Name: 1D#: X500: Qumn.edu A

CS 2011: Practice Final SOLUTION
Summer 2018
University of Minnesota

Quiz period: 15 minutes

Points available: 30

Problem 1 (10 pts): Show that the two graphs below are not isomorphic to one another. Explain
your reasoning.

Uy Uy uj Us Ug Ug Vi Vo Vy Vs Ve Vg
@ @ @ @ [@ @ ®
M4 M7 V3 V7
Graph G Graph H

SOLUTION: The graphs have an equal number of vertices and edges and their distribution of vertex degrees
is identical. However, in G, the path uy,uz,us has degree sequence {1,2,3}. The only candidates that start
with degree 1 in H are vy, vs, vy, vg but no path with that degree sequence starting with these nodes has the
sequence desired.. Thus these two graphs are not isomorphic.

Problem 2 (10 pts): The code for Warshall’s algorithm to find the transitive closure of a relation is
given. Demonstrate this code on the relation which is shown as an adjacency matrix. Show the matrix
Rel each time line 12 is reached as indicated. For reference, the directed graph version is also shown.

bool[][] warshall_tc(bool Rel[]1[]) { initial Rel
assert(Rel is a square matrix); 01234

1

2 (1)

3 int n = rows(Rel); .

4 bool[l[] Rel = copy(Rel); 0110010 (e °)
5 for(int v=0; v<n; v++){ 1110101

6 for(int i=0; i<n; i++){

7 for(int j=0; j<n; j++){ 2100101

8 bool b = Rel[il [v] AND Rel([v][jl; 3101000 A

9 Rel[i]l [j] = Rel[il[j] OR b; 4100111 ‘Q (3)
10 }

11 }

12 // SHOW Rel HERE for v=0,1,2,...

13 }

14 } // Rel is now its transitive closure

SOLUTION: Iterations are shown below.

v=0 done v=1 done v=2 done v=3 done v=4 done
01234 01234 01234 01234 01234
Fo— o Fom o o ————
01l 10010 0]l 10010 01l 10010 ol 11111 ol 11111
1110111 1110111 1110111 1111111 1111111
2100101 2100101 2100101 2100101 2111111
3101000 3101111 3101111 3111111 3111111
4100111 4100111 4100111 4 111111 4111111

1A

Name:

Problem 3 (10 pts): Below is naive code which produces a topological sort of a directed acyclic graph (DAG).
Show diagrams of how the code transforms the given DAG at each iteration by drawing its state line 8 of the code.
Show your resulting topological sort of the vertices.

1 vertex[] topo_sort(graph G){
2 int n = number_of_vertices(G); ° o
3 vertex order[] = new vertex[n];

4 for(i=n-1; i>=0; i--){

5 vmin = find a "minimal" vertex in G;

6

7

8

order[i] = vmin; °

G = remove vmin from G;

// SHOW GRAPH HERE o o
9 1}
10 return order; o

b

SOLUTION: Topological order {7,3,4,6,5,2,1}; a variety of other solutions possible.

Remove Vert 1 Remove Vert 2 Remove Vert 5 Remove Vert 6 Remove Vert 4 Remove Vert 3

2A

