CSCI 2011: Graphs

Chris Kauffman

Last Updated:
Tue Jul 31 15:44:29 CDT 2018

Logistics

Reading: Rosen

» Now: 10.1 - 10.5, 9.6
> Next—11+1-—115
» Trees later in 4041

Goals

» Finish up graphs

» Course Evals

Assignments

> A08: Post later today
» Due today

Schedule

» Wed: Review for Final Exam

» Thu: Final Exam
12:20-2:20

Graph Basics
Formally a graph G = (V, E), pair of vertex set and edge set

Undirected graph (V,.E,) Directed graph (V,.E,) Easier way to draw
V,={1.23} V,={1,2.3} directed graph (V,.E,)
E, ={{1.2}{2.3}{3.1}} E, ={(1.2).(2.3).(3.2).(1.3)}

Vertices or Nodes Edges or Connectios

» The "dots” in graphs » The lines between edges

» Usually represent places,

» Usually represent
things

relationships between them

> Set Vof ints, names, etc. » Set E of pairs of vertices

Types of Graphs
Directed vs Undirected

» Directed graphs: edges
direction so e = (u, v) means
u— vand (u,v) # (v, v)

» Undirected graphs: no
direction to edges so

(u,v) = (v, u)

Labeled vs Unlabelled

» Edges and vertices can be
given labels which indicate
more information about
relationships: edge Labels
"Likes"”, "Hates"

» Won't discuss much except
for numeric labels on edges

Weighted vs Unweighted

> An edge-weighted graph
or just weighted graph has
numbers associated with
each edge so edge
e=(v1, v, w)

» Very common for
transportation,
communication networks:
edge weights are distances /
times / costs

P Also possible to have vertex
weights but won't discuss
much

Undirected Graph Terminology
Adjacency and Neighbors in Unirected Graphs

P> Vertices connected by an edge are called adjacent

> The set of vertices adjacent to vertex v is called its
neighborhood and sometimes denoted N(v)

Degree in Undirected Graphs

» Degree of a vertex deg(v) is the number edges connected to it
» In undirected graphs, edge e = (v, u) counts for both v and u
» Edge (v, v) counts twice for the degree of a vertex
>

Leads to the following handshaking property:
For an undirected graph G = (V, E) with |E| = m (number of
edges is m) the following holds.

2m =" deg(v)

veVv

Data Structures for Graphs

Dense Graph / Matrix Sparse Graph / Matrix
» Usually use contiguous > Many formats
blocks of memory » Most common for graphs:
» Adjacency Matrix Adjacency Lists
> 2D array of edge[][] > Array of lists of adjacent

vertices
» Each entry edge[i] [j]
// unweighted: neighbors only

> true./false for neighbors([i] = {4, 9, 17};
unwelg.hted graph // weighted: another array
> Numeric value for weights[i] = {0.5,0.1,1.4}

ighted h
weighted grap » Majority of graphs in

» Symmetric matrix if graph is practice are sparse
undirected

Pictures
Draw some pictures of how these look

Exercise: Trade-offs on Graph Data Structures

Discuss trade-offs between these two structures for graphs
» Matrix (2D Array)
» Adjacency List (Array of Lists of neighbors)

Ground your answers by determining the big-O Complexity of the
following for both data structures

1.
2.
3.
4.
5.

Determine if there is an edge between vertices i and j

Print all neighbors of a specific vertex

Print all edges in the entire graph

In a directed graph, determine all vertices that point to vertex

The space complexity for | V] vertices, |E| edges

Give your answer in terms of

» |V| number of vertices

» |E| number of edges

» |N(v)| size of neighbor set of vertex v

Answers: Trade-offs on Graph Data Structures

1. Determine if there is an edge between vertices i and j

» Matrix: O(1): single matrix element access
> AdjList: O(|N(v)|): for loop over list of neighbors

> Maybe O(log(|N(v)|)) if list is sorted
2. Print all neighbors of a specific vertex
» Matrix: O(|V]): for loop across a row
> AdjList: O(N(v)): for loop over list of neighbors
3. Print all edges in the entire graph
> Matrix: O(|V|?): doubly nested for loop over vertices
> AdjList O(|V] + |E|): nested loop but only visit edges
4. In a directed graph, determine all vertices that point to vertex
» Matrix O(]V]): for loop over column in matrix
> AdjList O(]V] + |E]): nested loop over all vertices
5. The space complexity for | V] vertices, |E| edges
> Matrix O(]V]?): | V] x |V] matrix
> AdjList O(|V] + |E]): |V array for vertices, combined list
length of |E]

Paths and Cycles

Directed graph with Path Shown

Undirected Graph

> A path is a sequence of edges e1, e, €3, ..., e, connecting two
vertices v and u

» Has length n for the number of edges in it
P> A cycle is a path that starts and ends on the same vertex
» Are there any cycles in the graphs above?

» Do trees have cycles?

DAG: Directed Acyclic Graphs

» Directed so edges have
direction

» Acyclic as in no cycles

» Often used to indicate
dependencies between
vertices

» adependson b,c,d, e
» b depends on d

» cdepends on d, e

» ¢ has no dependencies

» Comes up very frequently in
computing in a variety of
contexts

10

Examples of DAGs in Computing

» Building programs involves
compiling dependent pieces
the merging them

» A build system like
Makefiles specifies
dependencies and how to
resolve them

prog : bar.o baz.o foo.o ok.o qux.o
gcc -o prog $~

bar.o : bar.c foo.h
gcc —c bar.c

ok.o : ok.c
gcc —c ok.c

11

Exercise: Topological Sort

» A DAG indicates
dependencies and creates a
partially ordered set of the
vertices

» In a build system, need to
determine which thing to do
first (e.g. which code to
compile first)

» Usually achieved via
topological sort: produce a
listing of vertices compatible

with the partial ordering in
the DAG

» Bottom "children” last
» Top-most nodes first

» Topological order may not
be unique: two possibilities

order 1: 5, 7, 3, 11, 8, 2, 9, 10
order 2: 3, 5, 7, 8, 11, 2, 9, 10

» Find another valid ordering

12

Answers: Topological Sort

» 5 7,3,11,8,2,9,10
(visual left-to-right,
top-to-bottom)

» 3,578 11,2,9,10
(smallest-numbered
available vertex first)

» 57, 3,8 11, 10,9, 2
(fewest edges first)

» 7,511, 3,10, 8,9, 2
(largest-numbered available
vertex first)

> 5,7,11,2,3,8,9, 10
(attempting top-to-bottom,
left-to-right)

» 3,7,8 5 11,10, 2,9
(arbitrary)

=

» Topological order may not
be unique: two possibilities
order 1: 5, 7, 3, 11, 8, 2, 9, 10
order 2: 3, 5, 7, 8, 11, 2, 9, 10

» Find another valid ordering
13

Textbook Algorithm for Topological Sort

12 20 12 20 12 20 | 12 20| 12 20 12
I///////‘ ° [} °
4 4 4
4
2
5 2 5 2
1
Minimal
element 1 5 2 4 20 12
chosen

vertex[] topo_sort(graph G){
int n = number_of_vertices(G);
vertex order[] = new vertex[n];
for(i=n-1; i>=0; i++){ » From Section 9.6 on

vmin = find a "minimal" vertex in G; .
order[i] = vmin; partially ordered sets

3 G = remove vmin from G; » Works fine here for DAGs
return vertex_order;

}

Exercise: Textbook Algorithm for Topological Sort

vertex[] topo_sort(graph G){
int n = number_of_vertices(G);
vertex order[] = new vertex[n]; G
for(i=n-1; i>=0; i++){
vmin = find a "minimal" vertex in G;
order[i] = vmin; .
G = remove vmin from G; i) f

}

return order;

}

» Demonstrate Algorithm on
the following DAG (with
direction implied by height)

» Discuss it's computational
complexity: what
assumptions are needed?

15

Answers: Textbook Algorithm for Topological Sort

G G G G G G G
L]

D F D, F D, F | D F l/\f 1/

B B B
A C E C E E E
Minimal
element A C B E F D G
chosen

vertex[] topo_sort(graph G){ » Computational complexity is

int n = number_of_vertics(G);
vertex order[] = new vertex[n];

HARD to determine as the

for(i=n-1; i>=0; i++){ pseudocode is vague
vmin = find a "minimal" vertex in G; .. ye . "
order[i] = vmin; » Determining a "minimal
) G = remove vmin from G; vertex is non-trivial
return order; > Removing a vertex is also

} ..
non-trivial

16

Topological Sort is usually a Depth First Search
Problems with Textbook Algorithm

» Computational complexity is HARD to determine as the
pseudocode is vague
> Could end up search all remaining vertices/edges
» Determining a "minimal” vertex is non-trivial
» Search for vertices with no children
> Removing a vertex is also non-trivial
» Must eliminate all edges that point to it

Graph Searches are Useful

» Depth-first search is very useful for topological sort

» Depth-first and Breadth-first search are useful for lots of
things

> Will adapt depth-first search for to determine a valid
topological ordering

Depth First Graph Search

» Visit every node in
a graph
» Go deep down
paths until
» Minimal
vertex: no
neighbors
» Previously
visited vertex
» Global vars track
answers

int order[]; // holds topo order
int last; // index into order
bool visited[]; // marks verts as found

void depth_first_toposort(graph G){

int n_vert = num_vertices(G);

order = new int[n_vert]; // init globals

visited = new vool[n_vert];

last = n_vert - 1;

for(int i=0; i<n_vert; i++){ // iter over verts

helper(G, i);

} // order now filled

} // visited all true

void helper(graph G, int vert){// recursive

if (visited[vert] == true){ // base case:
return; // already visited

}

visited[vert] = true; // now visited

int neighbors[] = neighbors(G,vert);
int n_neigh = length(neighbors);
for(int j=0; j<n_neigh; j++){
helper (G, neighbors[jl); // visit neighbors
}
order[last] = v; // push into order
last = last-1;
} 18

DFS Topo Search

Initial Graph

i=0, visit 0, then 2

unwind 2 then 0 into order;

i=1, visit 1, then 7

5

1

[lelo[I-[]=]"

19

Exercise: Depth First Graph Search

int order[]; // holds topo order
int last; // index into order
bool visited[]; // marks verts as found

void depth_first_toposort(graph G){
int n_vert = num_vertices(G);
order = new int[n_vert]; // init globals
visited = new vool[n_vert];
» . last = n_vert - 1;
ComPUta_tlonal for(int i=0; i<n_vert; i++){ // iter over verts
Complexity? helper (G, i);
¥ // order now filled
» What data } // visited all true

structure could be)))
void helper(graph G, int vert){// recursive

used for order if (visited[vert] == true){ // base case:
and last rather) return; // already visited
than a plain array? visited[vert] = true; // now visited

int neighbors[] = neighbors(G,vert);
int n_neigh = length(neighbors);
for(int j=0; j<n_neigh; j++){
helper (G, neighbors[jl); // visit neighbors
}
order[last] = v; // push into order
last = last-1;
} 20

Answers: Depth First Graph Search

» Computational
Complexity?
> OV +)
> |V|: number of
vertices
> |E|: number of
edges

» What data
structure could be
used for order
and last rather
than a plain array?

> A stack as
reformulated
to the right

» Bottom of
stack are
minimal
vertices

int_stack order[]; // holds topo order
bool visited[]; // marks verts as found

void depth_first_toposort(graph G){
int n_vert = num_vertices(G);
order = new int_stack(); // init globals
visited = new vooll[n_vert];
for(int i=0; i<n_vert; i++){ // iter over verts
helper (G, 1i);
} // order now filled
} // visited all true

void helper(graph G, int vert){// recursive

if (visited[vert] == true){ // base case:
return; // already visited

}

visited[vert] = true; // now visited

int neighbors[] = neighbors(G,vert);
int n_neigh = length(neighbors);
for(int j=0; j<n_neigh; j++){
helper(G, neighbors[jl); // visit neighbors
}

stack_push(order, v); // push into order

21

Depth First Search for Connected Components

> Connected components in

— g graphs are sets of vertices
. I'I &\;{? / ' that are reachable from one
H\}% J\ _;;-UA\R j’ I,a" another

v ;/'\ \._ ~ \‘(\'/ » Variants of depth first
,<f \ "'-. ' __;" i’//r \/’ search can also be used to
e '(—————4 4 determine connected

components in graphs

22

Breadth First Search in Graphs

» BFS uses a queue
and need not be
recursive

» Depth-First Search
uses recursive call
stack

» Can also calculate
connected
components

» Can compute
distance from an
origin vertex

» single source
shortest path
» Easy to modify this
algorithm to use edge
weights for distance

queue verts[]; // next verts/distances
bool visited[]; // marks verts as found
int dists[]; // dist from origin

void breadth_first_shortest_path(graph G,
int origin)
{
verts = new queue();
enqueue (verts, (origin, 0));
while(not empty(verts)){
(v, dist) = dequeue(verts);
if (visited[v] == true){
continue to next iteration;
}
visited[v] = true;
dists[v] = dist;
int neighbors[] = neighbors(G,v);
int n_neigh = length(neighbors);
for(int j=0; j<n_neigh; j++){
enqueue (neighbors[j], dist+1);
}
}

// dists[] now contains distances from origin

}

23

Isomorphism: Graph "Equality”

» Notion of equality of two graphs: derive a mapping function
from one to the other
» Mapping function must preserve all properties of the graph
> Vertex degrees (number of neighbors)
» Paths and degrees
» Sub Graphs
> We'll study a few by hand tricks determine "not isomorphic”

An isomorphism
between G and H

fla)=1
fib) = 6

Graph G GraphH

o =8
fld=3
flg)=5
Ak =2
A =4
fiy=7

24

Things to Look for in Isomorphism

Not Isomorphic If... (=) ()
» Different number of vertices °.° (1) (9)
and edges
©

» Number of vertices with
given degree is different

Beyond Easy stuff (2) (3) e"o
Look lack of paths with same °

degree sequence °

Exercise: Show Not Isomorphic

» Show these graphs are not
isomorophic

» Use an argument based on a
degrees of vertices or lack of
paths with specific degree
sequences

Pair 1

26

Answers: Show Not Isomorphic

Pair 1

4
>
>

G has no vertices with degree 1
H has e of degree 1
No mapping possible

Pair 2

>

>
>

G, H both have vertices with
degree 3

Consider mapping for d from G

Need a path with degree
sequence {(d,3), (a,2), (b,3)}
in H

Choices are v, z, w, s in H but
none have such a sequence

No mapping possible

Pair 1

[

H

27

Exercise: Show graphs isomorphic

» Show the two graphs below are isomorphic

» Do so by finding a mapping of vertices u; to v;

i 5] Vq Va

Us

Ug Ve

G H

28

Answers: Show graphs isomorphic

uy uy vy

Us

Ug Ve

iy Us Vs

f(ul) Ve f(U4) Vg
fluz) =v3 flus) =w1
f(U3) \'/ f(u6) Vo

» Several other possibilities

» Notice rearrangement of
adjacency matrix makes
them equal

iy
uz
us3
us
us
ue

Vo
V3
V4
Vs
Vi

V2

29

Exercise: Counting Question

» How many possible mappings are there from two graphs with
N vertices?

» How does one check for correctness

30

Algorithms for Graph Isomorpism

For graphs with N vertices, N! possible mappings between
them
A brute force algorithm would simple check all possible
mappings

» Determine a permutation

» Re-arrange one adjacency matrix according to permutation
» Check if matrices are equal

This is the algorithm known to work in all cases

Graph Isomorphism is an NP-Hard, no know if it is
NP-complete

Many heuristics exist to speed up in some cases but not all

31

