋ + ⌊1000/11⌋ + ⌊1000/13⌋
− (⌊1000/(7 · 11)⌋ + ⌊1000/(7 · 13)⌋ + ⌊1000/(11 · 13)⌋)
+ ⌊1000/(7 · 11 · 13)⌋

▶ Predict: Divisible by 7,11,13,or 17? (intersection of 4 sets)

14

Pigeonholing

The Pigeonhole Principle
Standard: If k is a positive
integer and k + 1 or more objects
are placed into k boxes, there is
at least one box containing two
or more of the objects.
Generalized: If N objects are
placed into k boxes, there is at
least one box containing ⌈N/k⌉
objects.

15

Examples of Pigeonholing

Example: Labspace Sharing
A computer lab classroom has 15 desktop computers and 17
students.
▶ If the class is fully attended, then there is at least 1 desktop

with 2 students sharing it.
But when is lab ever fully attended?

Example: Birth Months
In a group of 100 people, what is the minimum number that share
a birth month?
▶ By the pigeonhole principle, 100 people and 12 boxes

(months), so at least ⌈100/12⌉ = 9 must have the same birth
month.

16

Frenemies: An Intricate Example of Pigeonholing
In group of 6 people called A, B, C, D, E, F, each pair of people is either
friends or an enemies. Prove that the group must have at least

3 mutual friends OR 3 mutual enemies
in the group. For example, all 6 could be friends or all 6 could be
enemies. Proof:

1. Consider A’s relationship to the remaining 5 people each of which
are in one of 2 groups: friend of A or enemy of A.

2. By the pigeonhole principle, one of these two groups must have
⌈5/2⌉ = 3 people in it.

3. Without loss of generality, assume that B, C, D are friends of A
while E, F are enemies.

4. If B, C are friends, then A, B, C are 3 mutual friends
5. If B, D are friends, then A, B, D are 3 mutual friends
6. If C, D are friends, then A, C, D are 3 mutual friends
7. If none of (4-6) are true, then B, C, D are 3 mutual enemies
8. By a combination of (4-7), have shown that there must be a 3

mutual friends or 3 mutual enemies. ■ 17

Combinatorics: Combinations and Permutations

Many problems involve selection and ordering of objects
I have 7 shirts and 4 pairs of pants. How many schedules
of outfits can I plan that do not repeat the same outfit in
the next 5 days?

Common enough to have some associated terminology and
techniques
P(n, r) Permutations Number of ORDERED selection of r objects

from a collection of n objects without repetition
C(n, r) Combinations Number of UNORDERED selection of r

objects from a collection of n objects without
repetition

18

Permutations

P(n, r) = n!
(n − r)!

= (n) · (n − 1) · . . . · 2 · 1
(n − r) · (n − r − 1) · . . . · 2 · 1

= (n) · (n − 1) · (n − 2) · . . . · (n − r + 1)︸ ︷︷ ︸
n−r times

▶ This should look familiar based on our earlier discussion
▶ Orderings of r objects selected without repetition from n

Example
I have 8 shirts and 5 work days. How many different orderings of
shirts can I wear without repeating on the 5 days.
▶ 5 days to choose, 8 choices initially
▶ 4 days left and 7 choices, 3 days left and 6 choices…
▶ 8 · 7 · 6 · 5 · 4 = P(8, 5) = (8!)/(3!) = 6720 orderings

19

Combinations

C(n, r) = P(n, r)
r!

= n!
r!(n − r)!

▶ Number of subsets of size r selectable from set of size n
▶ Order doesn’t matter: Permutations discounting orderings

Example
I have 8 shirts and 5 vacation days. How many different
combinations of shirts can end up in my suitcase.
▶ 5 days to choose, 8 choices initially
▶ 4 days left and 7 choices, 3 days left and 6 choices…
▶ 8 · 7 · 6 · 5 · 4 = P(8, 5) = (8!)/(3!) = 6720 orderings
▶ 5! = 120 orderings of 5 shirts
▶ C(8, 5) = P(8, 5)/5! = 56 combinations

20

Exercise: Permutations or Combinations?

Give answers in permutation/combination form.
1. How many length 16 bit strings have exactly 12 ones?
2. How many length 5 strings can be formed from letters

ABCDEFGH?
3. How many length 16 bit strings have an odd number of 1’s?
4. How many length 5 strings that contain characters ABC in any

order can be formed from letters ABCDEFGH? Hint: two groups
ABC, and DEFGH

5. How many length 16 bit strings are there?

21

Answers: Permutations or Combinations?
1. How many length 16 bit strings have exactly 12 ones?

▶ Pick 12 indices at which to put 1’s, order of index selection
doesn’t matter

▶ C(16, 12) = 1820
2. How many length 5 strings can be formed from letters

ABCDEFGH?
▶ Order Matters
▶ P(8, 5) = 6720

3. How many length 16 bit strings have an odd number of 1’s?
▶ C(16, 1) + C(16, 3) + C(16, 5) + · · · + C(16, 5)

4. How many length 5 strings that contain characters ABC in any
order can be formed from letters ABCDEFGH? Hint: two groups
ABC, and DEFGH
▶ Sol1: Pick 2 from group 2 DEFGH, then order 5 letters:

C(5, 2) · P(5, 5)
▶ Sol2: Pick 3 indices from 5 for ABC, order ABC, pick

remaining 2 chars from 5: C(5, 3) · P(3, 3) · P(5, 2)
5. How many length 16 bit strings are there?

▶ 0 or 1 for each digit: 2 · 2 · · · · 2︸ ︷︷ ︸
16 times

= 216

22

An Important Identity on Combinations

C(n, r) = C(n, n − r)

▶ Symmetry in combination selection
▶ Proof by definition using factorial

C(n, r) = n!
r!(n − r)! = n!

(n − r)!(n − (n − r))! = C(n, n − r)

▶ Intuitive idea choose what to take OR what to leave
▶ 7 outfits, pack for a 5 day vacation
▶ Choose 5 outfits to TAKE with: C(7, 5) = 21

OR
▶ Choose 2 outfits to LEAVE home C(7, 2) = 21
▶ Same number of possibilities either way

23

Binomial Coefficients and the Binomial Theorem
▶ Notation convention:

C(n, r) ≡
(

n
r

)
▶ (n

r
)

called the Binomial Coefficients because they show up
as coefficients in binomials for different powers of leading
variable.
(x + y)4 = (x + y)(x + y)(x + y)(x + y)

= 1x4 + 4x3y1 + 6x2y2 + 4x1y3 + 1y4

=
(

4
0

)
x4 +

(
4
1

)
x3y1 +

(
4
2

)
x2y2 +

(
4
1

)
x1y3 +

(
4
0

)
y4

▶ In general, Binomial Theorem States

(x + y)n =
n∑

j=0

(
n
j

)
xn−jyj

▶ Sometimes useful in proving counting identities
24

Pascal’s Identity and Triangle
Pascal’s Identity: (

n + 1
k

)
=
(

n
k − 1

)
+
(

n
k

)

▶ Combinatorial Argument or Algebraic Manipulation can prove
this

▶ Basis for a recursive definition of Binomial coefficients AND
▶ Basis for Pascal’s Triangle, a visualization of Binomial

Coefficients in a satisfying geometric pattern
Next slide
▶ Note the nice recursive structure to Pascal’s Triangle
▶ Base cases of

(n
0
)

= 1 and
(n

n
)

= 1
▶ Tip of triangle is

(0
0
)

= 1, a base case
▶ Each row element is defined by adding two elements from the

previous row
25

Pascal’s Triangle: (a) Combinations Form (b) Numeric

26

Permutations/Combinations with Repetition

▶ Combinations/Permutations C(n, r)/P(n, r) account for no
repetition: can’t select an outfit twice

▶ Reality has many cases where this is not so

Example Cookie Shop
▶ Cookie shop has n = 4 kinds of cookies, ABCD
▶ Customer wants r = 6 cookies total
▶ Can duplicate cookies like AABBCD
▶ How many possibilities are there?

▶ If order DOES matters?
▶ Order DOESN’T matter: AABBCD ≡ ABBCDA?

27

Formulae for Perm/Comb with Repetition

Ordered Repetition
▶ Permutations, nr possibilities
▶ n = 4 kinds of cookies,

r = 6 choices
▶ 46 = 4096 possible orders

Unordered Repetition
▶ Combinations with

repetition, apply the
following formula

C(n + r − 1, r)

for n items and r choices
with repetition

▶ With n = 4 and r = 6 have

C(4 + 6 − 1, 4) = 84

28

Permutation/Combination Code

▶ Quasi-common interview questions
1. print_perm(N): Write a procedure that prints all

permutations of 1 to N.
2. print_comb(N): Write a procedure that prints all subsets of

the numbers 1 to N.
▶ Also useful for some search procedures.
▶ Surprisingly Tricky so some practice is good for you
▶ Several possibilities for these exist and are worth considering.

▶ Recursive implementations
▶ Iterative only-implementations

29

Exercise: Recursive Permutations
1 print_perm(N){
2 create array cur[] = {} # empty
3 create array rem[] = {1,2,3,...N}
4 print_perm_helper(cur,rem)
5 }
6
7 print_perm_helper(int cur[],
8 int rem[])
9 {

10 if(rem is empty){
11 print cur;
12 return;
13 }
14 for(int i=0; i<length(rem); i++){
15 int c = rem[i]
16 append c to end of cur[]
17 remove rem[i] shifting over
18 print_perm_helper(cur, rem)
19 remove cur[length(cur)-1] # c removed
20 insert c at rem[i] shifting over
21 }
22 return
23 }

▶ Note the use of
recursive helper

▶ Demonstrate how this
code works when
print_perm(3) is
called

▶ Speculate on
Computational
Complexity of the
code

30

Answers: Recursive Permutations Execution
1 print_perm(N){
2 create array cur[] = {} # empty
3 create array rem[] = {1,2,3,...N}
4 print_perm_helper(cur,rem)
5 }
6
7 print_perm_helper(int cur[],
8 int rem[])
9 {

10 if(rem is empty){
11 print cur;
12 return;
13 }
14 for(int i=0; i<length(rem); i++){
15 int c = rem[i]
16 append c to end of cur[]
17 remove rem[i] shifting over
18 print_perm_helper(cur, rem)
19 remove cur[length(cur)-1] # c removed
20 insert c at rem[i] shifting over
21 }
22 return
23 }

print_perm(3)
helper()

cur = {}
rem = {1,2,3}
i = 0

cur = {1}
rem = {2,3}
helper()

i = 0
cur = {1,2}
rem = {3}
helper()

i = 0
cur = {1,2,3}
rem = {}
helper()

print {1,2,3} ---
i = 1

cur = {1,3}
rem = {2}
helper()

i = 0
cur = {1,3,2}
rem = {}
helper()

print {1,3,2} ---
i = 1

cur = {2}
rem = {1,3}
helper()

i = 0
cur = {2,1}
rem = {3}
helper() 31

Answers: Recursive Permutations Complexity
1 print_perm(N){
2 create array cur[] = {} # empty
3 create array rem[] = {1,2,3,...N}
4 print_perm_helper(cur,rem)
5 }
6
7 print_perm_helper(int cur[],
8 int rem[])
9 {

10 if(rem is empty){
11 print cur;
12 return;
13 }
14 for(int i=0; i<length(rem); i++){
15 int c = rem[i]
16 append c to end of cur[]
17 remove rem[i] shifting over
18 print_perm_helper(cur, rem)
19 remove cur[length(cur)-1] # c removed
20 insert c at rem[i] shifting over
21 }
22 return
23 }

▶ print_perm(N)
setup is O(N) to
create arrays

▶ Base case is at worst
O(N) to print array

▶ Loop from 14-20 is
O(N) iterations

▶ Append is O(1)
▶ Insert/Remove with

shifting: O(N)
▶ Loop is at least

O(N2) BUT…
▶ Analyzing recursion is

difficult without
recurrence relations /
Master Theorem

32

Iterative Versions

▶ Part of the complexity coming from print_per_helper()
comes from moving repeatedly shifting array contents

▶ Possible to avoid this with swapping and greate care though
the code becomes much harder to reason about

▶ Book provides a ”next permutation” function which re-orders
an array of 1-N to the next permutation

▶ What is it’s complexity?
▶ How many permutations are there for N objects?
▶ Reason about complexity of printing all permutations?

33

Exercise: Next Permutation Procedure

34

Answers: Next Permutation Procedure

▶ What is the complexity next_permutation()?
▶ O(N): all loops iterate through at most N elements of the

permtuation
▶ How many permutations are there ?

▶ N! permutations of N objects
▶ Reason about complexity of printing all permutations?

▶ O(N · N!) total complexity to print all permutations

35

Combinations Code
▶ Combinations code is easier
▶ Realize: combination is a

subset of {1,2,...,N}
▶ Each element is either in or

out via 1 or 0
▶ Use a bitstring of length N

for this and iterate over all
possible bit strings

▶ Next combination is found
by adding 1 to bitstring

▶ For short bitstrings
(32,64,128), this is integer
addition

▶ For arbitrary length N
bitstring, O(N) operation

print_combs(N){
cur_bs = bitstring of N 0's
while(cur_bs < pow(2,N)){
for(i=0; i<N; i++){
if(cur_bs[i] == 1){
print i+1

}
} # O(N) iters
add 1 to cur_bs # O(N)

} # O(2^N) iters
} # O(N * 2^N)

36

