CS 2011: Practice Quiz 3 SOLUTION

Summer 2018 University of Minnesota

Quiz period: 15 minutes

Points available: 40

Use the following table of letter/number correspondences for encryption problems.

١		-+-		+-		-+-		+-		+-		-+-		+-		-+-		+-		+-		-+-		-+-		1
-	C)	1	1	2	1	3	1	4	1	5	1	6		7	1	8	1	9	1	10	-	11	1	12	1
-	P	1	В	1	C	1	D	1	E	1	F	1	G		Η	1	Ι	1	J	1	K	-	L	1	M	1
-		-+-		+-		+-		+-		+-		-+-		+		+-		+-		+-		-+-		-+-		۱.
- 1	13	3	14		15		16	1	17	1	18	1	19	Ī	20	1	21	1	22	1	23	1	24	1	25	
						-				-			19 T			-						-		-		-

Problem 1 (10 pts): Encrypt the following message using the Caesar cipher with the key provided.

• Message: ZEBRA

• Key: 8

• Show some work or full credit.

• Give the letters of the final encrypted message.

SOLUTION:

• $Z \equiv 25, 25 + 8 \mod 26 = 33 \mod 26 = 7 \equiv H$

• $E \equiv 4, 4+8 \mod 26 = 12 \mod 26 = 12 \equiv M$

• $B \equiv 1, 1+8 \mod 26 = 9 \mod 26 = 9 \equiv J$

• $R \equiv 17, 17 + 8 \mod 26 = 25 \mod 26 = 25 \equiv Z$

• $A \equiv 0, 0+8 \mod 26 = 8 \mod 26 = 8 \equiv I$

Encrypted message: HMJZI

Problem 2 (10 pts): Arrange the following functions in order of big-O growth rate right with slowest growing functions listed first.

(A) $2n^3 \log n$

(B) $5n(\log n)^2$

(C) 4n + n!

(D) $7\sqrt{n} + \log n$

(E) $3^n + n \log n$

SOLUTION:

• $(D) 7\sqrt{n} + \log n$

• (B) $5n(\log n)^2$

• $(A) 2n^3 \log n$

 $\bullet (E) 3^n + n \log n$

• (C) 4n + n!

Problem 3 (10 pts): Use a proof by induction to show that for integer n > 4, $2^n > n^2$. Clearly illustrate Base and Inductive Cases and identify the Inductive Hypothesis. SOLUTION:

BASE CASE: For n = 5, $2^5 = 32$ and $5^2 = 25$. Since 32 > 25 the property holds.

INDUCTION CASE:

- 1. Assume that for k, the inequality $2^k > k^2$ holds.
- 2. Show for k+1, the inequality $2^{k+1} > (k+1)^2$ holds.
- 3. Starting with the left side of the inequality transform as follows.

```
2^{k+1} = 2 \cdot 2^k Def of Exponentiation

> 2 \cdot k^2 By Inductive hypothesis (1)

> k^2 + 4k Because k \ge 5

> k^2 + 2k + 1 Because k \ge 5

= (k+1)^2 Factor polynomial
```

4. Have shown that left hand side of inequality is indeed larger than right hand side so induction case holds.

Problem 4 (10 pts): The algorithm complete(A) determines if array A of length N contains exactly the numbers 0, 1, 2, ..., N-1 in some order in which case true is returned. Otherwise, if some number is missing, false is returned.

Analyze the code below and give a big-O estimate of its worst-case runtime.

```
1: complete(A[] : int array){
 2:
      for(n=0; n<length(A); n++){</pre>
 3:
        found = false
         i = 0
 4:
        while(i < length(A)
 5:
               and found == false)
 6:
 7:
         {
           if(A[i] == n){
 8:
 9:
             found = true
           }
10:
11:
           i++;
12:
         if(found == false){
13:
           return false;
14:
        }
15:
16:
17:
      return true;
18: }
```

SOLUTION: The outer loop from line 2 to 16 iterates N times where N is the length of the array. The operations at lines 3 and 4 are constant time. The inner loop from lines 5 to 12 also runs for N iterations and each operation within the loop is constant time. These leads to the combined complexity of the loops being $O(N^2)$. In the worst case the algorithm will check for all values 0,1,...,(N-1). This means the overall runtime is $O(N^2)$.