CSCI 2011: Graphs

Chris Kauffman

Last Updated: Tue Jul 31 15:44:29 CDT 2018

Logistics

Reading: Rosen

- Now: 10.1 10.5, 9.6
- ► Next: 11.1 11.5
- ► Trees later in 4041

Goals

- Finish up graphs
- Course Evals

Assignments

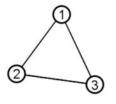
- A08: Post later today
- Due today

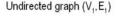
Schedule

- Wed: Review for Final Exam
- ► Thu: **Final Exam** 12:20-2:20

Graph Basics

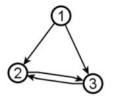
Formally a graph G = (V, E), pair of vertex set and edge set





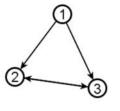
$$V_1 = \{1, 2, 3\}$$

$$E_1 = \{\{1,2\},\{2,3\},\{3,1\}\}$$



$$V_2 = \{1, 2, 3\}$$

$$E_2 = \{(1,2),(2,3),(3,2),(1,3)\}$$



Easier way to draw

directed graph (V₂,E₂)

Vertices or Nodes

- ► The "dots" in graphs
- Usually represent places, things
- ▶ Set *V* of ints, names, etc.

Edges or Connectios

- ► The lines between edges
- Usually represent relationships between them
- ► Set *E* of pairs of vertices

Types of Graphs

Directed vs Undirected

- Directed graphs: edges direction so e = (u, v) means $u \rightarrow v$ and $(u, v) \not\equiv (v, u)$
- ► Undirected graphs: no direction to edges so $(u, v) \equiv (v, u)$

Labeled vs Unlabelled

- Edges and vertices can be given labels which indicate more information about relationships: edge Labels "Likes", "Hates"
- Won't discuss much except for numeric labels on edges

Weighted vs Unweighted

- An edge-weighted graph or just weighted graph has numbers associated with each edge so edge $e = (v_1, v_2, w_i)$
- Very common for transportation, communication networks: edge weights are distances / times / costs
- Also possible to have vertex weights but won't discuss much

Undirected Graph Terminology

Adjacency and Neighbors in Unirected Graphs

- Vertices connected by an edge are called adjacent
- ► The set of vertices adjacent to vertex *v* is called its **neighborhood** and sometimes denoted *N*(*v*)

Degree in Undirected Graphs

- ▶ Degree of a vertex deg(v) is the number edges connected to it
- In undirected graphs, edge e = (v, u) counts for both v and u
- ightharpoonup Edge (v, v) counts twice for the degree of a vertex
- Leads to the following **handshaking property**: For an undirected graph G = (V, E) with |E| = m (number of edges is m) the following holds.

$$2m = \sum_{v \in V} \deg(v)$$

5

Data Structures for Graphs

Dense Graph / Matrix

- Usually use contiguous blocks of memory
- Adjacency Matrix
- 2D array of edge[][]
- Each entry edge[i][j]
 - true/false for unweighted graph
 - Numeric value for weighted graph
- Symmetric matrix if graph is undirected

Pictures

Draw some pictures of how these look

Sparse Graph / Matrix

- Many formats
- Most common for graphs:
 Adjacency Lists
- Array of lists of adjacent vertices

```
// unweighted: neighbors only
neighbors[i] = {4, 9, 17};
// weighted: another array
weights[i] = {0.5,0.1,1.4}
```

 Majority of graphs in practice are sparse

Exercise: Trade-offs on Graph Data Structures

Discuss trade-offs between these two structures for graphs

- ► Matrix (2D Array)
- Adjacency List (Array of Lists of neighbors)

Ground your answers by determining the big-O Complexity of the following for both data structures

- 1. Determine if there is an edge between vertices i and j
- 2. Print all neighbors of a specific vertex
- 3. Print all edges in the entire graph
- 4. In a directed graph, determine all vertices that point to vertex
- 5. The space complexity for |V| vertices, |E| edges

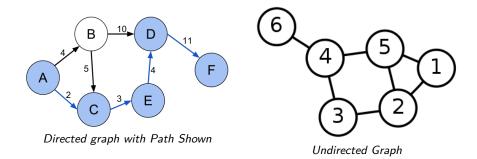
Give your answer in terms of

- ► | *V* | number of vertices
- \triangleright |E| number of edges
- ightharpoonup |N(v)| size of neighbor set of vertex v

Answers: Trade-offs on Graph Data Structures

- 1. Determine if there is an edge between vertices i and j
 - ► Matrix: *O*(1): single matrix element access
 - AdjList: O(|N(v)|): for loop over list of neighbors
 - ▶ Maybe $O(\log(|N(v)|))$ if list is sorted
- 2. Print all neighbors of a specific vertex
 - ► Matrix: O(|V|): for loop across a row
 - AdjList: O(N(v)): for loop over list of neighbors
- 3. Print all edges in the entire graph
 - Matrix: $O(|V|^2)$: doubly nested for loop over vertices
 - AdjList O(|V| + |E|): nested loop but only visit edges
- 4. In a directed graph, determine all vertices that point to vertex
 - Matrix O(|V|): for loop over column in matrix
 - AdjList O(|V| + |E|): nested loop over all vertices
- 5. The space complexity for |V| vertices, |E| edges
 - Matrix $O(|V|^2)$: $|V| \times |V|$ matrix
 - AdjList O(|V| + |E|): |V| array for vertices, combined list length of |E|

Paths and Cycles

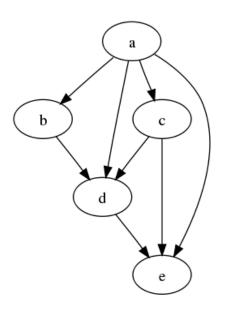


- ▶ A **path** is a sequence of edges $e_1, e_2, e_3, \ldots, e_n$ connecting two vertices v and u
- ▶ Has length *n* for the number of edges in it
- A cycle is a path that starts and ends on the same vertex
- Are there any cycles in the graphs above?
- Do trees have cycles?

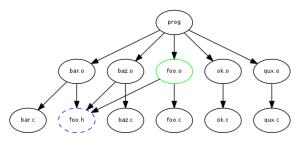
g

DAG: Directed Acyclic Graphs

- Directed so edges have direction
- Acyclic as in no cycles
- Often used to indicate dependencies between vertices
 - \triangleright a depends on b, c, d, e
 - b depends on d
 - c depends on d, e
 - e has no dependencies
- Comes up very frequently in computing in a variety of contexts



Examples of DAGs in Computing



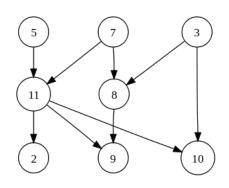
- Building programs involves compiling dependent pieces the merging them
- ► A **build system** like Makefiles specifies dependencies and how to resolve them

```
prog : bar.o baz.o foo.o ok.o qux.o
  gcc -o prog $^
bar.o : bar.c foo.h
  gcc -c bar.c

ok.o : ok.c
  gcc -c ok.c
...
```

Exercise: Topological Sort

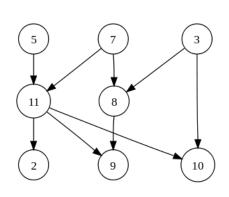
- A DAG indicates dependencies and creates a partially ordered set of the vertices
- In a build system, need to determine which thing to do first (e.g. which code to compile first)
- Usually achieved via topological sort: produce a listing of vertices compatible with the partial ordering in the DAG
 - Bottom "children" last
 - ► Top-most nodes first



- ► Topological order may not be unique: two possibilities order 1: 5, 7, 3, 11, 8, 2, 9, 10 order 2: 3, 5, 7, 8, 11, 2, 9, 10
- Find another valid ordering

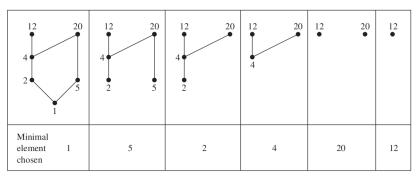
Answers: Topological Sort

- 5, 7, 3, 11, 8, 2, 9, 10 (visual left-to-right, top-to-bottom)
- > 3, 5, 7, 8, 11, 2, 9, 10 (smallest-numbered available vertex first)
- > 5, 7, 3, 8, 11, 10, 9, 2 (fewest edges first)
- 7, 5, 11, 3, 10, 8, 9, 2 (largest-numbered available vertex first)
- ► 5, 7, 11, 2, 3, 8, 9, 10 (attempting top-to-bottom, left-to-right)
- ➤ 3, 7, 8, 5, 11, 10, 2, 9 (arbitrary)



- Topological order may not be unique: two possibilities order 1: 5, 7, 3, 11, 8, 2, 9, 10 order 2: 3, 5, 7, 8, 11, 2, 9, 10
- Find another valid ordering

Textbook Algorithm for Topological Sort



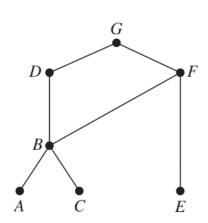
```
vertex[] topo_sort(graph G){
  int n = number_of_vertices(G);
  vertex order[] = new vertex[n];
  for(i=n-1; i>=0; i++){
    vmin = find a "minimal" vertex in G;
    order[i] = vmin;
    G = remove vmin from G;
  }
  return vertex_order;
```

- From Section 9.6 on partially ordered sets
- Works fine here for DAGs

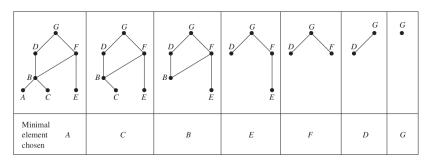
Exercise: Textbook Algorithm for Topological Sort

```
vertex[] topo_sort(graph G){
  int n = number_of_vertices(G);
  vertex order[] = new vertex[n];
  for(i=n-1; i>=0; i++){
    vmin = find a "minimal" vertex in G;
    order[i] = vmin;
    G = remove vmin from G;
  }
  return order;
}
```

- Demonstrate Algorithm on the following DAG (with direction implied by height)
- Discuss it's computational complexity: what assumptions are needed?



Answers: Textbook Algorithm for Topological Sort



```
vertex[] topo_sort(graph G){
  int n = number_of_vertics(G);
  vertex order[] = new vertex[n];
  for(i=n-1; i>=0; i++){
    vmin = find a "minimal" vertex in G;
    order[i] = vmin;
    G = remove vmin from G;
  }
  return order;
}
```

- Computational complexity is HARD to determine as the pseudocode is vague
- Determining a "minimal" vertex is non-trivial
- Removing a vertex is also non-trivial

Topological Sort is usually a Depth First Search

Problems with Textbook Algorithm

- Computational complexity is HARD to determine as the pseudocode is vague
 - ► Could end up search all remaining vertices/edges
- Determining a "minimal" vertex is non-trivial
 - Search for vertices with no children
- Removing a vertex is also non-trivial
 - Must eliminate all edges that point to it

Graph Searches are Useful

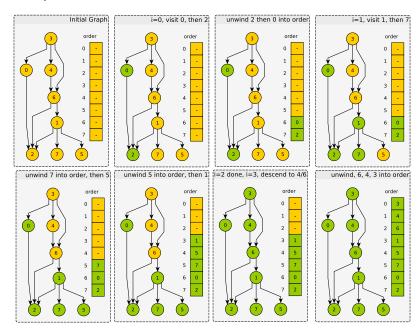
- Depth-first search is very useful for topological sort
- Depth-first and Breadth-first search are useful for lots of things
- Will adapt depth-first search for to determine a valid topological ordering

Depth First Graph Search

- Visit every node in a graph
- Go deep down paths until
 - Minimal vertex: no neighbors
 - Previously visited vertex
- Global vars track answers

```
int order[]; // holds topo order
int last: // index into order
bool visited[]: // marks verts as found
void depth_first_toposort(graph G){
  int n_vert = num_vertices(G);
 order = new int[n_vert];  // init globals
 visited = new vool[n vert];
 last = n vert - 1;
 for(int i=0; i<n vert; i++){ // iter over verts
   helper(G, i);
                               // order now filled
                               // visited all true
void helper(graph G, int vert){// recursive
  if(visited[vert] == true){ // base case:
                               // already visited
   return;
 visited[vert] = true:
                            // now visited
 int neighbors[] = neighbors(G,vert);
  int n_neigh = length(neighbors);
 for(int j=0; j<n_neigh; j++){</pre>
   helper(G, neighbors[j]); // visit neighbors
                              // push into order
 order[last] = v:
 last = last-1:
                                                 18
```

DFS Topo Search



Exercise: Depth First Graph Search

- Computational Complexity?
- What data structure could be used for order and last rather than a plain array?

```
int order[]; // holds topo order
int last: // index into order
bool visited[]: // marks verts as found
void depth_first_toposort(graph G){
 int n_vert = num_vertices(G);
 order = new int[n_vert];  // init globals
 visited = new vool[n vert];
 last = n vert - 1;
 for(int i=0; i<n vert; i++){ // iter over verts
   helper(G, i);
                              // order now filled
                              // visited all true
void helper(graph G, int vert){// recursive
  if(visited[vert] == true){ // base case:
                              // already visited
   return;
 visited[vert] = true:
                        // now visited
 int neighbors[] = neighbors(G,vert);
  int n_neigh = length(neighbors);
 for(int j=0; j<n_neigh; j++){</pre>
   helper(G, neighbors[j]); // visit neighbors
                              // push into order
 order[last] = v:
 last = last-1:
```

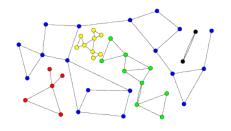
Answers: Depth First Graph Search

Computational Complexity?

- O(|V| + |E|)
- ► | *V*|: number of vertices
- ► |*E*|: number of edges
- What data structure could be used for order and last rather than a plain array?
 - A stack as reformulated to the right
 - Bottom of stack are minimal vertices

```
int_stack order[]; // holds topo order
bool visited[]: // marks verts as found
void depth_first_toposort(graph G){
 int n_vert = num_vertices(G);
 order = new int_stack();  // init globals
 visited = new vool[n_vert];
 for(int i=0; i<n_vert; i++){ // iter over verts</pre>
   helper(G, i);
                               // order now filled
                               // visited all true
void helper(graph G, int vert){// recursive
  if(visited[vert] == true){ // base case:
                               // already visited
   return;
 visited[vert] = true;
                             // now visited
 int neighbors[] = neighbors(G,vert);
 int n_neigh = length(neighbors);
 for(int j=0; j<n_neigh; j++){</pre>
   helper(G, neighbors[j]); // visit neighbors
 stack_push(order, v);
                               // push into order
```

Depth First Search for Connected Components



- Connected components in graphs are sets of vertices that are reachable from one another
- Variants of depth first search can also be used to determine connected components in graphs

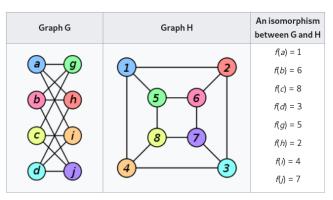
Breadth First Search in Graphs

- BFS uses a queue and need not be recursive
 - Depth-First Search uses recursive call stack
- Can also calculate connected components
- Can compute distance from an origin vertex
 - single source shortest path
- Easy to modify this algorithm to use edge weights for distance

```
queue verts[]; // next verts/distances
bool visited[]; // marks verts as found
int dists[]; // dist from origin
void breadth first shortest path(graph G,
                                  int origin)
  verts = new queue();
  enqueue(verts, (origin, 0));
  while(not empty(verts)){
    (v, dist) = dequeue(verts);
    if(visited[v] == true){
      continue to next iteration:
    visited[v] = true:
    dists[v] = dist:
    int neighbors[] = neighbors(G,v);
    int n_neigh = length(neighbors);
    for(int j=0; j<n_neigh; j++){</pre>
      enqueue(neighbors[j], dist+1);
  // dists[] now contains distances from origin
```

Isomorphism: Graph "Equality"

- Notion of equality of two graphs: derive a mapping function from one to the other
- Mapping function must preserve all properties of the graph
 - Vertex degrees (number of neighbors)
 - ► Paths and degrees
 - Sub Graphs
- We'll study a few by hand tricks determine "not isomorphic"



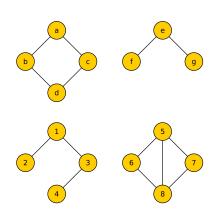
Things to Look for in Isomorphism

Not Isomorphic If...

- Different number of vertices and edges
- Number of vertices with given degree is different

Beyond Easy stuff

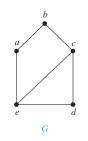
Look lack of **paths** with same degree sequence

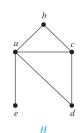


Exercise: Show Not Isomorphic

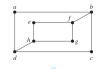
- Show these graphs are not isomorophic
- Use an argument based on a degrees of vertices or lack of paths with specific degree sequences

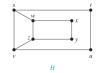
Pair 1





Pair 2





Answers: Show Not Isomorphic

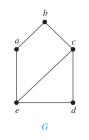
Pair 1

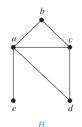
- ▶ *G* has no vertices with degree 1
- H has e of degree 1
- ► No mapping possible

Pair 2

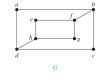
- G, H both have vertices with degree 3
- Consider mapping for d from G
- Need a path with degree sequence $\{(d,3),(a,2),(b,3)\}$ in H
- Choices are v, z, w, s in H but none have such a sequence
- No mapping possible

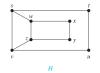
Pair 1





Pair 2



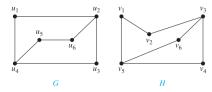


Exercise: Show graphs isomorphic

- Show the two graphs below are isomorphic
- \triangleright Do so by finding a mapping of vertices u_i to v_j



Answers: Show graphs isomorphic



$$\begin{array}{lll} f(u_1) &= v_6 & & f(u_4) &= v_5 \\ f(u_2) &= v_3 & & f(u_5) &= v_1 \\ f(u_3) &= v_4 & & f(u_6) &= v_2 \end{array}$$

- Several other possibilities
- Notice rearrangement of adjacency matrix makes them equal

$$\mathbf{A}_{G} = \begin{bmatrix} u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} \\ u_{1} & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}_{H} = \begin{bmatrix} v_{6} & v_{3} & v_{4} & v_{5} & v_{1} & v_{2} \\ v_{6} & v_{3} & v_{4} & v_{5} & v_{1} & v_{2} \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Exercise: Counting Question

- ► How many possible mappings are there from two graphs with *N* vertices?
- How does one check for correctness

Algorithms for Graph Isomorpism

- ► For graphs with *N* vertices, *N*! possible mappings between them
- A brute force algorithm would simple check all possible mappings
 - Determine a permutation
 - Re-arrange one adjacency matrix according to permutation
 - Check if matrices are equal
- This is the algorithm known to work in all cases
- Graph Isomorphism is an NP-Hard, no know if it is NP-complete
- Many heuristics exist to speed up in some cases but not all