CSCI 2011: Mathematical Relations

Chris Kauffman

Last Updated:
Thu Jul 26 09:50:10 CDT 2018

Logistics

Reading: Rosen

> Now: 9.1-95
» Now/Next: 10.1 - 10.3

Goals
» Finish up Recurrence
Relations

» Discuss Mathematical
Relations

» Intro Graph Theory

Assignments

> AQ07: Due Today
> A08: Post Thu

P> Last assignment

Quiz 5 Thursday

» Discrete Probability
» Recurrence Relations
» Last Quiz

Mathematical Relations

> Very general idea: a relation defines items that are related
(duh)

» Most of our attention will be on relations between pairs of
objects, binary relations on a set

» Lends itself to several interesting representations/algorithms
involving

» Matrices and multiplication
» Graphs and paths

N-ary Relations

> Use N-tuples to represent multiple related pieces of
information

» Studied in Database Courses

» Usually discuss several relations or tables and associated
operations such as querying and joining

» Database access typically uses special languages such as
Structured Query Language (SQL)

» Best drawn as tables as other representations don't lend much
insight

Name ID Major GPA

(Ackermann, 231455, Computer Science, 3.88)

(Adams, 888323, Physics, 3.45)

(Chou, 102147, Computer Science, 3.49)

(Goodfriend, 453876, Mathematics, 3.45)

(Rao, 678543, Mathematics, 3.90)

(Stevens, 786576, Psychology, 2.99)

Binary Representations, Matrices, Graphs

» A binary relationship on a Set S is
described as a set of pairs

R={(a1, b1), (a2, b2),...,(an, bn)}
where each of aj, b; are in §

» Matrix Repr. of Relations

» Rows for a;, Cols for b;
» 0/1 Matrix: x;; = 1if (aj, b;) € R
» Graph Repr. of Relations
> Nodes for each aj, b;
> (aj, bj) gives directed edge
a; — bj

Example: Matrix/Graph for R
R={(1,1),(1,3),
(27 1)7 (27 3)7(2’4)7

(3:1),(3,2)}

O R FH HKF

O = OO

O O - W

O O O~

Exercise: Show the Matrix and Graph

» Ask 5 friends which friends they prefer to study with

R = {(Al, Barb), (Al, Cole), (Al, Diane), (Barb, Cole),
(Barb, Diane), (Cole, Cole), (Diane, Barb),
(Diane, Cole), (Ellen, Barb)}

» Draw the matrix and graph representations for this relation

Answers: Show the Matrix and Graph
» Ask 5 friends which friends they prefer to study with
R = {(Al, Barb), (Al, Cole), (Al, Diane), (Barb, Cole),
(Barb, Diane), (Cole, Cole), (Diane, Barb),
(Diane, Cole), (Ellen, Barb)}

» Draw the matrix and graph representations for this relation

A B CDE
Al- 1 1 1 -
B|- - 1 1 -
cl- - 1 - -
D|- 1 1 - -
E|- 1 - - -

Common Types of Relations

Relation R on a set A so comprised of pairs (a;, aj) with
aj € A, a; € A. Several common properties of relations of note.

Reflexive Relations Symmetric Relations

> R is Reflexive if (a;,a;) € R for > Ris Symmetric (a;, a)) € R

each a, € A implies (aj,a;) € R
> Induces a Matrix representation » Induces a symmetric matrix

with main diagonal all 1's representation: upper right
> All nodes in graph have triangle mirrors lower left

self-loops > All edges in graph are two-way

1 B 1
1
| 0
1
0

_ (a) Symmetric (b) Antisymmetric

Closures

» Suppose R is NOT Reflexive

> Add as a few pairs to it as possible to make it a Reflexive
relation

> Called the Reflexive Closure of R

» Similarly, Symmetric Closure of R adds as few pairs as
possible to make it a Symmetric relation

» Generally, the closure of a relationship R with respect to a
property P is formed by adding as few pairs as possible so that
R has property P

P Fairly easy for reflexivity and symmetry, but there's one other
property that is more interesting

Transitive Relationships
R is a transitive relationship if it satisfies the following
» If (a,b) € Rand (b,c) € R
» Then (a,¢c) € R
Leads to an interesting problem of forming the Transitive Closure
> If R={(a,b),(b,c),(cd),(d e}
P It's transitive closure is

R* = {(a7 b)’ (a’ C)’ (a7 d)7 (a’ e)’ (b’ C)’ (b7 d)’ (b7 e)7 (C7 d)7 (C7 e)7 (d7 e)}

R‘abcde

a |- 1 - - -

b |- - 1 - -

i D CO=CO=CO—=(O—~(D
O

R* b d A
I w 34-&-@‘-0
b |- - 1 1 1 w
So- - 11

c |- -t D

O

10

Transitive Closures

» In a directed graph, Transitive Closures reveals which nodes
are reachable from starting points via a path

» Sometimes called the connectivity of the relation or the
reahability graph
» Useful in transportation and routing

» Can a series of flights from city A reach city X?
» Can taking a series of buses from stop A reach destination D?

> Several algorithms exist to compute the transitive closure

11

Multiplication Algorithm for Transitive Closure

» Below is algorithm trans_clos () along with helper

boolean_matprod()

» Exploits powers of matrix rep of Rel
» Rel = Rel': reachable via 1 hop
» Rel' x Rel = ReP: reachable via 2 hops
» ReP x Rel = ReP: reachable via 3 hops

bool[][] trans_closure(bool Rel[][])
{
assert(Rel is a square matrix);
int n = rows(Rel);
bool[][] Pow = copy(Rel);
bool[l1[] Clo = copy(Rel);
for(int i=2; i<=n; i++){
Pow = boolean_matprod(Pow,Rel);
Clo = boolean_mator(Clo,Pow);
}

return Clo;

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

bool[][] boolean_matprod(bool X[1[1,
bool Y[1[])
{
assert(X,Y are square matrices);
int n = rows(X);
bool Z[1[] = new matrix[n] [n];
set all elements of Z to false;
for(int i=0; i<n; i++){
for(int j=0; j<m; j++){
for(int k=0; k<n; k++){
bool b = X[il[k] AND Y[k][j];
Z[i1[j]1 = Z[i1[j] OR b;
}
}
}

return Z;

Demonstration of trans clos()

Rel = {(a, ¢), (b, ¢), (c, €),
(d,a), (d, e), (e, d)}

» Make use of a nice matrix
environment like Octave

» Allows matrix mult with *
and matrix or with |

GNU Octave, version 4.4.0
> Rel=[[0 0 1 0 0];
[0 0100];
[0 000 1];
[1 000 1];
[00010]];
> Rel=logical(Rel);
> Pow=Rel;
> Clo=Rel;

OFRr P OOTYUHEFOORRPLPTITHORRFPLOOTIHEEFEROOOO'WH

o
=N

o
= W

o
ERRS

o
= 0

ogical (Pow*Rel)
0 1

O O =

1
0
0 0
o 1
11
0o 0

[y

ogical (Pow*Rel)
10

O O

1
0
0
0
0
1

0
1
1
0

[

ogical (Pow*Rel)
0 1

O O =

0
1
1
0

[

ogical (Pow*Rel)
1 0

B OO~ -
(o)

0
1
1
0

[

[ellelieleNe)

[l e o

i o o

R R e e

1o |

R R e e

13

https://www.gnu.org/software/octave/

Exercise: Transitive Closure Algorithm

bool[]1[] trans_closure(bool Rel[][])

{

» Construct pseudocode for the boolean_mator (X,Y) function

>
>
>
>

assert(Rel is a square matrix);
int n = rows(Rel);

bool[][] Pow = copy(Rel);
bool[1[] Clo = copy(Rel);

for(int i=2; i<=n; i++){
Pow = boolean_matprod(Pow,Rel);
Clo = boolean_mator(Clo,Pow);

}

return Clo;

O ~NO O WN -

©

10

12
13
14
15
16
17

Analyze the runtime complexity of boolean_mator(X,Y)
Analyze the runtime complexity of boolean_matprod(X,Y)
Analyze the runtime complexity of trans_closure(Rel)
Analyze the space complexity of trans_closure(Rel)

bool[][] boolean_matprod(bool X[][],

{

bool Y[I[1)

assert(X,Y are square matrices);
int n = rows(X);
bool Z[1[] = new matrix[n][n];
set all elements of Z to false;
for(int i=0; i<n; i++){
for(int j=0; j<n; j++){
for(int k=0; k<n; k++){
bool b = X[il[k] AND Y[k][j];
Z[i1[j]1 = Z[i1[j] OR b;
}
}
}

return Z;
14

Answers: Transitive Closure Algorithm

n:

rows/cols of matrices

bool[1[] bool_mator(bool X[][]

{

bool Y[I[1)

assert(X,Y are square matrices);
int n = rows(X);
bool[][] Z = new matrix[n] [n];
for(int i=0; i<mn; i++){

for(int j=0; j<n; i++){

Z[i1[3j]1 = X[4i1[j] ORr Y[il[j1;

}

}

return Z;

» Doubly nested loop in

bool_mator(X,Y) gives
runtime O(n?)

bool_matprod(X,Y): Triply
nested loop gives runtime
O(n3)
trans_closure(Rel) nests
bool_matprod() in a loop
of n iterations so it is O(n*)

trans_clos(Rel): Space
complexity is at least O(n?)
for Pow, Clo matrix copies

Avoiding repeated copies of

matrices will improve
performance

15

Exercise: Warshall's Algorithm

» Introduces notion of interior
nodes on a path

» To get from a to ¢, go
through b
» b is an interior vertex
P> Repeatedly updates a matrix
by determining whether a
node appears on the interior
of a path

» Runtime complexity of
Warshall's Algorithm?

» Space complexity of
Warshall's Algorithm?

bool[][] warshall_tc(bool Rel[][])
{
assert(Rel is a square matrix);
int n = rows(Rel);
bool[][] Clo = copy(Rel);
for(int v=0; v<n; v++){
for(int i=0; i<n; i++){
for(int j=0; j<n; j++){
bool b = Clo[i] [v] AND Clol[v][jl;
Clo[i]l[j] = Clo[il[j]l OR b;
¥
}
}

return Clo;

Exercise: Warshall's Algorithm

bool[] [] warshall_tc(bool Rel[][])
{

> Runtime complexity of
Warshall’s Algorithm?

» Triply nested loop: O(n®)
» Space complexity of
Warshall's Algorithm?

» O(n®) for copy Clo but
works on this in place
subsequently

assert(Rel is a square matrix);
int n = rows(Rel);
bool[][] Clo = copy(Rel);
for(int v=0; v<n; v++){
for(int i=0; i<n; i++){
for(int j=0; j<mn; j++){
bool b = Clo[i] [v] AND Clol[v][j]l;
Clo[il[j] = Clo[il[j] OR b;
}
}
}

return Clo;

17

Demo of Warshall's Algorithm

Rel = {(a, c), (b,), (c,e),
(d, a),(de), (e d)}

» v=-1: Path between nodes
with no interior vertices

» v=0: Path between nodes
with a = vy as an interior
AND all prior paths

» v=1: Path between nodes
with b= vy as an interior
AND all prior paths

» v=2: Path between nodes

with ¢ = v, as an interior
AND all prior paths

01 2 3 4 01 2 3 4
o o
ol 0 0 1 0 O olo o 1 0 1
1] 0 0 1 0 O 110 0 1 0 1
2 0 0 0 0 1 2 0 0 0 0 1
3 1. 0 0 0 1 31 01 0 1
4] 0 0 0 1 O 41 0 0 0 1 O
v v= 3

01 2 3 4 01 2 3 4
Fmmm B
ol 0 0 1 0 O olo o 1 0 1
1] 0 0 1 0 O 110 0 1 0 1
2 0 0 0 O 1 2l 0 0 0 0 1
3 1.0 1 0 1 31t 01 0 1
4] 0 0 0 1 O 4] 1 0 1 1 1
v v= 4

01 2 3 4 1 2 3 4
0ol o o1 0 O ofl1 0o 1 1 1
110 0 1 0 O 111 0 1 1 1
2l 0 0 0 0 1 21 0 1 1 1
3t 01 0 1 31 0 1 1 1
41 0 0 0 1 O 411 0 1 1 1

18

Equivalence Relations
» Equivalence Relations have all 3 major relation properties
» Reflexive, Symmetric, Transitive

» Most notable of Equivalence relation is Congruence

Modulus m defined as
R = {(a, b)|(a mod m) = (b mod m)}
or (a, b) are related if they have equal values mod m
Example: The Caesar Cipher

» Encrypted messages by shifting forward modulo the size of the
alphabet.

> With 26 letters, keys (0,26) are equivalent, (1,27) equivalent,
etc

» {1,27,53,79,...} are one Equivalence Class of the relation

» {2,28,54,80,...} are another Equivalence Class of the
relation

> 26 total equivalence classes for Caesar + 26 Letter Alphabet

19

Exercise: Code Induces Equivalence Classes

» Code to the right takes 3

ints
» Different inputs induce 1 int max3(int a, int b,
different execution paths g ‘ int c)
through the code 4 intm = a;
» Path 1: Line 4 executes, 5 if(b > m){
Line 7 doesn't ? } m = b;
> Path 2: 77 8 if(c > m){
> . 9 m = c;
» How many different paths 0}
11 return m;
are there? 12 3}

» Give inputs that trigger each
path

Answers: Code Induces Equivalence Classes

Path Line4 Line7 Input Input
1 Yes Yes 123 124

2 Yes No 132 142 1 int max3(int a, int b,
3 No Yes 2,13 21,4 2 int c)
4 No No 32,1 421 3 {
4 int m = a;
5 if (b > m){
» Software testing often tries for 6 n = b;
coverage: 7}
» Case coverage: inputs that hit all 2 ifric_:?){
conditionals 10 } ’
» Path coverage: inputs that hit all 11 return m;
paths 12}

» Code partitions inputs into
equivalence classes on paths

