CSCI 2011: Recurrence Relations

Chris Kauffman

Last Updated:
Wed Jul 25 16:27:35 CDT 2018

Logistics

Reading: Rosen

» Now: 7.1-7.4
» Now/Next: 8.1 - 8.3

Assignments

» AQ7: Post Later today
» Due Tuesday

Basics

» A Recurrence Relation defines a relationship between
elements of a sequence

> Ex: Fibonacci sequence satisfies the recurrence relationship
fn =fp—1+ fn72

P> Note: by some accounts, this is relationship is also the
definition of Fibonacci but originally relationship was
discovered to relate the growth of an idealized rabbit
population

» Recurrence relations can be expressed in a variety of notations
such as

fin) = fin—1) + fin—2)
g(n) = 3g(n— 1) + 4g(n/5)

Algorithm Runtime and Recurrence Relations

» Will survey several algorithms and show that their runtimes
can be represented as recurrence relations

» Motivates one to look at how to characterize recurrence
relations so algorithm runtimes can be estimated

Binary Search

» Array input of size n

» At iteration 0 do 8-10 ops to int binary_search(int a[l, int key){

half input size to n/2 int left=0, right=a.length-1;
. . int mid = 0;

» At iteration 1 do 8-10 ops to while(left <= right){

half input size to n/4 mid = (left+right)/2;
if (key == a[mid]){

> etc. return mid;

» In the worst case, key not in Yelse if(key < almid]){
array so reduce to 0) right = mid-1;
elements olsef

» Total Ops in worst case is left = mid+1;
described in recurrence) i

f(n) _ f(n/2) +c) return -1;

where c is a constant

Exercise: Midpoint Search Recurrence

// Determine if key is present in
// UNSORTED array al] by repeated
// bisection search

» Recursive search for an boolean midpoint_search(int a[], int key)
element in an unsorted array int left=0, right=length(a)-1;
return helper(a,key,left,right);
» How is this different from }

. boolean helper(int a[], int ke

2 P s Y
blnary search? int left, int right)
{

» Develop a recurrence
P if (left > right){

relation for the number of return false;
; ¥
ops used for an array of size int mid = (left+right)/2;
n if (key == almid]){
return true;
» What do you expect the }
runtime of this algorithm to boolean foundL,foundR;
5 foundL = helper(a,key,left,mid-1);
be’ foundR = helper(a,key,mid+1,right);

reutrn foundL OR foundR;

Answers: Midpoint Search Recurrence

» How is this different from binary
search?
» Midpoint search Goes
BOTH left AND right
> Binary search goes ONLY
left OR right

» Develop a recurrence relation for the

number of ops used

» Halves array but goes
both left/right

» Uses a constant number
of ops to halve

> f(n) = 2f(n/2) +c

> What do you expect the runtime of
this algorithm to be?

> Visits every element of
the array once so worst
case linear O(N)

// Determine if key is present in
// UNSORTED array a[] by repeated
// bisection search

boolean midpoint_search(int a[], int key)

int left=0, right=length(a)-1;
return helper(a,key,left,right);
}
boolean helper(int a[], int key,
int left, int right)
{
if (left > right){
return false;
}
int mid = (left+right)/2;
if (key == a[mid]){
return true;
¥
boolean foundL,foundR;
foundL = helper(a,key,left,mid-1);
foundR = helper(a,key,mid+1,right);
reutrn foundL OR foundR;

Merge Sort

» Involves two phases

» Downward splitting of an array into two halves, stops on
reaching arrays of size 1
» Upward merging of two sorted arrays into a larger array

> Will look at both briefly to establish it for analysis

Exercise: Merge Operation

// Merge sorted arrays al[] and b[] int res[]
// which is also sorted
void merge(int[] res, int[] a, int[] b){
int ai=0, bi=0;
for(int ri=0; ri<length(res); ri++){

if(ai >= length(a)){ // all gone
> Merges two sorted arrays res[ri] = i[bi]; &
into a combined sorted) bi+t;
array else if(bi >= length(b)){// b[] gone
» Show how it works on r‘f‘ﬂri] = alail;
al H
all={1,3,5,9}; }
b[1={2,3,6} else if(afail<=b[bil){ // all smaller
res[ri] = alail;
» What is the Runtime ai++;
. 2 }
complexity of merge ()7 else{ /7 b1 smaller
res[ri] = b[bil;
bi++;
}
}

}

Answers: Merge Operation

> Merges two sorted arrays
into a combined sorted
array

» Show how it works on
al[l={1,3,5,9};
b[1={2,3,6}

» What is the Runtime
complexity of merge()?

» Linear time in size of
res[] array which is

sum of lengths of a[]
and b[]

// Merge sorted arrays al[] and b[] int res[]
// which is also sorted
void merge(int[] res, int[] a, int[] b){
int ai=0, bi=0;
for(int ri=0; ri<length(res); ri++){

if (ai >= length(a)){ // all gone
res[ril = blbil;
bi++;

¥

else if(bi >= length(b)){// b[] gone
res[ri] = alail;
ai++;

}

else if(alail<=b[bi]l){ // all smaller
res[ri] = alail;
ai++;
}
else{
res[ri] = b[bil;
bi++;
}
}
}

// bl] smaller

Exercise: Merge Sort, Split Down, Merge Up

» Merge sort works by
recursing down halving
arrays

» On reaching an array of
size 0 or 1 recursion
stops: these arrays are
"sorted”

» Merge arrays on the way
back up the recursion

Questions

void merge_sort(int[] a) {

if (length(a)
return;

}

<=1 {

int len = length(a);

int[] left =
int[] right =

array_copy(a, O, len/2);
array_copy(a, len/2, len);

mergeSort (left) ;
mergeSort (right) ;

merge(a, left, right);

» What is the complexity of array_copy()?

> What is the complexity of merge()?

» Give a recurrence relation for the total operations done by

merge_sort ()

11

Answers: Merge Sort, Split Down, Merge Up

» What is the complexity
of array_copy()?

» Linear O(N)

» What is the complexity
of merge ()?

» From last exercise was
O(N)

» Give a recurrence relation
for the total operations
done by merge_sort ()

» Recurse on half:
fIN/2)

» Recurse on both sides:
2f(N/2)

» Doing linear work at
each step for
copy/merge

fIN) =2f(N/2)+a-N+b

void merge_sort(int[] a) {
if (length(a) <= 1) {
return;
}
int len = length(a);

int[] left = array_copy(a, O, len/2);

int[] right array_copy(a, len/2, len);

mergeSort (left);
mergeSort (right) ;

merge(a, left, right);

12

The Master Theorem

Let fbe an increasing function that satisfies the recurrence relation

AN) = aflN/b) 4 cN?

» whenever n = b, with k as a positive integer
> a>1
» b >1 and an integer
» ¢ > 0 and d > 0 real numbers
Then f(n) falls into one of the following complexity classes

(Case 1) O(N9) for a < b9
(Case 2) O(N9logN) for a = b?
(Case 3) O(N'°&»3) for a > b?

» Proof is given as exercises in the text and we won't dwell on it
» Practical matter is that it allows MUCH easier analysis of
recursive / divide-conquer algorithms

13

Exercise: Analysis of Algorithms

Master Theorem

fin) = af(n/b) + cn?

(Case 1) O(N) for a < b?
(Case 2) O(Nlog N) for a= b?
(Case 3) O(No&s2) for a > b4

Binary Search

Total Ops in worst case is described
in recurrence i) = {N/2) + g with
g a constant

> a=1b=2,d=0
» By master theorem, Case 2

> O(N°log N) = O(log N)

Midpoint search

> fIN)=2fN/2)+q

> Analyze and determine Big-O
op count

Merge Sort

> AN) =2f(N/2)+q- N+ w

> Analyze and determine Big-O
op count

14

Answers: Analysis of Algorithms

Master Theorem

f(n) = af{n/b) + cn?

(Case 1) O(N9) for a < b4
(Case 2) O(NlogN) for a= b9
(Case 3) O(NH&s2) for a > b?

Binary Search

Total Ops in worst case is described
in recurrence {N) = {N/2) + q with
g a constant

» a:l,b:2,d:0
» By master theorem, Case 2

> O(N°log N) = O(log N)

Midpoint search
> fIN) =2f(N/2) +q
> a=2,b=2,d=0
» Master Theorem Case 3

O(N©°g:(N) = O(Noe=2))
= O(N)

Merge Sort
> fIN)=2fN/2)+q- N+ w
> 3227b:27d:1
» Master Theorem Case 2

O(N¥log N) = O(N* log N)

15

Exercise: Other Kinds of Recurrence Relations

Master Theorem
fln) = afln/b) + cn?

(Case 1) O(NY) for a < b9
(Case 2) O(N9logN) for a = b?
(Case 3) O(N'°&»3) for a > b?

Which of the following recurrence relations does the master
theorem apply to and which does it not?

1. in)=Rfn—1)+7

2. in)=3-fn—1)

3. in)=4-(f(n/2)

4. fin)=An—1)+fn-2)

16

Exercise: Other Kinds of Recurrence Relations

Master Theorem

fln) = afin/b) + cn?
(Case 1) O(N9) for a < b9
(Case 2) O(N?log N) for a= b?
(Case 3) O(N'es?) for a > b9

Which of the following recurrence relations does the master
theorem apply to and which does it not?

1. in)=Rfn—1)+7
2. in)=3-n—1)
3. f(n) = 4-(f(n/2)

4. fin)=fn—1)+ fin—2)

Why does the master theorem apply to some and not others?

17

Answers: Other Kinds of Recurrence Relations
Master Theorem

(Case 1) O(N9) for a < b9
(Case 2) O(N?logN) for a = b?
(Case 3) O(N'°&»3) for a > b?

fln) = afln/b) + cn?
)
)

Which of the following recurrence relations does the master
theorem apply to and which does it not?

1

2
3
4
>

fin)=fn-1)+ Nope, linear RR, degree 1
fin) = 3 fin— 1) Nope, linear RR, degree 1
fin)=4-(f{n/2) Yep, divide/conquer RR, O(N)
fin)=fn—1)+ fn—2) Nope, linear RR, degree 2

The Master Theorem applies to Divide and Conquer
algorithms and their associated recurrence relations
Requires a recurrence involving division

1,2,4 are linear recurrence relations and are worth a few
words

18

Exercise: Propose a Solution

For the following recurrence relations

» Compute f(5)

» Give a closed form solution for the Recurrence Relation

» One that doesn't involve a recurrence

Recurrence Relation 1

Recurrence f(n)=fn—1)+7
Base Case f(0)=0

> 5)=f4)+7=...

Recurrence Relation 2

Recurrence f(n)=3-f(n—1)
Base Case f(0)=1

> f(5)=3-f4)=...

19

Answers: Propose a Solution
For the following recurrence relations
» Compute f(5)
» Give a closed form solution for the Recurrence Relation

Recurrence Relation 1 Recurrence Relation 2

Recurrence fin)=fn—1)+7 Recurrence f(n)=3-fn—-1)

Base Case f(0)=0 Base Case f(0)=1
f5) =7+ f(4) f5) =3- f(4)

=7+7+13) =3-3-1f3)
=74+74+7+12) =3-3:3-f2)
=7T4+74+7+7+11) =3-3-3:3-A1)
=7+74+7+74+7+1f0) =3-3-3-3-3-A0)
=T+T7+74+747+0 =3.3.3.3.3-1
-7.5 _3

fn)=7-n fin)=3"

Linear Recurrence Relations Have General Solutions

» Linear homogenous recurrence relations have the form and
closed form solution for some constant r

fin)=a1fn—1)+ axfln—2)+ ...+ axfln — k)
=air + a2 + ..+l

» Solution usually involves determining r1, 1o, ..., rx as the roots
of the the associated characteristic equation

I’k—all’kfl—agl’kfl—...—akrkfk

» Once $r1,rp,..$ known, determine coefficients $aq,ap,..$ by
solving initial conditions

21

Example of Solving a Linear RR
Solve the following Linear RR

GIVEN
Recurrence: fin) = fn—1)+2f(n—2)
So degree 2 with a; = 1,2, =2
Base Cases: f0)=2, 1)=7
Gen Soln Form: fin) = axr] + aorj
SOLVE r's
Char Eqgn.: P2 — air— ap, =0 with aa=1la=2

Roots of Char Eqn:

Sub in Gen Soln:

P—r—2=0
(r+2)(r—1) =0 so roots 2,-1
f(n) = a1(2)" + ap(-1)"

SOLVE «;'s
Use Init Conds to
solve «;:

f(O):a1-20+a2-(—1)0:a1+a2:2

f(l):a1-21+a2‘(—1)1 :2a1—a2 =7
2 linear equations with 2 unknowns, as, a)
Solve to get a1 = 3,ap = —1

Final Solution:

n) =327~ (-1)"

22

Beyond Linear Homogeneous Recurrence Relations

» Generally recurrence relations that are based on k last terms
are exponential

» Using framework it is possible to show that nth Fibonacci
number is

ﬁb(n)_1<1+\/§>"_ 1 (1—\/§>"

NG 2 V5 2

which is exponential

» Possible to solve more complex nonhomogenous recurrence
relations which include functions g(n) that are non-recurrent

fin)=aifln—1)+ axfin—2) + ... + axfln — k) + g(n)

» Solving is trickier but extend techniques for linear recurrences

23

Takehome on Recurrence Relations

» Can solve some kinds of recurrence relations exactly, in
particular linear recurrence relations

» Recurrence relations model operation counts in
divide/conquer algorithms

» Most interested in Big-O operation estimates for these which
are given by the Master Theorem

24

