Name: ID#: X500: Qumn.edu A

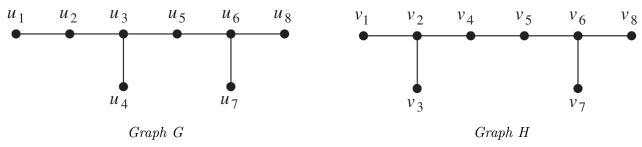
CS 2011: Practice Final SOLUTION

Summer 2018 University of Minnesota

Quiz period: 15 minutes

Points available: 30

Problem 1 (10 pts): Show that the two graphs below are not isomorphic to one another. Explain your reasoning.



SOLUTION: The graphs have an equal number of vertices and edges and their distribution of vertex degrees is identical. However, in G, the path u_1, u_2, u_3 has degree sequence $\{1, 2, 3\}$. The only candidates that start with degree 1 in H are v_1, v_3, v_7, v_8 but no path with that degree sequence starting with these nodes has the sequence desired. Thus these two graphs are not isomorphic.

Problem 2 (10 pts): The code for Warshall's algorithm to find the transitive closure of a relation is given. Demonstrate this code on the relation which is shown as an adjacency matrix. Show the matrix Rel each time line 12 is reached as indicated. For reference, the directed graph version is also shown.

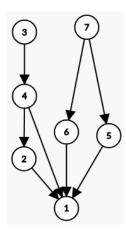
```
1 bool[][] warshall_tc(bool Rel[][]) {
                                                       initial Rel
     assert(Rel is a square matrix);
 2
                                                           0 1 2 3 4
     int n = rows(Rel);
 3
 4
     bool[][] Rel = copy(Rel);
                                                           1 0 0 1 0
 5
     for(int v=0; v<n; v++){</pre>
                                                           1 0 1 0 1
       for(int i=0; i<n; i++){</pre>
 6
                                                       2 | 0 0 1 0 1
 7
         for(int j=0; j<n; j++){
                                                      3 | 0 1 0 0 0
           bool b = Rel[i][v] AND Rel[v][j];
 8
                                                       4 | 0 0 1 1 1
 9
           Rel[i][j] = Rel[i][j] OR b;
10
         }
       }
11
12
       // SHOW Rel HERE for v=0,1,2,...
13
14 } // Rel is now its transitive closure
```

SOLUTION: Iterations are shown below.

v=0 done 0 1 2 3 4	v=1 done 0 1 2 3 4	v=2 done 0 1 2 3 4	v=3 done 0 1 2 3 4	v=4 done 0 1 2 3 4
+	+	+	+	+
0 1 0 0 1 0	0 1 0 0 1 0	0 1 0 0 1 0	0 1 1 1 1 1	0 1 1 1 1 1
1 1 0 1 1 1	1 1 0 1 1 1	1 1 0 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1
2 0 0 1 0 1	2 0 0 1 0 1	2 0 0 1 0 1	2 0 0 1 0 1	2 1 1 1 1 1
3 0 1 0 0 0	3 0 1 1 1 1	3 0 1 1 1 1	3 1 1 1 1 1	3 1 1 1 1 1
4 0 0 1 1 1	4 0 0 1 1 1	4 0 0 1 1 1	4 1 1 1 1 1	4 1 1 1 1 1

Problem 3 (10 pts): Below is naive code which produces a topological sort of a directed acyclic graph (DAG). Show diagrams of how the code transforms the given DAG at each iteration by drawing its state line 8 of the code. Show your resulting topological sort of the vertices.

```
1 vertex[] topo_sort(graph G){
     int n = number_of_vertices(G);
 2
 3
     vertex order[] = new vertex[n];
     for(i=n-1; i>=0; i--){
 4
 5
       vmin = find a "minimal" vertex in G;
       order[i] = vmin;
 6
7
       G = remove vmin from G;
8
       // SHOW GRAPH HERE
9
10
     return order;
11 }
```



SOLUTION: Topological order $\{7,3,4,6,5,2,1\}$; a variety of other solutions possible.

