
CSCI 2011: Graphs

Chris Kauffman

Last Updated:
Tue Jul 31 15:44:29 CDT 2018

1

Logistics

Reading: Rosen
▶ Now: 10.1 - 10.5, 9.6
▶ Next: 11.1 - 11.5
▶ Trees later in 4041

Goals
▶ Finish up graphs
▶ Course Evals

Assignments
▶ A08: Post later today
▶ Due today

Schedule
▶ Wed: Review for Final Exam
▶ Thu: Final Exam

12:20-2:20

2

Graph Basics
Formally a graph G = (V, E), pair of vertex set and edge set

Vertices or Nodes
▶ The ”dots” in graphs
▶ Usually represent places,

things
▶ Set V of ints, names, etc.

Edges or Connectios
▶ The lines between edges
▶ Usually represent

relationships between them
▶ Set E of pairs of vertices 3

Types of Graphs
Directed vs Undirected
▶ Directed graphs: edges

direction so e = (u, v) means
u → v and (u, v) ̸≡ (v, u)

▶ Undirected graphs: no
direction to edges so
(u, v) ≡ (v, u)

Labeled vs Unlabelled
▶ Edges and vertices can be

given labels which indicate
more information about
relationships: edge Labels
”Likes”, ”Hates”

▶ Won’t discuss much except
for numeric labels on edges

Weighted vs Unweighted
▶ An edge-weighted graph

or just weighted graph has
numbers associated with
each edge so edge
e = (v1, v2, wi)

▶ Very common for
transportation,
communication networks:
edge weights are distances /
times / costs

▶ Also possible to have vertex
weights but won’t discuss
much

4

Undirected Graph Terminology
Adjacency and Neighbors in Unirected Graphs
▶ Vertices connected by an edge are called adjacent
▶ The set of vertices adjacent to vertex v is called its

neighborhood and sometimes denoted N(v)

Degree in Undirected Graphs
▶ Degree of a vertex deg(v) is the number edges connected to it
▶ In undirected graphs, edge e = (v, u) counts for both v and u
▶ Edge (v, v) counts twice for the degree of a vertex
▶ Leads to the following handshaking property:

For an undirected graph G = (V, E) with |E| = m (number of
edges is m) the following holds.

2m =
∑
v∈V

deg(v)

5

Data Structures for Graphs
Dense Graph / Matrix
▶ Usually use contiguous

blocks of memory
▶ Adjacency Matrix
▶ 2D array of edge[][]
▶ Each entry edge[i][j]

▶ true/false for
unweighted graph

▶ Numeric value for
weighted graph

▶ Symmetric matrix if graph is
undirected

Sparse Graph / Matrix
▶ Many formats
▶ Most common for graphs:

Adjacency Lists
▶ Array of lists of adjacent

vertices
// unweighted: neighbors only
neighbors[i] = {4, 9, 17};
// weighted: another array
weights[i] = {0.5,0.1,1.4}

▶ Majority of graphs in
practice are sparse

Pictures
Draw some pictures of how these look

6

Exercise: Trade-offs on Graph Data Structures
Discuss trade-offs between these two structures for graphs
▶ Matrix (2D Array)
▶ Adjacency List (Array of Lists of neighbors)

Ground your answers by determining the big-O Complexity of the
following for both data structures

1. Determine if there is an edge between vertices i and j
2. Print all neighbors of a specific vertex
3. Print all edges in the entire graph
4. In a directed graph, determine all vertices that point to vertex
5. The space complexity for |V| vertices, |E| edges

Give your answer in terms of
▶ |V| number of vertices
▶ |E| number of edges
▶ |N(v)| size of neighbor set of vertex v

7

Answers: Trade-offs on Graph Data Structures
1. Determine if there is an edge between vertices i and j

▶ Matrix: O(1): single matrix element access
▶ AdjList: O(|N(v)|): for loop over list of neighbors

▶ Maybe O(log(|N(v)|)) if list is sorted
2. Print all neighbors of a specific vertex

▶ Matrix: O(|V|): for loop across a row
▶ AdjList: O(N(v)): for loop over list of neighbors

3. Print all edges in the entire graph
▶ Matrix: O(|V|2): doubly nested for loop over vertices
▶ AdjList O(|V| + |E|): nested loop but only visit edges

4. In a directed graph, determine all vertices that point to vertex
▶ Matrix O(|V|): for loop over column in matrix
▶ AdjList O(|V| + |E|): nested loop over all vertices

5. The space complexity for |V| vertices, |E| edges
▶ Matrix O(|V|2): |V| × |V| matrix
▶ AdjList O(|V| + |E|): |V| array for vertices, combined list

length of |E|
8

Paths and Cycles

Directed graph with Path Shown
Undirected Graph

▶ A path is a sequence of edges e1, e2, e3, . . . , en connecting two
vertices v and u

▶ Has length n for the number of edges in it
▶ A cycle is a path that starts and ends on the same vertex
▶ Are there any cycles in the graphs above?
▶ Do trees have cycles?

9

DAG: Directed Acyclic Graphs

▶ Directed so edges have
direction

▶ Acyclic as in no cycles
▶ Often used to indicate

dependencies between
vertices
▶ a depends on b, c, d, e
▶ b depends on d
▶ c depends on d, e
▶ e has no dependencies

▶ Comes up very frequently in
computing in a variety of
contexts

10

Examples of DAGs in Computing

▶ Building programs involves
compiling dependent pieces
the merging them

▶ A build system like
Makefiles specifies
dependencies and how to
resolve them

prog : bar.o baz.o foo.o ok.o qux.o
gcc -o prog $^

bar.o : bar.c foo.h
gcc -c bar.c

ok.o : ok.c
gcc -c ok.c

...

11

Exercise: Topological Sort

▶ A DAG indicates
dependencies and creates a
partially ordered set of the
vertices

▶ In a build system, need to
determine which thing to do
first (e.g. which code to
compile first)

▶ Usually achieved via
topological sort: produce a
listing of vertices compatible
with the partial ordering in
the DAG
▶ Bottom ”children” last
▶ Top-most nodes first

▶ Topological order may not
be unique: two possibilities
order 1: 5, 7, 3, 11, 8, 2, 9, 10
order 2: 3, 5, 7, 8, 11, 2, 9, 10

▶ Find another valid ordering
12

Answers: Topological Sort
▶ 5, 7, 3, 11, 8, 2, 9, 10

(visual left-to-right,
top-to-bottom)

▶ 3, 5, 7, 8, 11, 2, 9, 10
(smallest-numbered
available vertex first)

▶ 5, 7, 3, 8, 11, 10, 9, 2
(fewest edges first)

▶ 7, 5, 11, 3, 10, 8, 9, 2
(largest-numbered available
vertex first)

▶ 5, 7, 11, 2, 3, 8, 9, 10
(attempting top-to-bottom,
left-to-right)

▶ 3, 7, 8, 5, 11, 10, 2, 9
(arbitrary)

▶ Topological order may not
be unique: two possibilities
order 1: 5, 7, 3, 11, 8, 2, 9, 10
order 2: 3, 5, 7, 8, 11, 2, 9, 10

▶ Find another valid ordering
13

Textbook Algorithm for Topological Sort

vertex[] topo_sort(graph G){
int n = number_of_vertices(G);
vertex order[] = new vertex[n];
for(i=n-1; i>=0; i++){

vmin = find a "minimal" vertex in G;
order[i] = vmin;
G = remove vmin from G;

}
return vertex_order;

}

▶ From Section 9.6 on
partially ordered sets

▶ Works fine here for DAGs

14

Exercise: Textbook Algorithm for Topological Sort

vertex[] topo_sort(graph G){
int n = number_of_vertices(G);
vertex order[] = new vertex[n];
for(i=n-1; i>=0; i++){

vmin = find a "minimal" vertex in G;
order[i] = vmin;
G = remove vmin from G;

}
return order;

}

▶ Demonstrate Algorithm on
the following DAG (with
direction implied by height)

▶ Discuss it’s computational
complexity: what
assumptions are needed?

15

Answers: Textbook Algorithm for Topological Sort

vertex[] topo_sort(graph G){
int n = number_of_vertics(G);
vertex order[] = new vertex[n];
for(i=n-1; i>=0; i++){

vmin = find a "minimal" vertex in G;
order[i] = vmin;
G = remove vmin from G;

}
return order;

}

▶ Computational complexity is
HARD to determine as the
pseudocode is vague

▶ Determining a ”minimal”
vertex is non-trivial

▶ Removing a vertex is also
non-trivial

16

Topological Sort is usually a Depth First Search
Problems with Textbook Algorithm
▶ Computational complexity is HARD to determine as the

pseudocode is vague
▶ Could end up search all remaining vertices/edges

▶ Determining a ”minimal” vertex is non-trivial
▶ Search for vertices with no children

▶ Removing a vertex is also non-trivial
▶ Must eliminate all edges that point to it

Graph Searches are Useful
▶ Depth-first search is very useful for topological sort
▶ Depth-first and Breadth-first search are useful for lots of

things
▶ Will adapt depth-first search for to determine a valid

topological ordering
17

Depth First Graph Search

▶ Visit every node in
a graph

▶ Go deep down
paths until
▶ Minimal

vertex: no
neighbors

▶ Previously
visited vertex

▶ Global vars track
answers

int order[]; // holds topo order
int last; // index into order
bool visited[]; // marks verts as found

void depth_first_toposort(graph G){
int n_vert = num_vertices(G);
order = new int[n_vert]; // init globals
visited = new vool[n_vert];
last = n_vert - 1;
for(int i=0; i<n_vert; i++){ // iter over verts

helper(G, i);
} // order now filled

} // visited all true

void helper(graph G, int vert){// recursive
if(visited[vert] == true){ // base case:

return; // already visited
}
visited[vert] = true; // now visited
int neighbors[] = neighbors(G,vert);
int n_neigh = length(neighbors);
for(int j=0; j<n_neigh; j++){

helper(G, neighbors[j]); // visit neighbors
}
order[last] = v; // push into order
last = last-1;

} 18

DFS Topo Search

19

Exercise: Depth First Graph Search

▶ Computational
Complexity?

▶ What data
structure could be
used for order
and last rather
than a plain array?

int order[]; // holds topo order
int last; // index into order
bool visited[]; // marks verts as found

void depth_first_toposort(graph G){
int n_vert = num_vertices(G);
order = new int[n_vert]; // init globals
visited = new vool[n_vert];
last = n_vert - 1;
for(int i=0; i<n_vert; i++){ // iter over verts

helper(G, i);
} // order now filled

} // visited all true

void helper(graph G, int vert){// recursive
if(visited[vert] == true){ // base case:

return; // already visited
}
visited[vert] = true; // now visited
int neighbors[] = neighbors(G,vert);
int n_neigh = length(neighbors);
for(int j=0; j<n_neigh; j++){

helper(G, neighbors[j]); // visit neighbors
}
order[last] = v; // push into order
last = last-1;

} 20

Answers: Depth First Graph Search
▶ Computational

Complexity?
▶ O(|V| + |E|)
▶ |V|: number of

vertices
▶ |E|: number of

edges
▶ What data

structure could be
used for order
and last rather
than a plain array?

▶ A stack as
reformulated
to the right

▶ Bottom of
stack are
minimal
vertices

int_stack order[]; // holds topo order
bool visited[]; // marks verts as found

void depth_first_toposort(graph G){
int n_vert = num_vertices(G);
order = new int_stack(); // init globals
visited = new vool[n_vert];
for(int i=0; i<n_vert; i++){ // iter over verts

helper(G, i);
} // order now filled

} // visited all true

void helper(graph G, int vert){// recursive
if(visited[vert] == true){ // base case:

return; // already visited
}
visited[vert] = true; // now visited
int neighbors[] = neighbors(G,vert);
int n_neigh = length(neighbors);
for(int j=0; j<n_neigh; j++){

helper(G, neighbors[j]); // visit neighbors
}
stack_push(order, v); // push into order

}

21

Depth First Search for Connected Components

▶ Connected components in
graphs are sets of vertices
that are reachable from one
another

▶ Variants of depth first
search can also be used to
determine connected
components in graphs

22

Breadth First Search in Graphs
▶ BFS uses a queue

and need not be
recursive
▶ Depth-First Search

uses recursive call
stack

▶ Can also calculate
connected
components

▶ Can compute
distance from an
origin vertex
▶ single source

shortest path
▶ Easy to modify this

algorithm to use edge
weights for distance

queue verts[]; // next verts/distances
bool visited[]; // marks verts as found
int dists[]; // dist from origin

void breadth_first_shortest_path(graph G,
int origin)

{
verts = new queue();
enqueue(verts, (origin, 0));
while(not empty(verts)){

(v, dist) = dequeue(verts);
if(visited[v] == true){

continue to next iteration;
}
visited[v] = true;
dists[v] = dist;
int neighbors[] = neighbors(G,v);
int n_neigh = length(neighbors);
for(int j=0; j<n_neigh; j++){

enqueue(neighbors[j], dist+1);
}

}
// dists[] now contains distances from origin

}

23

Isomorphism: Graph ”Equality”
▶ Notion of equality of two graphs: derive a mapping function

from one to the other
▶ Mapping function must preserve all properties of the graph

▶ Vertex degrees (number of neighbors)
▶ Paths and degrees
▶ Sub Graphs

▶ We’ll study a few by hand tricks determine ”not isomorphic”

24

Things to Look for in Isomorphism

Not Isomorphic If…
▶ Different number of vertices

and edges
▶ Number of vertices with

given degree is different

Beyond Easy stuff
Look lack of paths with same
degree sequence

25

Exercise: Show Not Isomorphic

▶ Show these graphs are not
isomorophic

▶ Use an argument based on a
degrees of vertices or lack of
paths with specific degree
sequences

Pair 1

Pair 2

26

Answers: Show Not Isomorphic
Pair 1
▶ G has no vertices with degree 1
▶ H has e of degree 1
▶ No mapping possible

Pair 2
▶ G, H both have vertices with

degree 3
▶ Consider mapping for d from G
▶ Need a path with degree

sequence {(d, 3), (a, 2), (b, 3)}
in H

▶ Choices are v, z, w, s in H but
none have such a sequence

▶ No mapping possible

Pair 1

Pair 2

27

Exercise: Show graphs isomorphic

▶ Show the two graphs below are isomorphic
▶ Do so by finding a mapping of vertices ui to vj

28

Answers: Show graphs isomorphic

f(u1) = v6 f(u4) = v5
f(u2) = v3 f(u5) = v1
f(u3) = v4 f(u6) = v2

▶ Several other possibilities
▶ Notice rearrangement of

adjacency matrix makes
them equal

29

Exercise: Counting Question

▶ How many possible mappings are there from two graphs with
N vertices?

▶ How does one check for correctness

30

Algorithms for Graph Isomorpism

▶ For graphs with N vertices, N! possible mappings between
them

▶ A brute force algorithm would simple check all possible
mappings
▶ Determine a permutation
▶ Re-arrange one adjacency matrix according to permutation
▶ Check if matrices are equal

▶ This is the algorithm known to work in all cases
▶ Graph Isomorphism is an NP-Hard, no know if it is

NP-complete
▶ Many heuristics exist to speed up in some cases but not all

31

