
CSCI 2011: Mathematical Relations

Chris Kauffman

Last Updated:
Thu Jul 26 09:50:10 CDT 2018

1

Logistics

Reading: Rosen
▶ Now: 9.1 - 9.5
▶ Now/Next: 10.1 - 10.3

Goals
▶ Finish up Recurrence

Relations
▶ Discuss Mathematical

Relations
▶ Intro Graph Theory

Assignments
▶ A07: Due Today
▶ A08: Post Thu
▶ Last assignment

Quiz 5 Thursday
▶ Discrete Probability
▶ Recurrence Relations
▶ Last Quiz

2

Mathematical Relations

▶ Very general idea: a relation defines items that are related
(duh)

▶ Most of our attention will be on relations between pairs of
objects, binary relations on a set

▶ Lends itself to several interesting representations/algorithms
involving
▶ Matrices and multiplication
▶ Graphs and paths

3

N-ary Relations
▶ Use N-tuples to represent multiple related pieces of

information
▶ Studied in Database Courses
▶ Usually discuss several relations or tables and associated

operations such as querying and joining
▶ Database access typically uses special languages such as

Structured Query Language (SQL)
▶ Best drawn as tables as other representations don’t lend much

insight
--
Name ID Major GPA

--
(Ackermann, 231455, Computer Science, 3.88)
(Adams, 888323, Physics, 3.45)
(Chou, 102147, Computer Science, 3.49)
(Goodfriend, 453876, Mathematics, 3.45)
(Rao, 678543, Mathematics, 3.90)
(Stevens, 786576, Psychology, 2.99)

--
4

Binary Representations, Matrices, Graphs
▶ A binary relationship on a Set S is

described as a set of pairs

R = {(a1, b1), (a2, b2), . . . , (an, bn)}

where each of ai, bi are in S
▶ Matrix Repr. of Relations

▶ Rows for ai, Cols for bi
▶ 0/1 Matrix: xij = 1 if (ai, bj) ∈ R

▶ Graph Repr. of Relations
▶ Nodes for each ai, bj
▶ (ai, bj) gives directed edge

ai → bj

Example: Matrix/Graph for R
R = {(1, 1), (1, 3),

(2, 1), (2, 3), (2, 4),
(3, 1), (3, 2)}

1 2 3 4
1 1 0 1 0
2 1 0 1 1
3 1 1 0 0
4 0 0 0 0

5

Exercise: Show the Matrix and Graph

▶ Ask 5 friends which friends they prefer to study with

R = {(Al, Barb), (Al, Cole), (Al, Diane), (Barb, Cole),
(Barb, Diane), (Cole, Cole), (Diane, Barb),
(Diane, Cole), (Ellen, Barb)}

▶ Draw the matrix and graph representations for this relation

6

Answers: Show the Matrix and Graph
▶ Ask 5 friends which friends they prefer to study with

R = {(Al, Barb), (Al, Cole), (Al, Diane), (Barb, Cole),
(Barb, Diane), (Cole, Cole), (Diane, Barb),
(Diane, Cole), (Ellen, Barb)}

▶ Draw the matrix and graph representations for this relation

A B C D E
A - 1 1 1 -
B - - 1 1 -
C - - 1 - -
D - 1 1 - -
E - 1 - - -

Al Barb

ColeDiane

Ellen

7

Common Types of Relations
Relation R on a set A so comprised of pairs (ai, aj) with
ai ∈ A, aj ∈ A. Several common properties of relations of note.

Reflexive Relations
▶ R is Reflexive if (ai, ai) ∈ R for

each ai ∈ A
▶ Induces a Matrix representation

with main diagonal all 1’s
▶ All nodes in graph have

self-loops

Symmetric Relations

▶ R is Symmetric (ai, aj) ∈ R
implies (aj, ai) ∈ R

▶ Induces a symmetric matrix
representation: upper right
triangle mirrors lower left

▶ All edges in graph are two-way

8

Closures

▶ Suppose R is NOT Reflexive
▶ Add as a few pairs to it as possible to make it a Reflexive

relation
▶ Called the Reflexive Closure of R
▶ Similarly, Symmetric Closure of R adds as few pairs as

possible to make it a Symmetric relation
▶ Generally, the closure of a relationship R with respect to a

property P is formed by adding as few pairs as possible so that
R has property P

▶ Fairly easy for reflexivity and symmetry, but there’s one other
property that is more interesting

9

Transitive Relationships
R is a transitive relationship if it satisfies the following
▶ If (a, b) ∈ R and (b, c) ∈ R
▶ Then (a, c) ∈ R

Leads to an interesting problem of forming the Transitive Closure
▶ If R = {(a, b), (b, c), (c, d), (d, e)}
▶ It’s transitive closure is

R∗ = {(a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, e)}

R a b c d e
a - 1 - - -
b - - 1 - -
c - - - 1 -
d - - - - 1
e - - - - -
R∗ a b c d e
a - 1 1 1 1
b - - 1 1 1
c - - - 1 1
d - - - - 1
e - - - - -

a b c d e

a

b

c

d
e

10

Transitive Closures

▶ In a directed graph, Transitive Closures reveals which nodes
are reachable from starting points via a path

▶ Sometimes called the connectivity of the relation or the
reahability graph

▶ Useful in transportation and routing
▶ Can a series of flights from city A reach city X?
▶ Can taking a series of buses from stop A reach destination D?

▶ Several algorithms exist to compute the transitive closure

11

Multiplication Algorithm for Transitive Closure
▶ Below is algorithm trans_clos() along with helper

boolean_matprod()
▶ Exploits powers of matrix rep of Rel

▶ Rel = Rel1: reachable via 1 hop
▶ Rel1 × Rel = Rel2: reachable via 2 hops
▶ Rel2 × Rel = Rel3: reachable via 3 hops

1 bool[][] trans_closure(bool Rel[][])
2 {
3 assert(Rel is a square matrix);
4 int n = rows(Rel);
5 bool[][] Pow = copy(Rel);
6 bool[][] Clo = copy(Rel);
7 for(int i=2; i<=n; i++){
8 Pow = boolean_matprod(Pow,Rel);
9 Clo = boolean_mator(Clo,Pow);
10 }
11 return Clo;
12 }

1 bool[][] boolean_matprod(bool X[][],
2 bool Y[][])
3 {
4 assert(X,Y are square matrices);
5 int n = rows(X);
6 bool Z[][] = new matrix[n][n];
7 set all elements of Z to false;
8 for(int i=0; i<n; i++){
9 for(int j=0; j<n; j++){

10 for(int k=0; k<n; k++){
11 bool b = X[i][k] AND Y[k][j];
12 Z[i][j] = Z[i][j] OR b;
13 }
14 }
15 }
16 return Z;
17 } 12

Demonstration of trans_clos()

Rel = {(a, c), (b, c), (c, e),
(d, a), (d, e), (e, d)}

▶ Make use of a nice matrix
environment like Octave

▶ Allows matrix mult with *
and matrix or with |

GNU Octave, version 4.4.0
> Rel=[[0 0 1 0 0];

[0 0 1 0 0];
[0 0 0 0 1];
[1 0 0 0 1];
[0 0 0 1 0]];

> Rel=logical(Rel);
> Pow=Rel;
> Clo=Rel;

> i=2;
> Pow = logical(Pow*Rel) > Clo = Clo | Pow

0 0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 1 0 1
0 0 0 1 0 0 0 0 1 1
0 0 1 1 0 1 0 1 1 1
1 0 0 0 1 1 0 0 1 1

> i=3;
> Pow = logical(Pow*Rel) > Clo = Clo | Pow

0 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 0 1 1 1
1 0 0 0 1 1 0 0 1 1
1 0 0 0 1 1 0 1 1 1
0 0 1 1 0 1 0 1 1 1

> i=4;
> Pow = logical(Pow*Rel) > Clo = Clo | Pow

1 0 0 0 1 1 0 1 1 1
1 0 0 0 1 1 0 1 1 1
0 0 1 1 0 1 0 1 1 1
0 0 1 1 0 1 0 1 1 1
1 0 0 0 1 1 0 1 1 1

> i=5;
> Pow = logical(Pow*Rel) > Clo = Clo | Pow

0 0 1 1 0 1 0 1 1 1
0 0 1 1 0 1 0 1 1 1
1 0 0 0 1 1 0 1 1 1
1 0 0 0 1 1 0 1 1 1
0 0 1 1 0 1 0 1 1 1 13

https://www.gnu.org/software/octave/

Exercise: Transitive Closure Algorithm
▶ Construct pseudocode for the boolean_mator(X,Y) function
▶ Analyze the runtime complexity of boolean_mator(X,Y)
▶ Analyze the runtime complexity of boolean_matprod(X,Y)
▶ Analyze the runtime complexity of trans_closure(Rel)
▶ Analyze the space complexity of trans_closure(Rel)

1 bool[][] trans_closure(bool Rel[][])
2 {
3 assert(Rel is a square matrix);
4 int n = rows(Rel);
5 bool[][] Pow = copy(Rel);
6 bool[][] Clo = copy(Rel);
7 for(int i=2; i<=n; i++){
8 Pow = boolean_matprod(Pow,Rel);
9 Clo = boolean_mator(Clo,Pow);
10 }
11 return Clo;
12 }

1 bool[][] boolean_matprod(bool X[][],
2 bool Y[][])
3 {
4 assert(X,Y are square matrices);
5 int n = rows(X);
6 bool Z[][] = new matrix[n][n];
7 set all elements of Z to false;
8 for(int i=0; i<n; i++){
9 for(int j=0; j<n; j++){

10 for(int k=0; k<n; k++){
11 bool b = X[i][k] AND Y[k][j];
12 Z[i][j] = Z[i][j] OR b;
13 }
14 }
15 }
16 return Z;
17 } 14

Answers: Transitive Closure Algorithm
n: rows/cols of matrices

1 bool[][] bool_mator(bool X[][]
2 bool Y[][])
3 {
4 assert(X,Y are square matrices);
5 int n = rows(X);
6 bool[][] Z = new matrix[n][n];
7 for(int i=0; i<n; i++){
8 for(int j=0; j<n; i++){
9 Z[i][j] = X[i][j] OR Y[i][j];
10 }
11 }
12 return Z;
13 }

▶ Doubly nested loop in
bool_mator(X,Y) gives
runtime O(n2)

▶ bool_matprod(X,Y): Triply
nested loop gives runtime
O(n3)

▶ trans_closure(Rel) nests
bool_matprod() in a loop
of n iterations so it is O(n4)

▶ trans_clos(Rel): Space
complexity is at least O(n3)
for Pow, Clo matrix copies

▶ Avoiding repeated copies of
matrices will improve
performance

15

Exercise: Warshall’s Algorithm

▶ Introduces notion of interior
nodes on a path
▶ To get from a to c, go

through b
▶ b is an interior vertex

▶ Repeatedly updates a matrix
by determining whether a
node appears on the interior
of a path

▶ Runtime complexity of
Warshall’s Algorithm?

▶ Space complexity of
Warshall’s Algorithm?

bool[][] warshall_tc(bool Rel[][])
{
assert(Rel is a square matrix);
int n = rows(Rel);
bool[][] Clo = copy(Rel);
for(int v=0; v<n; v++){
for(int i=0; i<n; i++){

for(int j=0; j<n; j++){
bool b = Clo[i][v] AND Clo[v][j];
Clo[i][j] = Clo[i][j] OR b;

}
}

}
return Clo;

}

16

Exercise: Warshall’s Algorithm

▶ Runtime complexity of
Warshall’s Algorithm?
▶ Triply nested loop: O(n3)

▶ Space complexity of
Warshall’s Algorithm?
▶ O(n3) for copy Clo but

works on this in place
subsequently

bool[][] warshall_tc(bool Rel[][])
{
assert(Rel is a square matrix);
int n = rows(Rel);
bool[][] Clo = copy(Rel);
for(int v=0; v<n; v++){
for(int i=0; i<n; i++){

for(int j=0; j<n; j++){
bool b = Clo[i][v] AND Clo[v][j];
Clo[i][j] = Clo[i][j] OR b;

}
}

}
return Clo;

}

17

Demo of Warshall’s Algorithm

Rel = {(a, c), (b, c), (c, e),
(d, a), (d, e), (e, d)}

▶ v=-1: Path between nodes
with no interior vertices

▶ v=0: Path between nodes
with a = v0 as an interior
AND all prior paths

▶ v=1: Path between nodes
with b = v1 as an interior
AND all prior paths

▶ v=2: Path between nodes
with c = v2 as an interior
AND all prior paths

v = -1 v = 2
0 1 2 3 4 0 1 2 3 4

+-------------- +--------------
0| 0 0 1 0 0 0| 0 0 1 0 1
1| 0 0 1 0 0 1| 0 0 1 0 1
2| 0 0 0 0 1 2| 0 0 0 0 1
3| 1 0 0 0 1 3| 1 0 1 0 1
4| 0 0 0 1 0 4| 0 0 0 1 0

v = 0 v = 3
0 1 2 3 4 0 1 2 3 4

+-------------- +--------------
0| 0 0 1 0 0 0| 0 0 1 0 1
1| 0 0 1 0 0 1| 0 0 1 0 1
2| 0 0 0 0 1 2| 0 0 0 0 1
3| 1 0 1 0 1 3| 1 0 1 0 1
4| 0 0 0 1 0 4| 1 0 1 1 1

v = 1 v = 4
0 1 2 3 4 0 1 2 3 4

+-------------- +--------------
0| 0 0 1 0 0 0| 1 0 1 1 1
1| 0 0 1 0 0 1| 1 0 1 1 1
2| 0 0 0 0 1 2| 1 0 1 1 1
3| 1 0 1 0 1 3| 1 0 1 1 1
4| 0 0 0 1 0 4| 1 0 1 1 1 18

Equivalence Relations
▶ Equivalence Relations have all 3 major relation properties

▶ Reflexive, Symmetric, Transitive
▶ Most notable of Equivalence relation is Congruence

Modulus m defined as
R = {(a, b)|(a mod m) = (b mod m)}

or (a, b) are related if they have equal values mod m

Example: The Caesar Cipher
▶ Encrypted messages by shifting forward modulo the size of the

alphabet.
▶ With 26 letters, keys (0,26) are equivalent, (1,27) equivalent,

etc
▶ {1, 27, 53, 79, . . .} are one Equivalence Class of the relation
▶ {2, 28, 54, 80, . . .} are another Equivalence Class of the

relation
▶ 26 total equivalence classes for Caesar + 26 Letter Alphabet

19

Exercise: Code Induces Equivalence Classes

▶ Code to the right takes 3
ints

▶ Different inputs induce
different execution paths
through the code
▶ Path 1: Line 4 executes,

Line 7 doesn’t
▶ Path 2: ??
▶ …

▶ How many different paths
are there?

▶ Give inputs that trigger each
path

1 int max3(int a, int b,
2 int c)
3 {
4 int m = a;
5 if(b > m){
6 m = b;
7 }
8 if(c > m){
9 m = c;

10 }
11 return m;
12 }

20

Answers: Code Induces Equivalence Classes

Path Line 4 Line 7 Input Input
1 Yes Yes 1,2,3 1,2,4 …
2 Yes No 1,3,2 1,4,2 …
3 No Yes 2,1,3 2,1,4 …
4 No No 3,2,1 4,2,1 …

▶ Software testing often tries for
coverage:
▶ Case coverage: inputs that hit all

conditionals
▶ Path coverage: inputs that hit all

paths
▶ Code partitions inputs into

equivalence classes on paths

1 int max3(int a, int b,
2 int c)
3 {
4 int m = a;
5 if(b > m){
6 m = b;
7 }
8 if(c > m){
9 m = c;

10 }
11 return m;
12 }

21

