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Logistics

Reading: Rosen
▶ Now: 6.1 - 6.5, 8.5
▶ Now: 7.1 - 7.4
▶ Next: 8.1 - 8.3

Assignments
▶ A06: due today
▶ A07: up Thu

Quiz Thursday
▶ Strong/Structural Induction

Proofs
▶ Basic Counting
▶ Permutations/Combinations
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Basic Probability with Sets

▶ There are S possible outcomes in an experiment
▶ Interested in E ⊂ S of these, called an Event
▶ Probability of the even occurring: P(E) = |E|/|S|

Examples
▶ Roll a 6-sided die, want a 3 or more

▶ S = {1, 2, 3, 4, 5, 6}
▶ E = {3, 4, 5, 6}
▶ P(E) = |E|/|S| = 4/6 = 0.6666

▶ Flip coin 3 times, interested in odd number of Heads
▶ S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
▶ E = {HHH, HTT, THT, TTH}
▶ P(E) = |E|/|S| = 4/8 = 0.5
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Probability with Combinations and Permutations
▶ Combinations/Permutations are useful in calculating

probabilities
▶ Must calculate possibilities available when distinct outcomes

possible

Examples
▶ A lottery has participants pick 6 numbers from 1 to 40; if all

6 match participant wins big money
▶ Possibilities: C(40, 6) = 3, 838, 380 = |S|
▶ 1 winning combination so E = |1|
▶ Chance of me winning big: P(E) = 1/3, 838, 380 ≈ 2.6 × 10−8

▶ Picking 5 numbers correctly gives small prize, winning choices
are then C(6, 6) + C(6, 5) = 1 + 6 = |E|

▶ Not much better odds for P(E)
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Unions, Intersections, Complements in Probability
▶ Set operations have play in probability

Complement: P(E) = 1 − P(E)

▶ Pick-6 Lottery winning chance is P(E) = 1
3,838,380

▶ Pick-6 Lottery losing chance is

P(E) = 3, 838, 399
3, 838, 380 = 1 − P(E)

Union: P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

▶ Pick random number between 1 and 1000, |S| = 1000
▶ E = {x|x evenly divisible by 2 or 5}
▶ |E| = ⌊1000/2⌋ + ⌊1000/5⌋ − ⌊1000/(2 · 5)⌋ =

500 + 200 − 100 = 600
▶ P(E) = 600/1000 = 0.6
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Discrete Probability Distributions

▶ A discrete probability distribution assigns a probability to
each of a finite set of objects

▶ May not be uniform, often specified as an array
xi Rain Sun Snow Hail
P(xi) 0.25 0.50 0.10 0.15

▶ Individual elements are not events but comprise individual
possibilities

▶ Sum of outcome probabilities must be 1 for a proper
distribution n∑

i=1
P(xi) = 1

▶ Continuous probabilities distributions differ
▶ Probability of a continuous objects often on the real line
▶ Integrals not summations, requires calculus
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Exercise: Generalized Distribution Properties
xi Rain Sun Snow Hail
P(xi) 0.25 0.50 0.10 0.15

▶ An event is some combination of these such as
▶ E1 = {Snow, Hail}
▶ E2 = {Rain, Snow, Hail}
▶ E3 = {Rain, Sun}

▶ For events, have following general identities
▶ P(E) =

∑
xi∈E P(xi)

▶ P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
▶ P(E) =

∑
xi ̸∈E P(xi) = 1 − P(E)

Calculate Probabilities

E1 = {Snow, Hail} P(E1) =???
E2 = {Rain, Snow, Hail} P(E2) =???
E1 ∪ E2 P(E1 ∪ E2) =???

E1 ∪ E2 P(E1 ∪ E2) =???
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Answers: Generalized Distribution Properties
xi Rain Sun Snow Hail
P(xi) 0.25 0.50 0.10 0.15

▶ An event is some combination of these such as
▶ E1 = {Snow, Hail}
▶ E2 = {Rain, Snow, Hail}
▶ E3 = {Rain, Sun}

▶ For events, have following general identities
▶ P(E) =

∑
xi∈E P(xi)

▶ P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
▶ P(E) =

∑
xi ̸∈E P(xi) = 1 − P(E)

Calculate Probabilities

E1 = {Snow, Hail} P(E1) = 0.25
E2 = {Rain, Snow, Hail} P(E2) = 0.50
E1 ∪ E2 P(E1 ∪ E2) = 0.50

E1 ∪ E2 P(E1 ∪ E2) = 0.50
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Bernoulli Trials and the Binomial Distribution

▶ Experiments in which only two outcomes are possible are
called Bernoulli Trials
▶ Coin flips, random bits, pick a ball when all are red or black

▶ Repeatedly running the experiment results in ”trials” e.g. flip
a coin 7 times

▶ Follows a regular pattern related to Binomial Coefficients
▶ p: probability of outcome A
▶ q: probability of outcome B = 1 − p
▶ n: number of trials
▶ k: number of times A occurs in n trials
▶ E: event that A occurs k times in n trials
▶ P(E) = C(n, k)pkqn−k =

(n
k
)
pkqn−k

▶ Referred to as the Binomial Distribution
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Example of the Binomial distribution

A 6-sided die has 4 Red sides and
2 Black sides
▶ P(Red) = 2/3 = p
▶ P(Black) = 1/3 = q.

Roll 7 times, probability of rolling

Red Black P(E)
0 7 C(7, 0) · (2

3)0 · (1
3)7 = 0.00046

1 6 C(7, 1) · (2
3)1 · (1

3)6 = 0.00640
2 5 C(7, 2) · (2

3)2 · (1
3)5 = 0.03841

3 4 C(7, 3) · (2
3)3 · (1

3)4 = 0.12803
4 3 C(7, 4) · (2

3)4 · (1
3)3 = 0.25606

5 2 C(7, 5) · (2
3)5 · (1

3)2 = 0.30727
6 1 C(7, 6) · (2

3)6 · (1
3)1 = 0.20485

7 0 C(7, 7) · (2
3)7 · (1

3)0 = 0.05853 10



Chip Testing

▶ Real world problems in manufacturing: defects in products
▶ CPU makers like Intel produce ”chips” in batches but

chemistry may go wrong producing a ”bad batch”
▶ 10,000 chips in a batch
▶ Good batch is ALL good
▶ Bad batch has 10% of chips bad

▶ Determine if a batch is Good or Bad
▶ Could check all chips but too time/$$$ intensive: O(N) tests

to do
▶ Suggest an alternative algorithm that is more efficient

11



Monte Carlo Solution
▶ Sample the chips until the chance of is very low that that the

batch is bad
▶ In a Bad batch testing a 1 good chip is P(Good = 1) = 0.90
▶ Since the batches are large, chance of testing n good chips is

about P(Good = n) ≈ 0.90n

▶ Choose n = 66 gives P(Good = 66) = 0.9066 ≈ 0.001
▶ During testing, if any chip is bad, know that the batch is bad
▶ If all 66 are test Good, there only a 1% chance that the batch

is bad

Gambling with Algorithms
▶ City in Manaco most famous for its casinos/gambling
▶ Algorithms that employ Sampling approaches can be more

efficient at the cost of potential errors
▶ Many numerical approximation algorithms employ this

technique such as approximating π

12



”Random Variables”
▶ Often experiments have numerical outcomes

▶ 6-sided die with 1-6 on it, outcome is the value of die
▶ Flip an unfair coin 10 times, outcome is number of heads

▶ Value of the outcome is referred to as a Random Variable
▶ Often use the notation

▶ X for random variable (RV)
▶ x for a specific value the RV may take on
▶ P(X = x) for probability that X takes on value x

Example using Binomial Distribution
A 6-sided die has 4 Red sides and 2 Black sides
▶ P(Red) = 2/3
▶ X is number of Reds on a 7 rolls
▶ P(X = 5) = C(7, 5) · (2

3)5 · (1
3)2 = 0.30727

▶ P(X = 1) = C(7, 1) · (2
3)1 · (1

3)6 = 0.00640
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Expected Value

Often interested in the Expected Value of a random variable
▶ Notated E(X)
▶ Computed by E(X) =

∑
s∈S P(s) · X(s) where

▶ S is the set of all outcomes
▶ s is an individual outcome
▶ P(s) is the probability of outcome s
▶ X(s) is the value of X when X occurs

▶ For discrete probability distributions, usually make use of a
table of probabilites/outcomes and multiply/sum

▶ Most common distributions have proven expected values
▶ Binomial Distribution: Expected Number of Successes for n

trials with p chance of success is n · p
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Example of Expected Value

Random variable T represents the temperature during various
weather conditions.

Outcome si Rain Sun Snow Hail
Probability P(si) 0.25 0.50 0.10 0.15
Temperature T(si) 75 85 30 60

E(T) =P(Rain) · T(Rain) + P(Sun) · T(Sun)
+ P(Snow) · T(Snow) + P(Hail) · T(Hail)

=0.25 · 75 + 0.50 · 85
+ 0.10 · 30 + 0.15 · 60

=73.25
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Expected Value of Runtime of Algorithms

▶ Discussed runtime of algorithms with Big-O complexity usually
as the Worst Case runtime: maximum number of operations

▶ Could also discuss the Best Case runtime: minimum number
of operations

▶ Also of interest is the Average Case: expected number of
operations

▶ Now in a position to discuss this for some simple algorithms
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Exercise: Linear Search Average Case
▶ Given annotated code for

linear search with number of
ops per line

▶ Calculate expected number
of ops in the following cases

Case 1
▶ 100% chance key in a[]
▶ Equal chance anywhere in

a[]

Case 2
▶ 50% chance key in a[],

equal chance at any index
▶ 50% chance NOT in a[]

boolean linear_search(int a[],
int key)

{ # OPS
int n = length(a); # 2
int i = 0; # 1
while(i<n){ # 1

if(a[i] == key){ # 2
return true; # 0

}
i++; # 1

}
return false; # 0

}
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Answers: Linear Search Average Case 1

Case 1
▶ Ops for pos i =

3 + 4 · i + 3 = 4i + 6
▶ Equal probability for each spot

gives P(i) = 1/n

E(Ops) =
n−1∑
i=0

1
n4i + 6

= 1
n (6n + 4

n−1∑
i=0

i)

= 1
n (6n + 4(1

2 (n − 1)n))

= 6 + 2(n − 1)
= 2n + 4

boolean linear_search(int a[],
int key)

{ # OPS
int n = length(a); # 2
int i = 0; # 1
while(i<n){ # 1

if(a[i] == key){ # 2
return true; # 0

}
i++; # 1

}
return false; # 0

}
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Answers: Linear Search Average Case 2

Case 2
▶ If in list, average Ops is 2n + 4
▶ Not in list, max Ops is

3 + 4n + 1 = 4n + 4
▶ 50% chance in vs out so

E(Ops) = 1
2 (2n + 4) + 1

2 (4n + 4)

= n + 2 + 2n + 2
= 3n + 4

boolean linear_search(int a[],
int key)

{ # OPS
int n = length(a); # 2
int i = 0; # 1
while(i<n){ # 1

if(a[i] == key){ # 2
return true; # 0

}
i++; # 1

}
return false; # 0

}
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Average Case Analysis

▶ Much harder to analyze average case than wost/best case but
are often of importance

▶ Requires assumptions about input probabilities
▶ Related: Amortized Analysis which looks at the total

number of ops in doing operations repeatedly
▶ Allows one to show that O(1) array appends are possible if

averaging over many appends
▶ Amortized Analysis studied in Algorithms and Advanced

Algorithms Courses
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What we Haven’t Touched

▶ Variance of Random Variables
▶ Independence and Conditional Probability
▶ Bayes Rule and Spam Filtering

May come up in HW so do some reading.
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