
CSCI 2011: Recurrence Relations

Chris Kauffman

Last Updated:
Wed Jul 25 16:27:35 CDT 2018

1

Logistics

Reading: Rosen
▶ Now: 7.1 - 7.4
▶ Now/Next: 8.1 - 8.3

Assignments
▶ A07: Post Later today
▶ Due Tuesday

2

Basics
▶ A Recurrence Relation defines a relationship between

elements of a sequence
▶ Ex: Fibonacci sequence satisfies the recurrence relationship

fn = fn−1 + fn−2

▶ Note: by some accounts, this is relationship is also the
definition of Fibonacci but originally relationship was
discovered to relate the growth of an idealized rabbit
population

▶ Recurrence relations can be expressed in a variety of notations
such as

f(n) = f(n − 1) + f(n − 2)
g(n) = 3g(n − 1) + 4g(n/5)

3

Algorithm Runtime and Recurrence Relations

▶ Will survey several algorithms and show that their runtimes
can be represented as recurrence relations

▶ Motivates one to look at how to characterize recurrence
relations so algorithm runtimes can be estimated

4

Binary Search

▶ Array input of size n
▶ At iteration 0 do 8-10 ops to

half input size to n/2
▶ At iteration 1 do 8-10 ops to

half input size to n/4
▶ etc.
▶ In the worst case, key not in

array so reduce to 0
elements

▶ Total Ops in worst case is
described in recurrence

f(n) = f(n/2) + c

where c is a constant

int binary_search(int a[], int key){
int left=0, right=a.length-1;
int mid = 0;
while(left <= right){

mid = (left+right)/2;
if(key == a[mid]){

return mid;
}else if(key < a[mid]){

right = mid-1;
}
else{

left = mid+1;
}

}
return -1;

}

5

Exercise: Midpoint Search Recurrence

▶ Recursive search for an
element in an unsorted array

▶ How is this different from
binary search?

▶ Develop a recurrence
relation for the number of
ops used for an array of size
n

▶ What do you expect the
runtime of this algorithm to
be?

// Determine if key is present in
// UNSORTED array a[] by repeated
// bisection search
boolean midpoint_search(int a[], int key){

int left=0, right=length(a)-1;
return helper(a,key,left,right);

}
boolean helper(int a[], int key,

int left, int right)
{

if(left > right){
return false;

}
int mid = (left+right)/2;
if(key == a[mid]){

return true;
}
boolean foundL,foundR;
foundL = helper(a,key,left,mid-1);
foundR = helper(a,key,mid+1,right);
reutrn foundL OR foundR;

}

6

Answers: Midpoint Search Recurrence
▶ How is this different from binary

search?
▶ Midpoint search Goes

BOTH left AND right
▶ Binary search goes ONLY

left OR right
▶ Develop a recurrence relation for the

number of ops used
▶ Halves array but goes

both left/right
▶ Uses a constant number

of ops to halve
▶ f(n) = 2f(n/2) + c

▶ What do you expect the runtime of
this algorithm to be?
▶ Visits every element of

the array once so worst
case linear O(N)

// Determine if key is present in
// UNSORTED array a[] by repeated
// bisection search
boolean midpoint_search(int a[], int key){

int left=0, right=length(a)-1;
return helper(a,key,left,right);

}
boolean helper(int a[], int key,

int left, int right)
{

if(left > right){
return false;

}
int mid = (left+right)/2;
if(key == a[mid]){

return true;
}
boolean foundL,foundR;
foundL = helper(a,key,left,mid-1);
foundR = helper(a,key,mid+1,right);
reutrn foundL OR foundR;

}

7

Merge Sort

▶ Involves two phases
▶ Downward splitting of an array into two halves, stops on

reaching arrays of size 1
▶ Upward merging of two sorted arrays into a larger array

▶ Will look at both briefly to establish it for analysis

8

Exercise: Merge Operation

▶ Merges two sorted arrays
into a combined sorted
array

▶ Show how it works on
a[]={1,3,5,9};
b[]={2,3,6}

▶ What is the Runtime
complexity of merge()?

// Merge sorted arrays a[] and b[] int res[]
// which is also sorted
void merge(int[] res, int[] a, int[] b){

int ai=0, bi=0;
for(int ri=0; ri<length(res); ri++){

if(ai >= length(a)){ // a[] gone
res[ri] = b[bi];
bi++;

}
else if(bi >= length(b)){// b[] gone

res[ri] = a[ai];
ai++;

}
else if(a[ai]<=b[bi]){ // a[] smaller

res[ri] = a[ai];
ai++;

}
else{ // b[] smaller

res[ri] = b[bi];
bi++;

}
}

}
9

Answers: Merge Operation

▶ Merges two sorted arrays
into a combined sorted
array

▶ Show how it works on
a[]={1,3,5,9};
b[]={2,3,6}

▶ What is the Runtime
complexity of merge()?
▶ Linear time in size of

res[] array which is
sum of lengths of a[]
and b[]

// Merge sorted arrays a[] and b[] int res[]
// which is also sorted
void merge(int[] res, int[] a, int[] b){

int ai=0, bi=0;
for(int ri=0; ri<length(res); ri++){

if(ai >= length(a)){ // a[] gone
res[ri] = b[bi];
bi++;

}
else if(bi >= length(b)){// b[] gone

res[ri] = a[ai];
ai++;

}
else if(a[ai]<=b[bi]){ // a[] smaller

res[ri] = a[ai];
ai++;

}
else{ // b[] smaller

res[ri] = b[bi];
bi++;

}
}

}
10

Exercise: Merge Sort, Split Down, Merge Up

▶ Merge sort works by
recursing down halving
arrays

▶ On reaching an array of
size 0 or 1 recursion
stops: these arrays are
”sorted”

▶ Merge arrays on the way
back up the recursion

void merge_sort(int[] a) {
if (length(a) <= 1) {

return;
}
int len = length(a);
int[] left = array_copy(a, 0, len/2);
int[] right = array_copy(a, len/2, len);

mergeSort(left);
mergeSort(right);

merge(a, left, right);
}

Questions
▶ What is the complexity of array_copy()?
▶ What is the complexity of merge()?
▶ Give a recurrence relation for the total operations done by

merge_sort()
11

Answers: Merge Sort, Split Down, Merge Up
▶ What is the complexity

of array_copy()?
▶ Linear O(N)

▶ What is the complexity
of merge()?
▶ From last exercise was

O(N)
▶ Give a recurrence relation

for the total operations
done by merge_sort()
▶ Recurse on half:

f(N/2)
▶ Recurse on both sides:

2f(N/2)
▶ Doing linear work at

each step for
copy/merge

f(N) = 2f(N/2)+a ·N+b

where a, b are constants

void merge_sort(int[] a) {
if (length(a) <= 1) {

return;
}
int len = length(a);
int[] left = array_copy(a, 0, len/2);
int[] right = array_copy(a, len/2, len);

mergeSort(left);
mergeSort(right);

merge(a, left, right);
}

12

The Master Theorem
Let f be an increasing function that satisfies the recurrence relation

f(N) = af(N/b) + cNd

▶ whenever n = bk, with k as a positive integer
▶ a ≥ 1
▶ b ≥ 1 and an integer
▶ c > 0 and d ≥ 0 real numbers

Then f(n) falls into one of the following complexity classes
(Case 1) O(Nd) for a < bd

(Case 2) O(Nd log N) for a = bd

(Case 3) O(Nlogb a) for a > bd

▶ Proof is given as exercises in the text and we won’t dwell on it
▶ Practical matter is that it allows MUCH easier analysis of

recursive / divide-conquer algorithms
13

Exercise: Analysis of Algorithms
Master Theorem

f(n) = af(n/b) + cnd

(Case 1) O(Nd) for a < bd

(Case 2) O(Nd log N) for a = bd

(Case 3) O(Nlogb a) for a > bd

Binary Search
Total Ops in worst case is described
in recurrence f(N) = f(N/2) + q with
q a constant
▶ a = 1, b = 2, d = 0
▶ By master theorem, Case 2
▶ O(N0 log N) = O(log N)

Midpoint search

▶ f(N) = 2f(N/2) + q
▶ Analyze and determine Big-O

op count

Merge Sort

▶ f(N) = 2f(N/2) + q · N + w
▶ Analyze and determine Big-O

op count

14

Answers: Analysis of Algorithms
Master Theorem

f(n) = af(n/b) + cnd

(Case 1) O(Nd) for a < bd

(Case 2) O(Nd log N) for a = bd

(Case 3) O(Nlogb a) for a > bd

Binary Search
Total Ops in worst case is described
in recurrence f(N) = f(N/2) + q with
q a constant
▶ a = 1, b = 2, d = 0
▶ By master theorem, Case 2
▶ O(N0 log N) = O(log N)

Midpoint search

▶ f(N) = 2f(N/2) + q
▶ a = 2, b = 2, d = 0
▶ Master Theorem Case 3

O(Nlogb(d)) = O(Nlog2(2))
= O(N)

Merge Sort

▶ f(N) = 2f(N/2) + q · N + w
▶ a = 2, b = 2, d = 1
▶ Master Theorem Case 2

O(Nd log N) = O(N1 log N)
15

Exercise: Other Kinds of Recurrence Relations

Master Theorem
f(n) = af(n/b) + cnd

(Case 1) O(Nd) for a < bd

(Case 2) O(Nd log N) for a = bd

(Case 3) O(Nlogb a) for a > bd

Which of the following recurrence relations does the master
theorem apply to and which does it not?

1. f(n) = f(n − 1) + 7
2. f(n) = 3 · f(n − 1)
3. f(n) = 4 · (f(n/2)
4. f(n) = f(n − 1) + f(n − 2)

16

Exercise: Other Kinds of Recurrence Relations

Master Theorem
f(n) = af(n/b) + cnd

(Case 1) O(Nd) for a < bd

(Case 2) O(Nd log N) for a = bd

(Case 3) O(Nlogb a) for a > bd

Which of the following recurrence relations does the master
theorem apply to and which does it not?

1. f(n) = f(n − 1) + 7
2. f(n) = 3 · f(n − 1)
3. f(n) = 4 · (f(n/2)
4. f(n) = f(n − 1) + f(n − 2)

Why does the master theorem apply to some and not others?

17

Answers: Other Kinds of Recurrence Relations
Master Theorem

f(n) = af(n/b) + cnd

(Case 1) O(Nd) for a < bd

(Case 2) O(Nd log N) for a = bd

(Case 3) O(Nlogb a) for a > bd

Which of the following recurrence relations does the master
theorem apply to and which does it not?

1 f(n) = f(n − 1) + 7 Nope, linear RR, degree 1
2 f(n) = 3 · f(n − 1) Nope, linear RR, degree 1
3 f(n) = 4 · (f(n/2) Yep, divide/conquer RR, O(N)
4 f(n) = f(n − 1) + f(n − 2) Nope, linear RR, degree 2
▶ The Master Theorem applies to Divide and Conquer

algorithms and their associated recurrence relations
▶ Requires a recurrence involving division
▶ 1,2,4 are linear recurrence relations and are worth a few

words
18

Exercise: Propose a Solution

For the following recurrence relations
▶ Compute f(5)
▶ Give a closed form solution for the Recurrence Relation

▶ One that doesn’t involve a recurrence

Recurrence Relation 1

Recurrence f(n) = f(n − 1) + 7
Base Case f(0) = 0

▶ f(5) = f(4) + 7 = . . .

Recurrence Relation 2

Recurrence f(n) = 3 · f(n − 1)
Base Case f(0) = 1

▶ f(5) = 3 · f(4) = . . .

19

Answers: Propose a Solution
For the following recurrence relations
▶ Compute f(5)
▶ Give a closed form solution for the Recurrence Relation

Recurrence Relation 1
Recurrence f(n) = f(n − 1) + 7
Base Case f(0) = 0

f(5) = 7 + f(4)
= 7 + 7 + f(3)
= 7 + 7 + 7 + f(2)
= 7 + 7 + 7 + 7 + f(1)
= 7 + 7 + 7 + 7 + 7 + f(0)
= 7 + 7 + 7 + 7 + 7 + 0
= 7 · 5

f(n) = 7 · n

Recurrence Relation 2
Recurrence f(n) = 3 · f(n − 1)
Base Case f(0) = 1

f(5) = 3 · f(4)
= 3 · 3 · f(3)
= 3 · 3 · 3 · f(2)
= 3 · 3 · 3 · 3 · f(1)
= 3 · 3 · 3 · 3 · 3 · f(0)
= 3 · 3 · 3 · 3 · 3 · 1
= 35

f(n) = 3n

20

Linear Recurrence Relations Have General Solutions

▶ Linear homogenous recurrence relations have the form and
closed form solution for some constant r

f(n) = a1f(n − 1) + a2f(n − 2) + ... + akf(n − k)
= α1rn

1 + α2rn
2 + ... + αkrn

k

▶ Solution usually involves determining r1, r2, ..., rk as the roots
of the the associated characteristic equation

rk − a1rk−1 − a2rk−1 − ... − akrk−k

▶ Once $r1,r2,…$ known, determine coefficients $α1,α2,…$ by
solving initial conditions

21

Example of Solving a Linear RR
Solve the following Linear RR

GIVEN
Recurrence: f(n) = f(n − 1) + 2f(n − 2)

So degree 2 with a1 = 1, a2 = 2
Base Cases: f(0) = 2, f(1) = 7
Gen Soln Form: f(n) = α1rn

1 + α2rn
2

SOLVE ri’s
Char Eqn.: r2 − a1r − a2 = 0 with a1 = 1, a2 = 2
Roots of Char Eqn: r2 − r − 2 = 0

(r + 2)(r − 1) = 0 so roots 2,-1
Sub in Gen Soln: f(n) = α1(2)n + α2(−1)n

SOLVE αi’s
Use Init Conds to f(0) = α1 · 20 + α2 · (−1)0 = α1 + α2 = 2
solve αi: f(1) = α1 · 21 + α2 · (−1)1 = 2α1 − α2 = 7

2 linear equations with 2 unknowns, α1, α2
Solve to get α1 = 3, α2 = −1

Final Solution: f(n) = 3 · 2n − (−1)n
22

Beyond Linear Homogeneous Recurrence Relations
▶ Generally recurrence relations that are based on k last terms

are exponential
▶ Using framework it is possible to show that nth Fibonacci

number is

fib(n) = 1√
5

(
1 +

√
5

2

)n
− 1√

5

(
1 −

√
5

2

)n

which is exponential
▶ Possible to solve more complex nonhomogenous recurrence

relations which include functions g(n) that are non-recurrent

f(n) = a1f(n − 1) + a2f(n − 2) + ... + akf(n − k) + g(n)

▶ Solving is trickier but extend techniques for linear recurrences

23

Takehome on Recurrence Relations

▶ Can solve some kinds of recurrence relations exactly, in
particular linear recurrence relations

▶ Recurrence relations model operation counts in
divide/conquer algorithms

▶ Most interested in Big-O operation estimates for these which
are given by the Master Theorem

24

