CSCI 2011: Recurrence Relations

Chris Kauffman

Last Updated: Wed Jul 25 16:27:35 CDT 2018

Logistics

Reading: Rosen

Now: 7.1 - 7.4

Now/Next: 8.1 - 8.3

Assignments

► A07: Post Later today

Due Tuesday

Basics

- A Recurrence Relation defines a relationship between elements of a sequence
- Ex: Fibonacci sequence satisfies the recurrence relationship

$$f_n = f_{n-1} + f_{n-2}$$

- Note: by some accounts, this is relationship is also the definition of Fibonacci but originally relationship was discovered to relate the growth of an idealized rabbit population
- Recurrence relations can be expressed in a variety of notations such as

$$f(n) = f(n-1) + f(n-2)$$

 $g(n) = 3g(n-1) + 4g(n/5)$

3

Algorithm Runtime and Recurrence Relations

- Will survey several algorithms and show that their runtimes can be represented as recurrence relations
- ► Motivates one to look at how to characterize recurrence relations so algorithm runtimes can be estimated

Binary Search

- Array input of size n
- At iteration 0 do 8-10 ops to half input size to n/2
- At iteration 1 do 8-10 ops to half input size to n/4
- etc.
- ► In the worst case, key not in array so reduce to 0 elements
- Total Ops in worst case is described in recurrence

$$f(n)=f(n/2)+c$$

where c is a constant

```
int binary_search(int a[], int key){
  int left=0, right=a.length-1;
  int mid = 0:
  while(left <= right){
    mid = (left+right)/2;
    if(key == a[mid]){}
      return mid:
    }else if(key < a[mid]){</pre>
      right = mid-1;
    else{
      left = mid+1;
 return -1;
```

Exercise: Midpoint Search Recurrence

- Recursive search for an element in an unsorted array
- How is this different from binary search?
- Develop a recurrence relation for the number of ops used for an array of size n
- What do you expect the runtime of this algorithm to be?

```
// Determine if key is present in
// UNSORTED array a[] by repeated
// bisection search
boolean midpoint_search(int a[], int key)
  int left=0, right=length(a)-1;
  return helper(a, key, left, right);
boolean helper(int a[], int key,
               int left, int right)
  if(left > right){
    return false;
  int mid = (left+right)/2;
  if(key == a[mid]){
    return true;
  boolean foundL.foundR:
  foundL = helper(a,key,left,mid-1);
  foundR = helper(a,key,mid+1,right);
  reutrn foundL OR foundR:
```

Answers: Midpoint Search Recurrence

- How is this different from binary search?
 - Midpoint search Goes BOTH left AND right
 - Binary search goes ONLY left OR right
- Develop a recurrence relation for the number of ops used
 - Halves array but goes both left/right
 - Uses a constant number of ops to halve
 - f(n) = 2f(n/2) + c
- What do you expect the runtime of this algorithm to be?
 - Visits every element of the array once so worst case linear O(N)

```
// Determine if key is present in
// UNSORTED array a[] by repeated
// bisection search
boolean midpoint_search(int a[], int key)
  int left=0, right=length(a)-1;
  return helper(a, key, left, right);
boolean helper(int a[], int key,
               int left, int right)
  if(left > right){
    return false;
  int mid = (left+right)/2;
  if(key == a[mid]){
    return true:
  boolean foundL, foundR;
  foundL = helper(a,key,left,mid-1);
  foundR = helper(a,key,mid+1,right);
  reutrn foundL OR foundR;
```

Merge Sort

- Involves two phases
 - ▶ **Downward splitting** of an array into two halves, stops on reaching arrays of size 1
 - Upward merging of two sorted arrays into a larger array
- Will look at both briefly to establish it for analysis

Exercise: Merge Operation

- Merges two sorted arrays into a combined sorted array
- Show how it works on a[]={1,3,5,9}; b[]={2,3,6}
- What is the Runtime complexity of merge()?

```
// Merge sorted arrays a[] and b[] int res[]
// which is also sorted
void merge(int[] res, int[] a, int[] b){
  int ai=0, bi=0;
  for(int ri=0; ri<length(res); ri++){
    if(ai >= length(a)){ // a[] gone
     res[ri] = b[bi];
     bi++:
   else if(bi >= length(b)){// b[] gone
     res[ri] = a[ai];
      ai++:
   else if(a[ai]<=b[bi]){ // a[] smaller
     res[ri] = a[ai];
     ai++:
   else{
                            // b[] smaller
     res[ri] = b[bi]:
     bi++;
```

Answers: Merge Operation

- Merges two sorted arrays into a combined sorted array
- Show how it works on
 a[]={1,3,5,9};
 b[]={2,3,6}
- What is the Runtime complexity of merge()?
 - Linear time in size of res[] array which is sum of lengths of a[] and b[]

```
// Merge sorted arrays a[] and b[] int res[]
// which is also sorted
void merge(int[] res, int[] a, int[] b){
  int ai=0, bi=0;
  for(int ri=0; ri<length(res); ri++){
    if(ai >= length(a)){
                            // a[] gone
     res[ri] = b[bi];
     bi++:
   else if(bi >= length(b)){// b[] gone
     res[ri] = a[ai];
      ai++;
   else if(a[ai]<=b[bi]){ // a[] smaller
     res[ri] = a[ai];
     ai++:
   else{
                            // b[] smaller
     res[ri] = b[bi];
     bi++;
```

Exercise: Merge Sort, Split Down, Merge Up

- Merge sort works by recursing down halving arrays
- On reaching an array of size 0 or 1 recursion stops: these arrays are "sorted"
- Merge arrays on the way back up the recursion

```
void merge_sort(int[] a) {
  if (length(a) <= 1) {
    return;
  }
  int len = length(a);
  int[] left = array_copy(a, 0, len/2);
  int[] right = array_copy(a, len/2, len);
  mergeSort(left);
  mergeSort(right);
  merge(a, left, right);
}</pre>
```

Questions

- What is the complexity of array_copy()?
- What is the complexity of merge()?
- Give a recurrence relation for the total operations done by merge_sort()

Answers: Merge Sort, Split Down, Merge Up

- What is the complexity of array_copy()?
 - ► Linear *O*(*N*)
- ► What is the complexity of merge()?
 - From last exercise was O(N)
- Give a recurrence relation for the total operations done by merge_sort()
 - Recurse on half: f(N/2)
 - Recurse on both sides: 2f(N/2)
 - Doing linear work at each step for copy/merge

```
f(N) = 2f(N/2) + a \cdot N + b
```

```
void merge_sort(int[] a) {
  if (length(a) <= 1) {
    return;
  int len = length(a);
  int[] left = array_copy(a, 0,
                                     len/2):
  int[] right = array_copy(a, len/2, len);
  mergeSort(left);
  mergeSort(right);
 merge(a, left, right);
```

The Master Theorem

Let f be an increasing function that satisfies the recurrence relation

$$f(N) = af(N/b) + cN^d$$

- whenever $n = b^k$, with k as a positive integer
- \triangleright $a \ge 1$
- ▶ $b \ge 1$ and an integer
- ightharpoonup c > 0 and $d \ge 0$ real numbers

Then f(n) falls into one of the following complexity classes

(Case 1)
$$O(N^d)$$
 for $a < b^d$
(Case 2) $O(N^d \log N)$ for $a = b^d$
(Case 3) $O(N^{\log_b a})$ for $a > b^d$

- Proof is given as exercises in the text and we won't dwell on it
- Practical matter is that it allows MUCH easier analysis of recursive / divide-conquer algorithms

Exercise: Analysis of Algorithms

Master Theorem

$$f(n) = af(n/b) + cn^d$$

$$\begin{array}{ll} \text{(Case 1)} & \textit{O(N^d)} & \text{for } a < b^d \\ \text{(Case 2)} & \textit{O(N^d log N)} & \text{for } a = b^d \\ \text{(Case 3)} & \textit{O(N^{log_b \, a})} & \text{for } a > b^d \end{array}$$

Binary Search

Total Ops in worst case is described in recurrence f(N) = f(N/2) + q with q a constant

- \triangleright a = 1, b = 2, d = 0
- ▶ By master theorem, Case 2
- $O(N^0 \log N) = O(\log N)$

Midpoint search

- f(N) = 2f(N/2) + q
- Analyze and determine Big-O op count

Merge Sort

- $f(N) = 2f(N/2) + q \cdot N + w$
- Analyze and determine Big-O op count

Answers: Analysis of Algorithms

Master Theorem

$$f(n) = af(n/b) + cn^d$$

$$\begin{array}{lll} \text{(Case 1)} & \textit{O(N^d)} & \text{for } a < b^d \\ \text{(Case 2)} & \textit{O(N^d \log N)} & \text{for } a = b^d \\ \text{(Case 3)} & \textit{O(N^{\log_b a})} & \text{for } a > b^d \end{array}$$

Binary Search

Total Ops in worst case is described in recurrence f(N) = f(N/2) + q with q a constant

$$a = 1, b = 2, d = 0$$

- By master theorem, Case 2
- $O(N^0 \log N) = O(\log N)$

Midpoint search

$$f(N) = 2f(N/2) + q$$

$$a = 2, b = 2, d = 0$$

Master Theorem Case 3

$$O(N^{\log_b(d)}) = O(N^{\log_2(2)})$$

= $O(N)$

Merge Sort

•
$$f(N) = 2f(N/2) + q \cdot N + w$$

$$ightharpoonup a = 2, b = 2, d = 1$$

Master Theorem Case 2

$$O(N^d \log N) = O(N^1 \log N)$$

Exercise: Other Kinds of Recurrence Relations

Master Theorem

$$f(n) = af(n/b) + cn^d$$

1) $O(N^d)$ for $a < b$

$$\begin{array}{ll} \text{(Case 1)} & \textit{O(N^d)} & \text{for } \textit{a} < \textit{b}^d \\ \text{(Case 2)} & \textit{O(N^d \log N)} & \text{for } \textit{a} = \textit{b}^d \\ \text{(Case 3)} & \textit{O(N^{\log_b a})} & \text{for } \textit{a} > \textit{b}^d \\ \end{array}$$

Which of the following recurrence relations does the master theorem apply to and which does it not?

- 1. f(n) = f(n-1) + 7
- 2. $f(n) = 3 \cdot f(n-1)$
- 3. $f(n) = 4 \cdot (f(n/2))$
- 4. f(n) = f(n-1) + f(n-2)

Exercise: Other Kinds of Recurrence Relations

Master Theorem

$$f(n) = af(n/b) + cn^d$$
(Case 1) $O(N^d)$ for $a < b^d$
(Case 2) $O(N^d \log N)$ for $a = b^d$
(Case 3) $O(N^{\log_b a})$ for $a > b^d$

Which of the following recurrence relations does the master theorem apply to and which does it not?

- 1. f(n) = f(n-1) + 7
- 2. $f(n) = 3 \cdot f(n-1)$
- 3. $f(n) = 4 \cdot (f(n/2))$
- 4. f(n) = f(n-1) + f(n-2)

Why does the master theorem apply to some and not others?

Answers: Other Kinds of Recurrence Relations

Master Theorem

$$f(n) = af(n/b) + cn^d$$
(Case 1) $O(N^d)$ for $a < b^d$
(Case 2) $O(N^d \log N)$ for $a = b^d$
(Case 3) $O(N^{\log_b a})$ for $a > b^d$

Which of the following recurrence relations does the master theorem apply to and which does it not?

1
$$f(n) = f(n-1) + 7$$
 Nope, linear RR, degree 1
2 $f(n) = 3 \cdot f(n-1)$ Nope, linear RR, degree 1
3 $f(n) = 4 \cdot (f(n/2)$ Yep, divide/conquer RR, $O(N)$
4 $f(n) = f(n-1) + f(n-2)$ Nope, linear RR, degree 2

- ► The Master Theorem applies to **Divide and Conquer** algorithms and their associated recurrence relations
- Requires a recurrence involving division
- ▶ 1,2,4 are linear recurrence relations and are worth a few words

Exercise: Propose a Solution

For the following recurrence relations

- ightharpoonup Compute f(5)
- ▶ Give a closed form solution for the Recurrence Relation
 - One that doesn't involve a recurrence

Recurrence Relation 1

Recurrence Relation 2

Recurrence
$$f(n) = f(n-1) + 7$$

Base Case $f(0) = 0$

Recurrence
$$f(n) = 3 \cdot f(n-1)$$

Base Case $f(0) = 1$

$$f(5) = f(4) + 7 = \dots$$

►
$$f(5) = 3 \cdot f(4) = \dots$$

Answers: Propose a Solution

For the following recurrence relations

- ightharpoonup Compute f(5)
- ▶ Give a closed form solution for the Recurrence Relation

Recurrence Relation 1

Recurrence
$$f(n) = f(n-1) + 7$$

Base Case $f(0) = 0$

$$f(5) = 7 + f(4)$$

$$= 7 + 7 + f(3)$$

$$= 7 + 7 + 7 + f(2)$$

$$= 7 + 7 + 7 + 7 + f(1)$$

$$= 7 + 7 + 7 + 7 + 7 + f(0)$$

$$= 7 + 7 + 7 + 7 + 7 + 0$$

$$= 7 \cdot 5$$

$$f(n) = 7 \cdot n$$

Recurrence Relation 2

Recurrence
$$f(n) = 3 \cdot f(n-1)$$

Base Case $f(0) = 1$

$$f(5) = 3 \cdot f(4)$$

$$= 3 \cdot 3 \cdot f(3)$$

$$= 3 \cdot 3 \cdot 3 \cdot f(2)$$

$$= 3 \cdot 3 \cdot 3 \cdot 3 \cdot f(1)$$

$$= 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot f(0)$$

$$= 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 1$$

$$= 3^{5}$$

$$f(n) = 3^{n}$$

Linear Recurrence Relations Have General Solutions

► Linear **homogenous** recurrence relations have the form and closed form solution for some constant *r*

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + \dots + a_k f(n-k)$$

= $\alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_k r_k^n$

Solution usually involves determining $r_1, r_2, ..., r_k$ as the roots of the the associated **characteristic equation**

$$r^{k} - a_{1}r^{k-1} - a_{2}r^{k-1} - \dots - a_{k}r^{k-k}$$

▶ Once r_1, r_2, \dots \$ known, determine coefficients $\alpha_1, \alpha_2, \dots$ \$ by solving initial conditions

Example of Solving a Linear RR

Solve the following Linear RR

GIVEN	
Recurrence:	f(n) = f(n-1) + 2f(n-2)
	So degree 2 with $a_1 = 1$, $a_2 = 2$
Base Cases:	$f(0) = 2, \ f(1) = 7$
Gen Soln Form:	$f(n) = \alpha_1 r_1^n + \alpha_2 r_2^n$
SOLVE r _i 's	
Char Eqn.:	$r^2 - a_1 r - a_2 = 0$ with $a_1 = 1, a_2 = 2$
Roots of Char Eqn:	$r^2 - r - 2 = 0$
	(r+2)(r-1) = 0 so roots 2,-1
Sub in Gen Soln:	$f(n) = \alpha_1(2)^n + \alpha_2(-1)^n$
SOLVE α_i 's	
Use Init Conds to	$f(0) = \alpha_1 \cdot 2^0 + \alpha_2 \cdot (-1)^0 = \alpha_1 + \alpha_2 = 2$
solve α_i :	$f(1) = \alpha_1 \cdot 2^1 + \alpha_2 \cdot (-1)^1 = 2\alpha_1 - \alpha_2 = 7$
	2 linear equations with 2 unknowns, $lpha_1,lpha_2$
	Solve to get $\alpha_1 = 3, \alpha_2 = -1$
Final Solution:	$f(n) = 3 \cdot 2^n - (-1)^n$

Beyond Linear Homogeneous Recurrence Relations

- ► Generally recurrence relations that are based on *k* last terms are exponential
- Using framework it is possible to show that nth Fibonacci number is

$$fib(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

which is exponential

Possible to solve more complex **nonhomogenous** recurrence relations which include functions g(n) that are non-recurrent

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + ... + a_k f(n-k) + \mathbf{g}(\mathbf{n})$$

Solving is trickier but extend techniques for linear recurrences

Takehome on Recurrence Relations

- Can solve some kinds of recurrence relations exactly, in particular linear recurrence relations
- Recurrence relations model operation counts in divide/conquer algorithms
- ► Most interested in Big-O operation estimates for these which are given by the Master Theorem