CSCI 2011: Counting and Combinatorics

Chris Kauffman

Last Updated: Tue Jul 17 16:08:51 CDT 2018

Logistics

Reading: Rosen

Now: 6.1 - 6.5, 8.5

Next: 7.1 - 7.4

Assignments

► A06: Post today

Due Tuesday

Goals

- ► Induction Wrap-up (Trees)
- Counting/Combinatorics

Counting Stuff

Principles for counting combinations of objects where

Set
$$A$$
 has m elements $|A| = m$
Set B has n elements $|B| = n$

Product Rule Choosing a pair of items from A, B yields $n \cdot m$ possibilities.

Sum Rule $A \cap B = \emptyset$ (no common elements), choosing a single item from either set A or B yields n + m possibilities.

Difference Rule $A \cap B \neq \emptyset$ (some common elements) choosing a single item from either set A or B yields $n+m-|A\cap B|$ possibilities.

Most folks in college have an intuitive understanding of this already but we'll look at some examples and then exercise it.

3

Exercise: Counting Telephone #s

- Local Telephone Numbers have format XYZ-ABCD
- For each digit X, Y, \ldots, D there are 10 choices: 0,1,2,...,9
- There are 6 digits in a local phone number
- Total local numbers: $\underbrace{10 \cdot 10 \cdot 10}_{7 \text{ times}} = 10^7$
- Original North American Telephone Numbering Plan (NATP): digits X,Y are restricted to 2,3,...,9, 8 choices
- ► Total valid local number: $8^2 \cdot 10^5 = 6,400,000$
- Applications of the Product Rule

Long Distance Numbers

- Long Distance #s have the form QRS-XYZ-ABCD
- ▶ Under NATP, Q is 2-9, R is 0-1, S is 0-9
- ▶ How many **valid** long distance #s are there?

Answers: Counting Telephone #s

Long Distance Numbers

- ► Long Distance #s have the form QRS-XYZ-ABCD
- ► Under NATP, Q is 2-9, R is 0-1, S is 0-9
- ► How many **valid** long distance #s are there?
 - $\$8 \cdot 2 \cdot 10 \cdot (8^2 \cdot 10^5) = 1,024,000,000$

Exercise: Counting Functions

- ▶ A function from m elements to n elements maps each of the m to one of the n
- ► So *m* choices with *n* possibilities each
- ► Total possible functions: $\underbrace{n \cdot n \cdot \dots \cdot n}_{m \text{ times}} = n^m$
- ▶ If the function is **one-to-one**, $m \le n$ and once an element is chosen, can't pick it again
- Leads to $(n) \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-m+1)$
- ► Applications of the **Product Rule**

One-to-One Calculations

- How many one-to-one functions are there from
 - 3 elements to 7 elements
 - ▶ 8 elements to 12 elements
- Derive an expression for this using the factorial notation

Answers: Counting Functions

One-to-One Calculations

- ► How many one-to-one functions are there from
 - ▶ 3 elements to 7 elements: $7 \cdot 6 \cdot 5 = 210$
 - ▶ 8 elements to 12 elements: $12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = 19,958,400$
- Derive an expression for this using the factorial notation

$$\frac{n!}{(n-m)!} = \frac{(n) \cdot (n-1) \cdot \ldots \cdot (n-m+1) \cdot (n-m) \cdot (n-m-1) \cdot \ldots \cdot 2 \cdot 1}{(n-m) \cdot (n-m-1) \cdot \ldots \cdot 2 \cdot 1}$$
$$= \underbrace{(n) \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-m+1)}_{n-m \text{ times}}$$

Ī

Exercise: Project Choices

 CS course requires a single final project from one of three categories with differing lists projects

Subject	Count	
Al	23 projects	
Robotics	15 projects	
Vision	19 projects	

- No project appears on two lists
- Total possibilities: 23 + 15 + 19 = 57
- Application of the Sum Rule

- ► For Extra Credit, student can do 2 projects from different lists
- Possibilities

► AI/Robotics: 23 · 15 = 345

► AI/Vision: $23 \cdot 19 = 437$

Robotics/Vision: $23 \cdot 19 = 285$

Total: 345 + 437 + 285 = 1067

More Choices

How many possibilities if 2 different projects

- ▶ Both could be from the same list?
- Both must be from the same list?

 $\begin{array}{l} \textbf{Important} \colon \mathsf{Picking} \ \mathsf{projects} \ (\mathsf{A}, \mathsf{B}) \\ \mathsf{same} \ \mathsf{as} \ (\mathsf{B}, \mathsf{A}) \end{array}$

Answers: Project Choices

How many possibilities if 2 different projects

Subject	Count	
Al	23 projects	
Robotics	15 projects	
Vision	19 projects	

Both could be from the same list?

- ▶ 57 total projects
- ▶ Two choices
 - 1. 57 possibilities
 - 2. 56 possibilities

Two orderings of projects

 \triangleright 57 · 56/2 = 3192/2 = 1596

Both **must** be from the same list?

Pick category, then pick two projects

Al
$$24 \cdot 23/2 = 276$$

Robotics $15 \cdot 14/2 = 105$
Vision $19 \cdot 18/2 = 171$
Total $(210+342+552) / 2$
 $= 552$

Exercise: Difference Rule Applications

- Startup posts 2 jobs: Web Developer and Database Administrator
- Receives applicants for both jobs with some redundancy

Web Dev	220 Applicants
DB Admin	147 Applicants
Both	57 Applicants

The Total number of applicants to be evaluated:

$$220 + 147 - 57 = 310$$

Subject	Count	
Al	23 projects	
Robotics	15 projects	
Vision	19 projects	
AI/Robotics	3 in common	
AI/Vision	8 in common	
Robotics/Vision	4 in common	
On all	2 in common	

How many possibilities if:

- Pick 2 unique projects, 2nd not on first list
- ► Pick 1 project from any list Hint: Careful with subtracting twice

Answers: Difference Rule Applications

Count	
23 projects	
15 projects	
19 projects	
3 in common	
8 in common	
4 in common	
2 in common	

How many possibilities if:

▶ Pick 2 unique projects, 2nd not on first list

AI/Robotics

$$23 \cdot (15 - 3)$$
 = 276

 AI/Vision
 $23 \cdot (19 - 8)$
 = 253

 Robotics/Vision
 $15 \cdot (19 - 4)$
 = 225

 Total
 $276+253+225$
 = 754

Pick 1 project from any list Total possible: (23 + 15 + 19) - (3 + 8 + 4) + 2 = 46Last term re-adds overlap of all, see next slide

Principle of Inclusion/Exclusion (Rosen Sec 8.5)

- ► Following identity holds for sets A, B as part of the Difference Rule: $|A \cup B| = |A| + |B| |A \cap B|$
- ► This Case Involves 2 sets
 - ▶ Intersection added by both |A| and |B|
 - Subtracted to correct for this
- More sets requires more careful consideration of which overlaps are added multiple times
- ► Example: Size of Union of 3 sets gives $|A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$

3-way intersection calculation

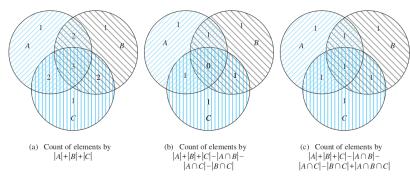


FIGURE 3 Finding a Formula for the Number of Elements in the Union of Three Sets.

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Examples of Inclusion/Exclusion

- ▶ This is the simplest case: 2 sets with intersection size known
 - ▶ How many ints 1 to 1000 are divisible by 7 or 11?
 - ▶ Apply $|A \cup B| = |A| + |B| |A \cap B|$
 - ightharpoonup $\lfloor 1000/7 \rfloor + \lfloor 1000/11 \rfloor \lfloor 1000/(7 \cdot 11) \rfloor$
- More complex cases require care:
 - How many ints 1 to 1000 are divisible by 7 or 11 or 13? Apply...
 - $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$

$$\begin{split} &\lfloor 1000/7 \rfloor + \lfloor 1000/11 \rfloor + \lfloor 1000/13 \rfloor \\ &- (\lfloor 1000/(7 \cdot 11) \rfloor + \lfloor 1000/(7 \cdot 13) \rfloor + \lfloor 1000/(11 \cdot 13) \rfloor) \\ &+ \lfloor 1000/(7 \cdot 11 \cdot 13) \rfloor \end{split}$$

▶ Predict: Divisible by 7,11,13,or 17? (intersection of 4 sets)

Pigeonholing

The Pigeonhole Principle

Standard: If k is a positive integer and k+1 or more objects are placed into k boxes, there is at least one box containing two or more of the objects.

Generalized: If N objects are placed into k boxes, there is at least one box containing $\lceil N/k \rceil$ objects.

Examples of Pigeonholing

Example: Labspace Sharing

A computer lab classroom has 15 desktop computers and 17 students.

▶ If the class is fully attended, then there is at least 1 desktop with 2 students sharing it.

But when is lab ever fully attended?

Example: Birth Months

In a group of 100 people, what is the **minimum** number that share a birth month?

▶ By the pigeonhole principle, 100 people and 12 boxes (months), so at least $\lceil 100/12 \rceil = 9$ must have the same birth month.

Frenemies: An Intricate Example of Pigeonholing

In group of 6 people called A, B, C, D, E, F, each pair of people is either friends or an enemies. **Prove** that the group must have at least

3 mutual friends OR 3 mutual enemies

in the group. For example, all 6 could be friends or all 6 could be enemies. **Proof:**

- 1. Consider A's relationship to the remaining 5 people each of which are in one of 2 groups: friend of A or enemy of A.
- 2. By the pigeonhole principle, one of these two groups must have $\lceil 5/2 \rceil = 3$ people in it.
- 3. Without loss of generality, assume that B, C, D are friends of A while E, F are enemies.
- 4. If B, C are friends, then A, B, C are 3 mutual friends
- 5. If B, D are friends, then A, B, D are 3 mutual friends
- 6. If C, D are friends, then A, C, D are 3 mutual friends
- 7. If none of (4-6) are true, then B, C, D are 3 mutual enemies
- 8. By a combination of (4-7), have shown that there must be a 3 mutual friends or 3 mutual enemies. ■

Combinatorics: Combinations and Permutations

Many problems involve selection and ordering of objects

I have 7 shirts and 4 pairs of pants. How many schedules of outfits can I plan that do not repeat the same outfit in the next 5 days?

Common enough to have some associated terminology and techniques

- P(n, r) Permutations Number of **ORDERED** selection of r objects from a collection of n objects without repetition
- C(n, r) Combinations Number of **UNORDERED** selection of r objects from a collection of n objects without repetition

Permutations

$$P(n,r) = \frac{n!}{(n-r)!}$$

$$= \frac{(n) \cdot (n-1) \cdot \dots \cdot 2 \cdot 1}{(n-r) \cdot (n-r-1) \cdot \dots \cdot 2 \cdot 1}$$

$$= \underbrace{(n) \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1)}_{n-r \text{ times}}$$

- This should look familiar based on our earlier discussion
- Orderings of r objects selected without repetition from n

Example

I have 8 shirts and 5 work days. How many different orderings of shirts can I wear without repeating on the 5 days.

- 5 days to choose, 8 choices initially
- 4 days left and 7 choices, 3 days left and 6 choices...
- \triangleright 8 · 7 · 6 · 5 · 4 = P(8,5) = (8!)/(3!) = 6720 orderings

Combinations

$$C(n,r) = \frac{P(n,r)}{r!}$$
$$= \frac{n!}{r!(n-r)!}$$

- Number of subsets of size r selectable from set of size n
- Order doesn't matter: Permutations discounting orderings

Example

I have 8 shirts and 5 vacation days. How many different combinations of shirts can end up in my suitcase.

- 5 days to choose, 8 choices initially
- 4 days left and 7 choices, 3 days left and 6 choices...
- \triangleright 8 · 7 · 6 · 5 · 4 = P(8,5) = (8!)/(3!) = 6720 orderings
- ightharpoonup 5! = 120 orderings of 5 shirts
- C(8,5) = P(8,5)/5! = 56 combinations

Exercise: Permutations or Combinations?

Give answers in permutation/combination form.

- 1. How many length 16 bit strings have exactly 12 ones?
- 2. How many length 5 strings can be formed from letters ABCDEFGH?
- 3. How many length 16 bit strings have an odd number of 1's?
- 4. How many length 5 strings that contain characters ABC in any order can be formed from letters ABCDEFGH? Hint: two groups ABC, and DEFGH
- 5. How many length 16 bit strings are there?

Answers: Permutations or Combinations?

- 1. How many length 16 bit strings have exactly 12 ones?
 - Pick 12 indices at which to put 1's, order of index selection doesn't matter
 - C(16, 12) = 1820
- 2. How many length 5 strings can be formed from letters ABCDEFGH?
 - Order Matters
 - P(8,5) = 6720
- 3. How many length 16 bit strings have an odd number of 1's?
 - $C(16,1) + C(16,3) + C(16,5) + \cdots + C(16,5)$
- 4. How many length 5 strings that contain characters ABC in any order can be formed from letters ABCDEFGH? *Hint: two groups ABC, and DEFGH*
 - Sol1: Pick 2 from group 2 DEFGH, then order 5 letters: $C(5,2) \cdot P(5,5)$
 - Sol2: Pick 3 indices from 5 for ABC, order ABC, pick remaining 2 chars from 5: $C(5,3) \cdot P(3,3) \cdot P(5,2)$
- 5. How many length 16 bit strings are there?
 - ▶ 0 or 1 for each digit: $2 \cdot 2 \cdot \cdots \cdot 2 = 2^{16}$

An Important Identity on Combinations

$$C(n,r)=C(n,n-r)$$

- Symmetry in combination selection
- Proof by definition using factorial

$$C(n,r) = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!(n-(n-r))!} = C(n,n-r)$$

- Intuitive idea choose what to take OR what to leave
 - ▶ 7 outfits, pack for a 5 day vacation
 - Choose 5 outfits to TAKE with: C(7,5) = 21 OR
 - ▶ Choose 2 outfits to LEAVE home C(7,2) = 21
 - Same number of possibilities either way

Binomial Coefficients and the Binomial Theorem

Notation convention:

$$C(n,r)\equiv \binom{n}{r}$$

 $\binom{n}{r}$ called the **Binomial Coefficients** because they show up as coefficients in binomials for different powers of leading variable.

$$(x+y)^4 = (x+y)(x+y)(x+y)(x+y)$$

$$= 1x^4 + 4x^3y^1 + 6x^2y^2 + 4x^1y^3 + 1y^4$$

$$= {4 \choose 0}x^4 + {4 \choose 1}x^3y^1 + {4 \choose 2}x^2y^2 + {4 \choose 1}x^1y^3 + {4 \choose 0}y^4$$

▶ In general, **Binomial Theorem** States

$$(x+y)^n = \sum_{i=0}^n \binom{n}{j} x^{n-j} y^i$$

Sometimes useful in proving counting identities

Pascal's Identity and Triangle

Pascal's Identity:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

- Combinatorial Argument or Algebraic Manipulation can prove this
- Basis for a recursive definition of Binomial coefficients AND
- Basis for Pascal's Triangle, a visualization of Binomial Coefficients in a satisfying geometric pattern

Next slide

- ▶ Note the nice recursive structure to Pascal's Triangle
- ▶ Base cases of $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$
- ▶ Tip of triangle is $\binom{0}{0} = 1$, a base case
- Each row element is defined by adding two elements from the previous row

Pascal's Triangle: (a) Combinations Form (b) Numeric

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
By Pascal's identity: 1 2 1
$$\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 4 \end{pmatrix} + \begin{pmatrix} 6 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$
1 3 3 1
$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
1 4 6 4 1
$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$
1 5 10 10 5 1
$$\begin{pmatrix} 6 \\ 0 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$
1 6 15 20 15 6 1
$$\begin{pmatrix} 7 \\ 0 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix}$$
1 7 21 35 35 21 7 1
$$\begin{pmatrix} 8 \\ 0 \end{pmatrix} \begin{pmatrix} 8 \\ 1 \end{pmatrix} \begin{pmatrix} 8 \\ 2 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix}$$
1 8 28 56 70 56 28 8 1
$$\dots$$
(a) (b)

Permutations/Combinations with Repetition

- ► Combinations/Permutations C(n, r)/P(n, r) account for **no repetition**: can't select an outfit twice
- Reality has many cases where this is not so

Example Cookie Shop

- ▶ Cookie shop has n = 4 kinds of cookies, ABCD
- ightharpoonup Customer wants r = 6 cookies total
- Can duplicate cookies like AABBCD
- How many possibilities are there?
 - If order DOES matters?
 - ▶ Order DOESN'T matter: AABBCD ≡ ABBCDA?

Formulae for Perm/Comb with Repetition

Ordered Repetition

- \triangleright Permutations, n^r possibilities
- n = 4 kinds of cookies, r = 6 choices
- $ightharpoonup 4^6 = 4096$ possible orders

TABLE 1 Combinations and Permutations With and Without Repetition.		
Туре	Repetition Allowed?	Formula
r-permutations	No	$\frac{n!}{(n-r)!}$
r-combinations	No	$\frac{n!}{r!\;(n-r)!}$
r-permutations	Yes	n^r
r-combinations	Yes	$\frac{(n+r-1)!}{r!(n-1)!}$

Unordered Repetition

 Combinations with repetition, apply the following formula

$$C(n+r-1,r)$$

for *n* items and *r* choices with repetition

ightharpoonup With n=4 and r=6 have

$$C(4+6-1,4)=84$$

Permutation/Combination Code

- Quasi-common interview questions
 - print_perm(N): Write a procedure that prints all permutations of 1 to N.
 - print_comb(N): Write a procedure that prints all subsets of the numbers 1 to N.
- Also useful for some search procedures.
- Surprisingly Tricky so some practice is good for you
- Several possibilities for these exist and are worth considering.
 - Recursive implementations
 - Iterative only-implementations

Exercise: Recursive Permutations

```
print_perm(N){
      create array cur[] = {} # empty
3
      create array rem[] = \{1,2,3,\ldots\mathbb{N}\}
4
      print_perm_helper(cur,rem)
5
6
    print_perm_helper(int cur[],
8
                       int rem[])
9
10
      if(rem is empty){
11
        print cur;
12
        return:
13
      for(int i=0; i<length(rem); i++){</pre>
14
15
        int c = rem[i]
        append c to end of cur[]
16
17
        remove rem[i] shifting over
18
        print_perm_helper(cur, rem)
19
        remove cur[length(cur)-1] # c removed
20
        insert c at rem[i] shifting over
21
22
      return
23
```

- Note the use of recursive helper
- Demonstrate how this code works when print_perm(3) is called
- Speculate on Computational Complexity of the code

Answers: Recursive Permutations Execution

```
print_perm(3)
                                                           helper()
    print_perm(N){
                                                             cur = \{\}
       create array cur[] = {} # empty
                                                             rem = \{1,2,3\}
 3
       create array rem[] = \{1,2,3,\ldots\mathbb{N}\}
                                                               cur = \{1\}
       print_perm_helper(cur,rem)
 4
                                                              rem = \{2,3\}
 5
                                                              helper()
                                                                i = 0
 6
                                                                  cur = \{1,2\}
    print_perm_helper(int cur[],
                                                                  rem = \{3\}
                                                                  helper()
 8
                           int rem[])
                                                                    i = 0
 9
    {
                                                                      cur = \{1, 2, 3\}
10
       if(rem is empty){
                                                                      rem = {}
                                                                      helper()
11
         print cur;
                                                                        print {1,2,3} ---
12
         return:
13
                                                                  cur = \{1,3\}
                                                                  rem = \{2\}
       for(int i=0; i<length(rem); i++){</pre>
14
                                                                  helper()
15
         int c = rem[i]
                                                                     i = 0
16
         append c to end of cur[]
                                                                      cur = \{1,3,2\}
                                                                      rem = {}
17
         remove rem[i] shifting over
                                                                      helper()
         print_perm_helper(cur, rem)
18
                                                                        print {1,3,2} ---
19
         remove cur[length(cur)-1] # c removed
                                                              i = 1
                                                               cur = \{2\}
20
         insert c at rem[i] shifting over
                                                               rem = \{1,3\}
21
       }
                                                               helper()
22
       return
                                                                 i = 0
                                                                   cur = \{2,1\}
23
                                                                   rem = {3}
                                                                   helper()
```

Answers: Recursive Permutations Complexity

```
print_perm(N){
      create array cur[] = {} # empty
      create array rem[] = \{1,2,3,\ldots\mathbb{N}\}
4
      print_perm_helper(cur,rem)
5
6
    print perm helper(int cur[],
8
                        int rem[])
9
10
      if(rem is empty){
        print cur:
11
12
        return;
13
      for(int i=0; i<length(rem); i++){</pre>
14
15
        int c = rem[i]
16
        append c to end of cur[]
17
        remove rem[i] shifting over
18
        print_perm_helper(cur, rem)
        remove cur[length(cur)-1]
19
20
        insert c at rem[i] shifting over
21
22
      return
23
```

- print_perm(N)
 setup is O(N) to
 create arrays
- Base case is at worst O(N) to print array
- ► Loop from 14-20 is O(N) iterations
- ightharpoonup Append is O(1)
- ► Insert/Remove with shifting: *O*(*N*)
- Loop is at least $O(N^2)$ BUT...
- Analyzing recursion is difficult without recurrence relations / Master Theorem

Iterative Versions

- Part of the complexity coming from print_per_helper() comes from moving repeatedly shifting array contents
- Possible to avoid this with swapping and greate care though the code becomes much harder to reason about
- ▶ Book provides a "next permutation" function which re-orders an array of 1-N to the next permutation
- What is it's complexity?
- ► How many permutations are there for *N* objects?
- Reason about complexity of printing all permutations?

Exercise: Next Permutation Procedure

```
procedure next permutation (a_1a_2 \dots a_n): permutation of
         \{1, 2, ..., n\} not equal to n \ n-1 \ ... \ 2 \ 1
i := n - 1
while a_i > a_{i+1}
  i := i - 1
{ j is the largest subscript with a_i < a_{i+1}}
k := n
while a_i > a_k
  k := k - 1
\{a_k \text{ is the smallest integer greater than } a_i \text{ to the right of } a_i\}
interchange a_i and a_k
r := n
s := i + 1
while r > s
   interchange a_r and a_s
  r := r - 1
   s := s + 1
{this puts the tail end of the permutation after the jth position in increasing order}
\{a_1a_2 \dots a_n \text{ is now the next permutation}\}
```

Answers: Next Permutation Procedure

- What is the complexity next_permutation()?
 - \triangleright O(N): all loops iterate through at most N elements of the permtuation
- ▶ How many permutations are there ?
 - N! permutations of N objects
- Reason about complexity of printing all permutations?
 - \triangleright $O(N \cdot N!)$ total complexity to print all permutations

Combinations Code

- Combinations code is easier
- Realize: combination is a subset of {1,2,...,N}
- Each element is either in or out via 1 or 0
- Use a bitstring of length N for this and iterate over all possible bit strings
- Next combination is found by adding 1 to bitstring
- ► For short bitstrings (32,64,128), this is integer addition
- For arbitrary length N bitstring, O(N) operation

```
print_combs(N){
  cur_bs = bitstring of N 0's
  while(cur_bs < pow(2,N)){
    for(i=0; i<N; i++){
      if(cur_bs[i] == 1){
        print i+1
      }
    } # O(N) iters
  add 1 to cur_bs # O(N)
} # 0(2^N) iters
}</pre>
```