### CSCI 2011: Mathematical Relations

Chris Kauffman

Last Updated: Thu Jul 26 09:50:10 CDT 2018

## Logistics

### Reading: Rosen

Now: 9.1 - 9.5

Now/Next: 10.1 - 10.3

#### Goals

- Finish up Recurrence Relations
- Discuss Mathematical Relations
- ► Intro Graph Theory

### Assignments

- A07: Due Today
- ► A08: Post Thu
- Last assignment

### Quiz 5 Thursday

- Discrete Probability
- Recurrence Relations
- Last Quiz

#### Mathematical Relations

- Very general idea: a relation defines items that are related (duh)
- Most of our attention will be on relations between pairs of objects, binary relations on a set
- Lends itself to several interesting representations/algorithms involving
  - Matrices and multiplication
  - Graphs and paths

## N-ary Relations

- Use N-tuples to represent multiple related pieces of information
- Studied in Database Courses
- Usually discuss several relations or tables and associated operations such as querying and joining
- Database access typically uses special languages such as Structured Query Language (SQL)
- Best drawn as tables as other representations don't lend much insight

| (Adams, 8<br>(Chou, 1<br>(Goodfriend, 4<br>(Rao, 6 | 388323,<br>102147,<br>153876,<br>378543, | Computer Science,<br>Physics,<br>Computer Science,<br>Mathematics,<br>Mathematics,<br>Psychology, | 3.88)<br>3.45)<br>3.49)<br>3.45)<br>3.90)<br>2.99) |
|----------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------|

# Binary Representations, Matrices, Graphs

A binary relationship on a Set S is described as a set of pairs

$$R = \{(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n)\}$$

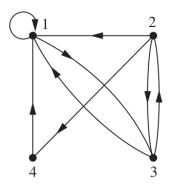
where each of  $a_i$ ,  $b_i$  are in S

- ► Matrix Repr. of Relations
  - $\triangleright$  Rows for  $a_i$ , Cols for  $b_i$
  - ▶ 0/1 Matrix:  $x_{ij} = 1$  if  $(a_i, b_i) \in R$
- Graph Repr. of Relations
  - Nodes for each a<sub>i</sub>, b<sub>j</sub>
  - $(a_i, b_j)$  gives directed edge  $a_i \rightarrow b_j$

# Example: Matrix/Graph for R

$$R = \{(1,1), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2)\}$$

|                  | 1                | 2           | 3 | 4 |
|------------------|------------------|-------------|---|---|
| 1                | 1                | 0           | 1 | 0 |
| 2                | 1                | 0           | 1 | 1 |
| 1<br>2<br>3<br>4 | 1<br>1<br>1<br>0 | 0<br>1<br>0 | 0 | 0 |
| 4                | 0                | 0           | 0 | 0 |



# Exercise: Show the Matrix and Graph

Ask 5 friends which friends they prefer to study with

$$R = \{(AI, Barb), (AI, Cole), (AI, Diane), (Barb, Cole), (Barb, Diane), (Cole, Cole), (Diane, Barb), (Diane, Cole), (Ellen, Barb)\}$$

Draw the matrix and graph representations for this relation

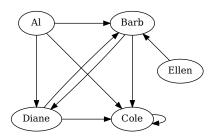
# **Answers:** Show the Matrix and Graph

► Ask 5 friends which friends they prefer to study with

$$R = \{(Al, Barb), (Al, Cole), (Al, Diane), (Barb, Cole), (Barb, Diane), (Cole, Cole), (Diane, Barb), (Diane, Cole), (Ellen, Barb)\}$$

▶ Draw the matrix and graph representations for this relation

|   | Α | В | C | D | Ε |
|---|---|---|---|---|---|
| Α | - | 1 | 1 | 1 | - |
| В | - | - | 1 | 1 | - |
| C | - | - | 1 | - | - |
| D | - | 1 | 1 | - | - |
| Ε |   | 1 | - | - | - |

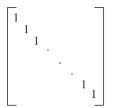


# Common Types of Relations

Relation R on a set A so comprised of pairs  $(a_i, a_j)$  with  $a_i \in A$ ,  $a_j \in A$ . Several common properties of relations of note.

#### Reflexive Relations

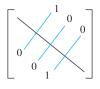
- ▶ R is Reflexive if  $(a_i, a_i) \in R$  for each  $a_i \in A$
- Induces a Matrix representation with main diagonal all 1's
- All nodes in graph have self-loops



### Symmetric Relations

- ► R is Symmetric  $(a_i, a_j) \in R$  implies  $(a_i, a_i) \in R$
- Induces a symmetric matrix representation: upper right triangle mirrors lower left
- ► All edges in graph are two-way





(a) Symmetric

(b) Antisymmetric

#### Closures

- Suppose R is NOT Reflexive
- Add as a few pairs to it as possible to make it a Reflexive relation
- Called the Reflexive Closure of R
- Similarly, Symmetric Closure of R adds as few pairs as possible to make it a Symmetric relation
- Generally, the closure of a relationship R with respect to a property P is formed by adding as few pairs as possible so that R has property P
- ► Fairly easy for reflexivity and symmetry, but there's one other property that is more interesting

## Transitive Relationships

R is a transitive relationship if it satisfies the following

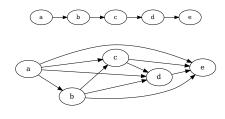
- ▶ If  $(a, b) \in R$  and  $(b, c) \in R$
- ▶ Then  $(a, c) \in R$

Leads to an interesting problem of forming the Transitive Closure

- ► If  $R = \{(a, b), (b, c), (c, d), (d, e)\}$
- It's transitive closure is

$$R^* = \{(a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, e)\}$$

|   | R      | а           | b      | С      | d      | e   |  |
|---|--------|-------------|--------|--------|--------|-----|--|
|   | a      | -           | 1      | -      | -      | -   |  |
|   | b      | -           | -      | 1      | -      | -   |  |
|   | С      | -           | -      | -      | 1      | -   |  |
|   | d      | -           | -      | -      | -      | 1   |  |
|   | е      | -           | -      | -      | -      | -   |  |
|   |        |             |        |        |        |     |  |
|   | R*     | а           | b      | С      | d      | е   |  |
| _ | R*     | a<br>-      | b<br>1 | c<br>1 | d<br>1 | e 1 |  |
| _ |        | -<br>-      |        |        |        |     |  |
| _ | а      | -<br>-<br>- |        | 1      | 1      | 1   |  |
| _ | a<br>b | -<br>-<br>- |        | 1      | 1<br>1 | 1   |  |



#### Transitive Closures

- ▶ In a directed graph, Transitive Closures reveals which nodes are reachable from starting points via a path
- Sometimes called the connectivity of the relation or the reahability graph
- Useful in transportation and routing
  - Can a series of flights from city A reach city X?
  - ► Can taking a series of buses from stop A reach destination D?
- Several algorithms exist to compute the transitive closure

## Multiplication Algorithm for Transitive Closure

- Below is algorithm trans\_clos() along with helper boolean\_matprod()
- Exploits powers of matrix rep of *Rel* 
  - $ightharpoonup Rel = Rel^1$ : reachable via 1 hop
  - $ightharpoonup Rel^1 imes Rel = Rel^2$ : reachable via 2 hops
  - $ightharpoonup Rel^2 imes Rel = Rel^3$ : reachable via 3 hops

```
bool[][] trans_closure(bool Rel[][])
                                               bool[][] boolean_matprod(bool X[][],
                                            2
2
                                                                         bool Y[][])
                                            3
3
      assert(Rel is a square matrix);
4
      int n = rows(Rel):
                                                 assert(X,Y are square matrices);
5
      bool[][] Pow = copy(Rel);
                                                 int n = rows(X):
6
      bool[][] Clo = copy(Rel);
                                                 bool Z[][] = new matrix[n][n];
7
      for(int i=2; i<=n; i++){
                                                 set all elements of Z to false:
8
        Pow = boolean_matprod(Pow,Rel);
                                                 for(int i=0; i<n; i++){
        Clo = boolean_mator(Clo,Pow);
                                                   for(int j=0; j<n; j++){
10
                                           10
                                                     for(int k=0; k<n; k++){
11
      return Clo:
                                           11
                                                        bool b = X[i][k] AND Y[k][j];
12
                                           12
                                                       Z[i][j] = Z[i][j] OR b;
                                           13
                                           14
                                           15
                                           16
                                                 return Z;
                                           17
                                                                                     12
```

# Demonstration of trans\_clos()

```
Rel = \{(a, c), (b, c), (c, e), (d, a), (d, e), (e, d)\}
```

- Make use of a nice matrix environment like Octave
- Allows matrix mult with \* and matrix or with |

```
> i=2:
> Pow = logical(Pow*Rel) > Clo = Clo
> i=3;
> Pow = logical(Pow*Rel)
                          > Clo =
> Pow = logical(Pow*Rel)
                          > Clo =
       logical(Pow*Rel)
                          > Clo = Clo
```

### Exercise: Transitive Closure Algorithm

- Construct pseudocode for the boolean\_mator(X,Y) function
- Analyze the runtime complexity of boolean\_mator(X,Y)
- Analyze the runtime complexity of boolean\_matprod(X,Y)
- Analyze the runtime complexity of trans closure (Rel)
- ► Analyze the **space** complexity of trans closure(Rel)

```
bool[][] trans_closure(bool Rel[][])
                                               bool[][] boolean_matprod(bool X[][],
                                            2
2
                                                                         bool Y[][])
                                            3
3
      assert(Rel is a square matrix);
4
      int n = rows(Rel):
                                                 assert(X,Y are square matrices);
5
      bool[][] Pow = copy(Rel);
                                            5
                                                 int n = rows(X):
6
      bool[][] Clo = copy(Rel);
                                                 bool Z[][] = new matrix[n][n];
7
      for(int i=2; i<=n; i++){
                                                 set all elements of Z to false:
        Pow = boolean_matprod(Pow,Rel);
8
                                            8
                                                 for(int i=0; i<n; i++){
        Clo = boolean_mator(Clo,Pow);
                                            9
                                                   for(int j=0; j<n; j++){
10
                                           10
                                                     for(int k=0; k<n; k++){
11
      return Clo:
                                           11
                                                        bool b = X[i][k] AND Y[k][j];
12
                                           12
                                                        Z[i][j] = Z[i][j] OR b;
                                           13
                                           14
                                           15
                                           16
                                                 return Z;
                                           17
                                                                                     14
```

# **Answers**: Transitive Closure Algorithm

n: rows/cols of matrices

▶ Doubly nested loop in bool\_mator(X,Y) gives runtime O(n²)

- bool\_matprod(X,Y): Triply nested loop gives runtime O(n³)
- trans\_closure(Rel) nests bool\_matprod() in a loop of n iterations so it is O(n<sup>4</sup>)
- trans\_clos(Rel): Space complexity is at least O(n³) for Pow, Clo matrix copies
- Avoiding repeated copies of matrices will improve performance

## Exercise: Warshall's Algorithm

- Introduces notion of interior nodes on a path
  - ➤ To get from a to c, go through b
  - b is an interior vertex
- Repeatedly updates a matrix by determining whether a node appears on the interior of a path
- Runtime complexity of Warshall's Algorithm?
- Space complexity of Warshall's Algorithm?

```
bool[][] warshall_tc(bool Rel[][])
  assert(Rel is a square matrix);
  int n = rows(Rel);
  bool[][] Clo = copy(Rel);
  for(int v=0; v<n; v++){
    for(int i=0; i<n; i++){
      for(int j=0; j< n; j++){
        bool b = Clo[i][v] AND Clo[v][j];
        Clo[i][j] = Clo[i][j] OR b;
  return Clo:
```

# Exercise: Warshall's Algorithm

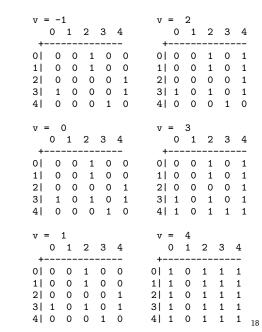
- Runtime complexity of Warshall's Algorithm?
  - ▶ Triply nested loop:  $O(n^3)$
- Space complexity of Warshall's Algorithm?
  - O(n³) for copy Clo but works on this in place subsequently

```
bool[][] warshall_tc(bool Rel[][])
{
   assert(Rel is a square matrix);
   int n = rows(Rel);
   bool[][] Clo = copy(Rel);
   for(int v=0; v<n; v++){
      for(int i=0; i<n; i++){
      for(int j=0; j<n; j++){
        bool b = Clo[i][v] AND Clo[v][j];
        Clo[i][j] = Clo[i][j] OR b;
    }
   }
} return Clo;
}</pre>
```

# Demo of Warshall's Algorithm

Rel = 
$$\{(a, c), (b, c), (c, e), (d, a), (d, e), (e, d)\}$$

- v=−1: Path between nodes with no interior vertices
- v=0: Path between nodes with  $a = v_0$  as an interior AND all prior paths
- ▶ v=1: Path between nodes with  $b = v_1$  as an interior AND all prior paths
- v=2: Path between nodes with c = v₂ as an interior AND all prior paths



## **Equivalence Relations**

- Equivalence Relations have all 3 major relation properties
   Reflexive, Symmetric, Transitive
- Most notable of Equivalence relation is Congruence
   Modulus m defined as

$$R = \{(a, b) | (a \bmod m) = (b \bmod m)\}$$

or (a, b) are related if they have equal values mod m

### Example: The Caesar Cipher

- Encrypted messages by shifting forward modulo the size of the alphabet.
- ▶ With 26 letters, keys (0,26) are equivalent, (1,27) equivalent, etc
- $\blacktriangleright$   $\{1, 27, 53, 79, \ldots\}$  are one **Equivalence Class** of the relation
- ► {2,28,54,80,...} are another **Equivalence Class** of the relation
- ▶ 26 total equivalence classes for Caesar + 26 Letter Alphabet

## Exercise: Code Induces Equivalence Classes

- Code to the right takes 3 ints
- Different inputs induce different execution paths through the code
  - ► Path 1: Line 4 executes, Line 7 doesn't
  - ► Path 2: ??
  - .
- How many different paths are there?
- Give inputs that trigger each path

# **Answers:** Code Induces Equivalence Classes

| Path | Line 4 | Line 7 | Input | Input |  |
|------|--------|--------|-------|-------|--|
| 1    | Yes    | Yes    | 1,2,3 | 1,2,4 |  |
| 2    | Yes    | No     | 1,3,2 | 1,4,2 |  |
| 3    | No     | Yes    | 2,1,3 | 2,1,4 |  |
| 4    | No     | No     | 3,2,1 | 4,2,1 |  |

- Software testing often tries for coverage:
  - Case coverage: inputs that hit all conditionals
  - Path coverage: inputs that hit all paths
- Code partitions inputs into equivalence classes on paths