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Logistics

Reading: Rosen

» Now: 6.1 - 6.5, 8.5
> Next: 7.1-7.4 Goals
» Induction Wrap-up (Trees)

Assignments » Counting/Combinatorics

» A06: Post today
» Due Tuesday



Counting Stuff

Principles for counting combinations of objects where

Set A has m elements |A|=m
Set B has n elements  |B| =n

Product Rule Choosing a pair of items from A, B yields n- m
possibilities.
Sum Rule AN B = (no common elements), choosing a single
item from either set A or B yields n+ m possibilities.
Difference Rule AN B # () (some common elements) choosing a
single item from either set A or B yields
n+ m— |AN BJ possibilities.

Most folks in college have an intuitive understanding of this
already but we'll look at some examples and then exercise it.



Exercise: Counting Telephone #s

» Local Telephone Numbers have format XYZ-ABCD

» For each digit X, Y,..., D there are 10 choices: 0,1,2,...,9
» There are 6 digits in a local phone number

> Total local numbers: 10-10 - 10 = 107

7 times
» Original North American Telephone Numbering Plan (NATP):
digits X,Y are restricted to 2,3,...,9, 8 choices

» Total valid local number: 82-10° = 6,400, 000
» Applications of the Product Rule

Long Distance Numbers

» Long Distance #s have the form QRS-XYZ-ABCD
» Under NATP, Q is 2-9, R is 0-1, S is 0-9
» How many valid long distance #s are there?



Answers: Counting Telephone #s

Long Distance Numbers

» Long Distance #s have the form QRS-XYZ-ABCD
» Under NATP, Q is 2-9, R is 0-1, S is 0-9
» How many valid long distance #s are there?

> $8-2-10- (8% - 10%) = 1,024,000,000



Exercise: Counting Functions

>

>
>

>

>

A function from m elements to n elements maps each of the
m to one of the n
So m choices with n possibilities each
Total possible functions: n-n-...-n=n"
m times

If the function is one-to-one, m < n and once an element is
chosen, can’t pick it again
Leadsto (n)-(n—1)-(n—2)-...-(n—m+1)

m times

Applications of the Product Rule

One-to-One Calculations

| 2

| 4

How many one-to-one functions are there from

> 3 elements to 7 elements
> 8 elements to 12 elements

Derive an expression for this using the factorial notation



Answers: Counting Functions

One-to-One Calculations

» How many one-to-one functions are there from

> 3 elements to 7 elements: 7-6-5 =210
> 8 elements to 12 elements:
12-11-10-9-8-7-6-5= 19,958,400

» Derive an expression for this using the factorial notation

n! (m-(n=1)-...-(n—=m+1)-(n—=m)-(n—m—=1)-...-

2.

1

(n—m)! (n—m)-(n—m-1)-...-2-1
=(m)-(n=1)-(n=2)-...-(n—m+1)

n—m times




Exercise: Project Choices

» CS course requires a » For Extra Credit, student can do 2
single final project from projects from different lists
one of three categories » Possibilities
with differing lists > Al/Robotics: 2315 = 345
projects > Al/Vision: 2319 = 437
Subject  Count > Robotics/Vision: 2319 = 285

> : _
Al 23 projects Total: 345 + 437 + 285 = 1067

Robotics 15 projects

o ) More Choices
Vision 19 projects

How many possibilities if 2 different
projects

» Both could be from the same list?

> No project appears on
two lists

» Total possibilities:
23+15+19=57

» Application of the Sum
Rule

» Both must be from the same list?

Important: Picking projects (A,B)
same as (B,A)



Answers: Project Choices

How many possibilities if 2 different projects

Subject  Count

Al 23 projects
Robotics 15 projects
Vision 19 projects

Both could be from the same list? Both must be from the same list?

> 57 total projects Pick category, then pick two projects

» Two choices Al 24.23/2 =276

1. 57 possibilities Robotics 15-14/2 = 105

2. 56 possibilities Vision 19-18/2 =171
Two orderings of projects Total (210+-342+552) / 2

> 57-56/2 = 3192/2 = 1596 = 552



Exercise: Difference Rule Applications

» Startup posts 2 jobs: Web
Developer and Database
Administrator

» Receives applicants for both
jobs with some redundancy

Web Dev 220 Applicants
DB Admin 147 Applicants
Both 57 Applicants

Subject Count

Al 23 projects
Robotics 15 projects
Vision 19 projects
Al /Robotics 3 in common
Al /Vision 8 in common
Robotics/Vision 4 in common
On all 2 in common

» The Total number of
applicants to be evaluated:

220 + 147 — 57 =310

How many possibilities if:

P> Pick 2 unique projects, 2nd
not on first list

> Pick 1 project from any list
Hint: Careful with

subtracting twice
10



Answers: Difference Rule Applications

Subject Count

Al 23 projects
Robotics 15 projects
Vision 19 projects
Al /Robotics 3 in common
Al /Vision 8 in common
Robotics/Vision 4 in common
On all 2 in common

How many possibilities if:
» Pick 2 unique projects, 2nd not on first list

Al /Robotics 23-(15-13) = 276
Al /Vision 23-(19-138) = 253
Robotics/Vision 15 (19 — 4) =225
Total 27642534225 =754

> Pick 1 project from any list
Total possible: (23 +15+19) — (3+8+4)+2 =46
Last term re-adds overlap of all, see next slide
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Principle of Inclusion/Exclusion (Rosen Sec 8.5)

» Following identity holds for sets A, B as part of the Difference
Rule: [AUB| = |A|+|B| — |AN B|
» This Case Involves 2 sets
» Intersection added by both |A| and |B]
» Subtracted to correct for this
> More sets requires more careful consideration of which
overlaps are added multiple times

» Example: Size of Union of 3 sets gives
Al + B+ |C|—|AnB|—|AnCl—|BNC+|AnBN(
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3-way intersection calculation

(a) Count of elements by (b) Count of elements by (c) Count of elements by
|Al+18]+|c| |Al+[B|+|c|-|anB|- |4]+|B|+[c|-[an Bl
l[Ancl-Bnc] lancl|-lsncl+lanBnc|

FIGURE 3 Finding a Formula for the Number of Elements in the Union of Three Sets.

|[AUBUC| = |A|+|B|+|C —|AnB|—|ANC|—|BNC|+|ANnBN (|
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Examples of Inclusion/Exclusion

» This is the simplest case: 2 sets with intersection size known
» How many ints 1 to 1000 are divisible by 7 or 117
> Apply [AUB| = |A[ +[B| — |AN B
> |1000/7] + [1000/11] — [1000/(7 - 11)]

» More complex cases require care:

» How many ints 1 to 1000 are divisible by 7 or 11 or 137 Apply..
> |AUBUC| = |A|+|B|+|Cl—|ANB|—|ANC|—|BN |+ |ANBN (|

11000/7] -+ [1000/11 + |1000/13|
— (|1000/(7 - 11)] + [1000/(7 - 13)| + | 1000/(11 - 13) )
+1000/(7 - 11 - 13) ]

» Predict: Divisible by 7,11,13,0r 177 (intersection of 4 sets)
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Pigeonholing

The Pigeonhole Principle

Standard: If k is a positive
integer and k+ 1 or more objects
are placed into k boxes, there is
at least one box containing two
or more of the objects.
Generalized: If N objects are
placed into k boxes, there is at
least one box containing [N/k]
objects.

15



Examples of Pigeonholing

Example: Labspace Sharing
A computer lab classroom has 15 desktop computers and 17
students.
» If the class is fully attended, then there is at least 1 desktop
with 2 students sharing it.

But when is lab ever fully attended?

Example: Birth Months
In a group of 100 people, what is the minimum number that share
a birth month?

» By the pigeonhole principle, 100 people and 12 boxes
(months), so at least [100/12] = 9 must have the same birth
month.

16



Frenemies: An Intricate Example of Pigeonholing
In group of 6 people called A, B, C, D, E, F, each pair of people is either
friends or an enemies. Prove that the group must have at least

3 mutual friends OR 3 mutual enemies

in the group. For example, all 6 could be friends or all 6 could be
enemies. Proof:

1.

© N o o &

Consider A’s relationship to the remaining 5 people each of which
are in one of 2 groups: friend of A or enemy of A.

By the pigeonhole principle, one of these two groups must have
[5/2] = 3 people in it.

Without loss of generality, assume that B, C, D are friends of A
while E, F are enemies.

If B, C are friends, then A, B, C are 3 mutual friends
If B, D are friends, then A, B, D are 3 mutual friends
If C,D are friends, then A, C, D are 3 mutual friends
If none of (4-6) are true, then B, C, D are 3 mutual enemies

By a combination of (4-7), have shown that there must be a 3
mutual friends or 3 mutual enemies. B

17



Combinatorics: Combinations and Permutations

Many problems involve selection and ordering of objects

| have 7 shirts and 4 pairs of pants. How many schedules
of outfits can | plan that do not repeat the same outfit in
the next 5 days?

Common enough to have some associated terminology and
techniques

P(n, r) Permutations Number of ORDERED selection of r objects
from a collection of n objects without repetition

C(n, r) Combinations Number of UNORDERED selection of r
objects from a collection of n objects without
repetition

18



Permutations

n—r times
» This should look familiar based on our earlier discussion
» Orderings of r objects selected without repetition from n
Example

| have 8 shirts and 5 work days. How many different orderings of
shirts can | wear without repeating on the 5 days.

» 5 days to choose, 8 choices initially
» 4 days left and 7 choices, 3 days left and 6 choices...
» 8-7-6-5-4=P(8,5) = (8!)/(3!) = 6720 orderings

19



Combinations

P(n,r)
rl
n!
- A(n—r)!

C(n,r)=

» Number of subsets of size r selectable from set of size n
» Order doesn't matter: Permutations discounting orderings

Example

| have 8 shirts and 5 vacation days. How many different

combinations of shirts can end up in my suitcase.
» 5 days to choose, 8 choices initially
» 4 days left and 7 choices, 3 days left and 6 choices...
» 8-7-6-5-4=P(8,5) = (8!)/(3!) = 6720 orderings
» 5! = 120 orderings of 5 shirts
» ((8,5) = P(8,5)/5! = 56 combinations

20



Exercise: Permutations or Combinations?

Give answers in permutation/combination form.

1. How many length 16 bit strings have exactly 12 ones?

2. How many length 5 strings can be formed from letters
ABCDEFGH?

3. How many length 16 bit strings have an odd number of 1's?

4. How many length 5 strings that contain characters ABC in any
order can be formed from letters ABCDEFGH? Hint: two groups
ABC, and DEFGH

5. How many length 16 bit strings are there?

21



Answers: Permutations or Combinations?

1. How many length 16 bit strings have exactly 12 ones?

» Pick 12 indices at which to put 1's, order of index selection
doesn’t matter
> ((16,12) = 1820
2. How many length 5 strings can be formed from letters
ABCDEFGH?
» Order Matters
> P(8,5) = 6720
3. How many length 16 bit strings have an odd number of 1's?
> ((16,1) + C(16,3) + C(16,5) + - - - + C(16,5)

4. How many length 5 strings that contain characters ABC in any
order can be formed from letters ABCDEFGH? Hint: two groups
ABC, and DEFGH

» Soll: Pick 2 from group 2 DEFGH, then order 5 letters:
C(5,2) - P(5,5)
» Sol2: Pick 3 indices from 5 for ABC, order ABC, pick
remaining 2 chars from 5: ((5,3) - P(3,3) - P(5,2)
5. How many length 16 bit strings are there?
» 0 or 1 for each digit: 2-2----2 =216
—_—

16 times
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An Important Identity on Combinations

C(n,r)=C(n,n—1r)

» Symmetry in combination selection

» Proof by definition using factorial

n! n!

C(n,r)= = = C(n,n—

A(n—r)! (n—nl(n—(n—1))!

» Intuitive idea choose what to take OR what to leave

» 7 outfits, pack for a 5 day vacation

» Choose 5 outfits to TAKE with: ((7,5) =21
OR

» Choose 2 outfits to LEAVE home ((7,2) = 21

» Same number of possibilities either way

)

23



Binomial Coefficients and the Binomial Theorem

Cn,r) = <I:>

> () called the Binomial Coefficients because they show up
as coefficients in binomials for different powers of leading
variable.

(x+y)* = (x+ Y (x+ Y (x+ Y (x+y)
= 13X+ 43y + 65202 +axty? + 14

» Notation convention:

= (o) (1)or ()22 (e (o)

» In general, Binomial Theorem States
n n o
(x+9"=> ( | XY
=0 \J

» Sometimes useful in proving counting identities

24



Pascal’s Identity and Triangle

Pascal’s ldentity:
n+1) n L n
k \k-1 k

» Combinatorial Argument or Algebraic Manipulation can prove
this

» Basis for a recursive definition of Binomial coefficients AND

» Basis for Pascal’s Triangle, a visualization of Binomial
Coefficients in a satisfying geometric pattern

Next slide

» Note the nice recursive structure to Pascal's Triangle

> Base cases of (g) =1 and (Z) =1

» Tip of triangle is (8) =1, a base case

» Each row element is defined by adding two elements from the
previous row

25



Pascal’s Triangle: (a) Combinations Form (b) Numeric

(9) 1
BX0) -
@) ()6 T
MO OO a s s
(5) () ) () @) L e i
@G GGG A L5 w0005
(5) (1) () () (1) (9 () Cew o o
G OO OOO A
HOOEOOEOEEE s s s 0o w0

(a) (b)
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Permutations/Combinations with Repetition

» Combinations/Permutations C(n, r)/P(n, r) account for no
repetition: can't select an outfit twice

» Reality has many cases where this is not so

Example Cookie Shop

» Cookie shop has n = 4 kinds of cookies, ABCD
» Customer wants r = 6 cookies total

» Can duplicate cookies like AABBCD
» How many possibilities are there?

» |f order DOES matters?
» Order DOESN'T matter: AABBCD = ABBCDA?

27



Formulae for Perm/Comb with Repetition

Ordered Repetition

» Permutations, n" possibilities

» n =4 kinds of cookies,
r =6 choices

» 4% = 4096 possible orders

TABLE 1 Combinations and Permutations With
and Without Repetition.

Type Repetition Allowed? Formula
. n!
r-permutations No P ——
(n—r)!
- n!
r-combinations No —_—
rl(n—r)!
r-permutations Yes n"
o n+r—1!
r-combinations Yes

rli(n—1!

Unordered Repetition

Combinations with
repetition, apply the
following formula

Cn+r—1,r)

for n items and r choices
with repetition

With n =4 and r= 6 have

C(4+6—1,4) =84
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Permutation/Combination Code

» Quasi-common interview questions

1. print_perm(N): Write a procedure that prints all
permutations of 1 to N.

2. print_comb(N): Write a procedure that prints all subsets of
the numbers 1 to N.

» Also useful for some search procedures.
» Surprisingly Tricky so some practice is good for you

» Several possibilities for these exist and are worth considering.

» Recursive implementations
» [terative only-implementations

29



Exercise: Recursive Permutations

print_perm(N){

}

create array cur[] = {} # empty
create array rem[] {1,2,3,...N}
print_perm_helper (cur,rem)

print_perm_helper(int cur[],

{

int rem[])

if (rem is empty){
print cur;
return;
}
for(int i=0; i<length(rem); i++){
int ¢ = rem[i]
append ¢ to end of curl[]
remove rem[i] shifting over
print_perm_helper(cur, rem)
remove cur[length(cur)-1] # c removed
insert ¢ at rem[i] shifting over
}

return

Note the use of
recursive helper

Demonstrate how this
code works when
print_perm(3) is
called

Speculate on
Computational
Complexity of the
code

30



Answers: Recursive

print_perm(N){

create array cur[] = {} # empty rem
i=0

}

Permutations Execution

print_perm(3)
helper ()

create array rem[] = {1,2,3,...N}
print_perm_helper(cur,rem)

print_perm_helper(int cur(],

{

int rem[])

if (rem is empty){
print cur;
return;
}
for(int i=0; i<length(rem); i++){
int ¢ = rem[i]
append ¢ to end of curl[]
remove rem[i] shifting over
print_perm_helper(cur, rem)
remove cur[length(cur)-1] # c removed i
insert c¢ at rem[i] shifting over
}

return

cur =

{
{1,2,3}

= {1}
= {2,3}

helper()
i=0

cur = {1,2}
rem = {3}
helper()
i=0
cur = {1,2,3}
rem = {}
helper ()
print {1,2,3} ---

cur = {1,3}
rem = {2}
helper ()
i=0
cur = {1,3,2}
rem = {}
helper ()
print {1,3,2} ---

cur = {2}
rem = {1,3}
helper ()

i=0
cur = {2,1}
rem = {3}
helper ()
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Answers: Recursive Permutations Complexity
» print_perm(N)

1 print_perm(N){ :

2 create array cur[] = {} # empty setup Is O(N) to

3 create array rem[] = {1,2,3,...N} create arrays

4 print_perm_helper (cur,rem)

5 1} » Base case is at worst

6 .

7 print_perm_helper(int cur(], O(N) to print array

2 . int rem[]) » Loop from 14-20 is

10 if(rem is empty){ O(N) iterations

11 print cur; > .

i return; Append is O(1)

12 * : . rem . » Insert/Remove with
for(int i=0; i<length(rem); i++ il i

15 int ¢ = rem[i] Shlftmg' O(N)

16 append c to'end ?f c':ur[] > LOOp is at least

17 remove rem[i] shifting over 0

18 print_perm_helper(cur, rem) O(N ) BUT..

19 remove cur[length(cur)-1] # c removed > Analvzi . .

20 insert ¢ at rem[i] shifting over na_ yzZing recursion 15

21} difficult without

22 return :

23 3} recurrence relations /

Master Theorem
32



Iterative Versions

v

Part of the complexity coming from print_per_helper ()
comes from moving repeatedly shifting array contents

Possible to avoid this with swapping and greate care though
the code becomes much harder to reason about

Book provides a "next permutation” function which re-orders
an array of 1-N to the next permutation

What is it's complexity?
How many permutations are there for N objects?

Reason about complexity of printing all permutations?

33



Exercise: Next Permutation Procedure

procedure next permutation(aiaz . . . a,: permutation of
{1,2,...,n}notequalton n—1 ... 2 1)
ji=n—1
while @; > a; 1
ji=j—1
{7 is the largest subscript with a; < @41}
k:=n
while a; > ai
ki=k—1
{a is the smallest integer greater than ; to the right of a;}
interchange a; and ay
r.=n
si=j+1
while r > s
interchange a, and a;
r=r—1
si=5+1
{this puts the tail end of the permutation after the jth position in increasing order}
{a1az ...a, 1s now the next permutation}
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Answers: Next Permutation Procedure

» What is the complexity next_permutation()?

» O(N): all loops iterate through at most N elements of the
permtuation

» How many permutations are there ?
» N! permutations of N objects

P> Reason about complexity of printing all permutations?
> O(N- N!) total complexity to print all permutations
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Combinations Code

| 4
>

>

Combinations code is easier

Realize: combination is a
subset of {1,2,...,N}
Each element is either in or
outvialorO

Use a bitstring of length N
for this and iterate over all
possible bit strings

Next combination is found
by adding 1 to bitstring
For short bitstrings
(32,64,128), this is integer
addition

For arbitrary length N
bitstring, O(N) operation

print_combs (N) {
cur_bs = bitstring of N O's
while(cur_bs < pow(2,N)){
for(i=0; i<N; i++){
if(cur_bs[i] == 1){

print i+1
}
} # 0(N) iters
add 1 to cur_bs # 0(N)
} # 0(2°N) iters
} # 0N *x 27D
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