
CSCI 2021: x86-64 Control Flow

Chris Kauffman

Last Updated:
Mon Mar 13 01:09:33 PM CDT 2023

1

Logistics

Reading Bryant/O’Hallaron
▶ Ch 3.6: Control Flow
▶ Ch 3.7: Procedure calls

Goals
▶ Procedure calls
▶ Stack Manipulation

Lab07 / HW07
▶ Assembly Coding and

debugging
▶ Chance to configure

assembly environment
▶ All techniques used in

Project 3
▶ Due Tue 14-Mar

P3 Due Wed 22-Mar
1. Clock ASM Functions
2. Binary Bomb via GDB

2

Announcements

Pi a Professor Fund Raiser
▶ $1.50 to vote on professors to pie in the face
▶ Proceeds to support K-12 STEM Education
▶ Cast Votes: https://z.umn.edu/PieAProf23

P3 Support in Lind 325

Date Event
Tue 14-Mar 6pm Tutorial Session
Wed 15-Mar 6pm Tutorial Session
Thu 16-Mar 6pm Tutorial Session
Tue 21-Mar 9-5pm Unified Office Hours
Wed 22-Mar 11:59pm P3 Due

3

https://z.umn.edu/PieAProf23

Control Flow in Assembly and the Instruction Pointer
Instruction Pointer Register
▶ %rip: special register (not

general purpose) referred to as
the Instruction Pointer or
Program Counter

▶ %rip contains main memory
address of next assembly
instruction to execute

▶ After executing an instruction,
%rip automatically updates to
the subsequent instruction
OR in a Jump instruction,
%rip changes non-sequentially

▶ Do not add/subtract with
%rip via addq/subq: %rip
automatically updates after
each instruction

Jump Instructions
▶ Labels in assembly indicate

jump targets like .LOOP:

▶ Unconditional Jump: always
jump to a new location by
changing %rip non-sequentially

▶ Comparison / Test:
Instruction, sets EFLAGS bits
indicating relation between
registers/values (greater, less
than, equal)

▶ Conditional Jump: Jumps to
a new location if certain bits of
EFLAGS are set by changing
%rip non-sequentially;
otherwise continues sequential
execution

4

Exercise: Loop Sum with Instruction Pointer (rip)
▶ Can see direct effects on

rip in disassembled code
▶ rip increases corresponding

to instruction length
▶ Jumps include address for

next rip

// C Code equivalent
int sum=0, i=1, lim=100;
while(i<=lim){
sum += i;
i++;

}
return sum;

00000000000005fa <main>:
ADDR HEX-OPCODES ASSEMBLY EFFECT ON RIP
5fa: 48 c7 c0 00 00 00 00 mov $0x0,%rax # rip = 5fa -> 601
601: 48 c7 c1 01 00 00 00 mov $0x1,%rcx # rip = 601 -> 608
608: 48 c7 c2 64 00 00 00 mov $0x64,%rdx # rip = 608 -> 60f

000000000000060f <LOOP>:
60f: 48 39 d1 cmp %rdx,%rcx # rip = 60f -> 612
612: 7f 08 jg 61c <END> # rip = 612 -> 614 OR 61c
614: 48 01 c8 add %rcx,%rax # rip = 614 -> 617
617: 48 ff c1 inc %rcx # rip = 617 -> 61a
61a: eb f3 jmp 60f <LOOP> # rip = 61a -> 60f

000000000000061c <END>:
61c: c3 retq # rip 61c -> return address

5

Disassembling Binaries
▶ Binaries hard to read on their own
▶ Many tools exist to work with them, notably objdump on Unix
▶ Can disassemble binary: show “readable” version of contents

> gcc -Og loop.s # COMPILE AND ASSEMBLE

> file a.out
a.out: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV),

> objdump -d a.out # DISASSEMBLE BINARY
a.out: file format elf64-x86-64
...
Disassembly of section .text:
...
0000000000001119 <main>:

1119: 48 c7 c0 00 00 00 00 mov $0x0,%rax
1120: 48 c7 c1 01 00 00 00 mov $0x1,%rcx
1127: 48 c7 c2 64 00 00 00 mov $0x64,%rdx

000000000000112e <LOOP>:
112e: 48 39 d1 cmp %rdx,%rcx
1131: 7f 08 jg 113b <END>
1133: 48 01 c8 add %rcx,%rax
1136: 48 ff c1 inc %rcx
1139: eb f3 jmp 112e <LOOP>

000000000000113b <END>:
113b: c3 retq

6

FLAGS: Condition Codes Register
▶ Most CPUs have a special register with “flags” for various

conditions: each bit is True/False for a specific condition
▶ In x86-64 this register goes by the following names

Name Width Notes
FLAGS 16-bit Most important bits in first 16
EFLAGS 32-bit Name shown in gdb
RFLAGS 64-bit Not used normally

▶ Bits in FLAGS register are automatically set based on results
of other operations

▶ Pertinent examples with conditional execution

Bit Abbrev Name Description
0 CF Carry flag Set if last op caused unsigned overflow
6 ZF Zero flag Set if last op yielded a 0 result
7 SF Sign flag Set if last op yielded a negative
8 TF Trap flag Used by gdb to stop after one ASM instruction
9 IF Interrupt flag 1: handle hardware interrupts, 0: ignore them

11 OF Overflow flag Set if last op caused signed overflow/underflow
7

Comparisons and Tests
Set the EFLAGS register by using comparison instructions

Name Instruction Examples Notes
Compare cmpX B, A cmpl $1,%eax Like if(eax > 1){...}

Like: A - B cmpq %rsi,%rdi Like if(rdi > rsi){...}
Test testX B, A testq %rcx,%rdx Like if(rdx & rcx){...}

Like: A & B testl %rax,%rax Like if(rax){...}

▶ Immediates like $2 must be the first argument B
▶ B,A are NOT altered with cmp/test instructions
▶ EFLAGS register IS changed by cmp/test to indicate less

than, greater than, 0, etc.
EXAMPLES:
movl $5, %eax # 5 = 0b0101
cmpl $1, %eax # [] 5-1=4 : No flags
cmpl $5, %eax # [ZF] 5-5=0 : Zero flag
cmpl $8, %eax # [SF] 5-8=-3 : Sign flag

testl $0b0110, %eax # [] 0101 & 0110 = 0100
testl $0b1010, %eax # [ZF] 0101 & 1010 = 0000

8

Jump Instruction Summary
All control structures implemented using combination of
Compare/Test + Jump instructions.

Instruction Jump Condition FLAGS
jmp LAB Unconditional jump -
je LAB Equal / zero ZF
jz LAB ZF
jne LAB Not equal / non-zero !ZF
jnz LAB !ZF
js LAB Negative (“signed”) SF
jns LAB Nonnegative !SF
jg LAB Greater-than signed !SF & !ZF
jge LAB Greater-than-equal signed !SF
jl LAB Less-than signed SF & !ZF
jle LAB Less-than-equal signed SF
ja LAB Above unsigned !CF & !ZF
jae LAB Above-equal unsigned !CF
jb LAB Below unsigned CF & !ZF
jbe LAB Below-equal unsigned CF
jmp *OPER Unconditional jump to -

variable address

9

Examine: Compiler Comparison Inversion

▶ Often compiler inverts
comparisons

▶ i < n becomes cmpX /
jge (jump greater/equal)

▶ i == 0 becomes cmpX /
jne (jump not equal)

▶ This allows “true” case to
fall through immediately

▶ Depending on structure,
may have additional jumps
▶ if(){ .. } usually has

a single jump
▶ if(){} else {} may

have a couple

Assembly translation of
if(rbx >= 2){
rdx = 10;
}
else{
rdx = 5;
}
return rdx;

cmpq $2,%rbx # compare: rbx-2
jl .LESSTHAN # goto less than
if(rbx >= 2){
movq $10,%rdx # greater/equal
}
jmp .AFTER

.LESSTHAN:
else{
movq $5,%rdx # less than
}

.AFTER:
rdx is 10 if rbx >= 2
rdx is 5 otherwise
movq %rdx,%rax
ret

10

Logical And / Or in Assembly
Logical boolean operators like a && b and x || y translate
sequences of compare/test instructions followed by conditional
jumps. See andcond_asm.s and nestedcond_asm.s

// andcond.c
int andcond(int edi){

int ecx;
if(edi >= 2 && edi <= 10){

ecx = 10;
}
else{

ecx = 5;
}
return ecx;

}

C Boolean expressions may “short
circuit”: never execute code associated
with later parts of the condition if early
part resolves conditional

andcond_asm.s
.text
.global andcond
andcond:

cmpl $2,%edi # compare: edi-2
jl .ELSE #
cmpl $10, %edi # compare: edi-10
jg .ELSE #

if(edi >= 2 && edi <= 10){
movl $10,%ecx # greater/equal
}
jmp .AFTER

.ELSE:
else{
movl $5,%ecx # less than
}

.AFTER:
movl %ecx,%eax
ret

11

Exercise: The test Instruction
1 main:
2 movl $0,%eax
3 movl $5,%edi
4 movl $3,%esi
5 movq $0,%rdx
6 movl $-4,%ecx
7
8 testl %edi,%edi
9 jnz .NONZERO
10 addl $20,%eax
11
12 .NONZERO:
13 testl %esi,%esi
14 jz .FALSEY
15 addl $30,%eax
16
17 .FALSEY:
18 testq %rdx,%rdx
19 je .ISNULL
20 addl $40,%eax
21
22 .ISNULL:
23 testl %ecx,%ecx
24 jns .NONNEGATIVE
25 addl $50,%eax
26
27 .NONNEGATIVE:
28 ret

▶ testl %eax,%eax uses bitwise
AND to examine a register

▶ Selected by compiler to check for
zero, NULL, negativity, etc.

▶ Followed by je / jz / jne /
jnz / js / jns

▶ Demoed in jmp_tests_asm.s
▶ Trace the execution
▶ Determine final value in %eax

12

Answers: The test Instruction
1 ### From jmp_tests_asm_commented.s
2 main:
3 movl $0,%eax # eax is 0
4 movl $5,%edi # set initial vals
5 movl $3,%esi # for registers to
6 movl $0,%edx # use in tests
7 movl $-4,%ecx
8
9 ## eax=0, edi=5, esi=3, edx=NULL, ecx=-4
10 testl %edi,%edi # any bits set?
11 jnz .NONZERO # jump on !ZF (zero flag), same as jne
12 ## if(edi == 0){
13 addl $20,%eax
14 ## }
15 .NONZERO:
16 testl %esi,%esi # any bits set?
17 jz .FALSEY # jump on ZF same as je
18 ## if(esi){
19 addl $30,%eax
20 ## }
21 .FALSEY:
22 testq %rdx,%rdx # any bits set
23 je .ISNULL # same as jz: jump on ZF
24 ## if(rdx != NULL){
25 addl $40,%eax
26 ## }
27 .ISNULL:
28 testl %ecx,%ecx # sign flag set on test to indicate negative results
29 jns .NONNEGATIVE # jump on !SF (not signed; e.g. positive)
30 ## if(ecx < 0){
31 addl $50,%eax
32 ## }
33 .NONNEGATIVE:
34 ret ## eax is return value

13

cmov Family: Conditional Moves
▶ Instruction family which copies data conditioned on FLAGS1

▶ Can limit jumping in simple assignments
cmpq %r8,%r9
cmovge %r11,%r10 # if(r9 >= r8) { r10 = r11 }
cmovg %r13,%r12 # if(r9 > r8) { r12 = r13 }

▶ Note flags set on all Arithmetic Operations
▶ cmpX is like subQ: both set FLAG bits the same
▶ Greater than is based on the SIGN flag indicating subtraction

would be negative allowing the following:
subq %r8,%r9 # r9 = r9 - r8
cmovge %r11,%r10 # if(r9 >= 0) { r10 = r11 }
cmovg %r13,%r12 # if(r9 > 0) { r12 = r13 }

1Other architectures like ARM have conditional versions of many
instructions like addlt r1, r2, r3 ; RISC V ditches the FLAGS register in
favor of jumps based on comparisons like BLT x0, x1, LOOP

14

Procedure Calls
Have seen basics so far:
main:

...
call my_func # call a function
arguments in %rdi, %rsi, %rdx, etc.
control jumps to my_func, returns here when done
...

my_func:
arguments in %rdi, %rsi, %rdx, etc.
...
movl $0,%eax # set up return value
ret # return from function
return value in %rax
returns control to wherever it came from

Need several additional notions
▶ Control Transfer to called function?
▶ Return back to calling function?
▶ Stack alignment and conventions
▶ Register conventions

15

Procedure Calls Return to Arbitrary Locations
▶ call instructions always

transfer control to start of
return_seven at line 4/5,
like jmp instruction which
modifies %rip

▶ ret instruction at line 6
must transfer control to
different locations

1. call-ed at line 11
ret to line 12

2. call-ed at line 17
ret to line 18

ret cannot be a normal jmp
▶ To enable return to multiple

places, record a Return
Address when call-ing, use
it when ret-urning

1 ### return_seven_asm.s
2 .text
3 .global return_seven
4 return_seven:
5 movl $7, %eax
6 ret ## jump to line 12 OR 18??
7 .global main
8 main:
9 subq $8, %rsp

10
11 call return_seven ## to line 5
12 leaq .FORMAT_1(%rip), %rdi
13 movl %eax, %esi
14 movl $0, %eax
15 call printf@PLT
16
17 call return_seven ## to line 5
18 leaq .FORMAT_2(%rip), %rdi
19 movl %eax, %esi
20 movl $0, %eax
21 call printf@PLT
22
23 addq $8, %rsp
24 movl $0, %eax
25 ret
26 .data
27 .FORMAT_1: .asciz "first: %d\n"
28 .FORMAT_2: .asciz "second: %d\n"

16

call / ret with Return Address in Stack
call Instruction

1. Push the “caller” Return
Address onto the stack
Return address is for
instruction after call

2. Change rip to first
instruction of the “callee”
function

ret Instruction
1. Set rip to Return Address

at top of stack
2. Pop the Return Address off

to shrink stack

0x400563
0x7fffffffe840

%rip
%rsp

(a) E x e c u t i n g c a l l

0x400568

(b) A f t e r c a l l (c) A f t e r r e t

0x400540
0x7fffffffe838

%rip
%rsp

0x400568
0x7fffffffe840

%rip
%rsp

Figure: Bryant/O’Hallaron Fig 3.26 demonstrates call/return in assembly 17

return_seven_asm.s 1/2: Control Transfer with call
BEFORE CALL
return_seven:

0x555555555139 <return_seven> mov $0x7,%eax �
0x55555555513e <return_seven+5> retq

main: ...
0x55555555513f <main> sub $0x8,%rsp �

=> 0x555555555143 <main+4> callq 0x555555555139 <return_seven> �
0x555555555148 <main+9> lea 0x2ee1(%rip),%rdi
0x55555555514f <main+16> mov %eax,%esi

(gdb) stepi
rsp = 0x7fffffffe450 -> call -> 0x7fffffffe448 # push on return address
rip = 0x555555555143 -> call -> 0x555555555139 # jump control to procedure

AFTER CALL
return_seven:
=> 0x555555555139 <return_seven> mov $0x7,%eax �

0x55555555513e <return_seven+5> retq

main: ...
0x55555555513f <main> sub $0x8,%rsp �
0x555555555143 <main+4> callq 0x555555555139 <return_seven> �
0x555555555148 <main+9> lea 0x2ee1(%rip),%rdi
0x55555555514f <main+16> mov %eax,%esi

(gdb) x/gx $rsp # stack grew 8 bytes with call
0x7fffffffe448: 0x0000555555555148 # return address in main on stack

18

return_seven_asm.s 2/2: Control Transfer with ret
BEFORE RET
return_seven:

0x555555555139 <return_seven> mov $0x7,%eax �
=> 0x55555555513e <return_seven+5> retq

main: ...
0x55555555513f <main> sub $0x8,%rsp �
0x555555555143 <main+4> callq 0x555555555139 <return_seven> �
0x555555555148 <main+9> lea 0x2ee1(%rip),%rdi
0x55555555514f <main+16> mov %eax,%esi

(gdb) x/gx $rsp
0x7fffffffe448: 0x0000555555555148 # return address pointed to by %rsp

(gdb) stepi # EXECUTE RET INSTRUCTION
rsp = 0x7fffffffe448 -> ret -> 0x7fffffffe450 # pops return address off
rip = 0x55555555513e -> ret -> 0x555555555148 # sets %rip to return address

AFTER RET
return_seven:

0x555555555139 <return_seven> mov $0x7,%eax �
0x55555555513e <return_seven+5> retq

main: ...
0x55555555513f <main> sub $0x8,%rsp �
0x555555555143 <main+4> callq 0x555555555139 <return_seven> �

=> 0x555555555148 <main+9> lea 0x2ee1(%rip),%rdi
0x55555555514f <main+16> mov %eax,%esi

(gdb) print $rsp --> $3 = 0x7fffffffe450
19

Warning: %rsp is important for returns

▶ When a function is about to return %rsp MUST refer to the
memory location of the return address

▶ ret uses value pointed to %rsp as the return address
▶ Segmentation Faults often occur if %rsp is NOT the return

address: attempt to fetch/execute instructions out of bounds
▶ Stack is often used to store local variables, stack pointer %rsp

is manipulated via pushX / subq instructions to grow the
stack.

▶ Before returning MUST shrink stack and restore %rsp to its
original value via popX / addq instructions

▶ There are computer security issues associated stack-based
return value we will discuss later

20

Messing up the Return Address
return_seven_buggy_asm.s
.text
.global return_seven
return_seven:

pushq $0x42 # push but no pop before returning
movl $7, %eax
ret # %rsp points to a 0x42 return address - BAD!

REG	VALUE		ADDRESS	VALUE	NOTE
-----+---------		---------+----------+-------------			
rax	7		0x77128	0x554210	Ret Address
rsp	0x77120	--->	0x77120	0x42	Pushed Val

> gcc -g return_seven_buggy_asm.s

> ./a.out
Segmentation fault (core dumped) ## definitely a memory problem

> valgrind ./a.out ## get help from Valgrind
...
==2664132== Jump to the invalid address stated on the next line
==2664132== at 0x42: ??? ## execute instruction at address 0x42??
==2664132== by 0x109149: ??? (return_seven_buggy_asm.s:18)
==2664132== Address 0x42 is not stack'd, malloc'd or (recently) free'd

Valgrind reports like this often indicate failure to restore the stack pointer as
happened here. If the stack grows, shrink it before returning. 21

Stack Alignment
▶ According to the strict x86-64 ABI, must align rsp (stack

pointer) to 16-byte boundaries when calling functions
▶ Will often see arbitrary pushes or subtractions to align

▶ Functions called with 16-byte alignment
▶ call pushes 8-byte Return Address on the stack
▶ At minimum, must grow stack by 8 bytes to call again

▶ rsp changes must be undone prior to return
main: # enter with at 8-byte boundary

subq $8, %rsp # align stack for func calls
...
call sum_range # call function
...
addq $8, %rsp # remove rsp change
ret

▶ Failing to align the stack may work but may break
▶ Failing to “undo” stack pointer changes will likely result in

return to the wrong spot : major problems

22

x86-64 Register/Procedure Convention
▶ Used by Linux/Mac/BSD/General Unix
▶ Params and return in registers if possible

Parameters and Return
RetVal rax / eax / ax / al
Arg 1 rdi / edi / di / dil
Arg 2 rsi / esi / si / sil
Arg 3 rdx / edx / dx / dl
Arg 4 rcx / ecx / cx / cl
Arg 5 r8 / r8d / r8w / r8b
Arg 6 r9 / r9d / r9w / r9b
Arg 7 Push into the stack
Arg 8 Push into the stack
… …

C function prototype indicates
number, order, type of args so it is
known which registers args will be in
int myfunc(char *cp,

int a, long b);

Caller/Callee Save
Caller save registers: alter freely

rax rcx rdx rdi rsi
r8 r9 r10 r11 # 9 regs

Callee save registers: must
restore these before returning

rbx rbp r12 r13 r14
r15 # 6 regs

Stack Pointer: special
considerations discussed in detail

rsp # 1 reg
23

Caller and Callee Save Register Mechanics

main: # main: the calleR
...
movq $21, %rdi # calleR save arg 1
movq $31, %rsi # calleR save arg 2
movq $41, %r10 # calleR save
movq $7, %rbx # calleE save
movq $11, %r12 # calleE save

call foo # foo: the calleE

| ? | %rdi | calleR save arg 1 |
| ? | %rsi | calleR save arg 2 |
| ? | %r10 | calleR save |
| 7 | %rbx | calleE save |
| 11 | %r12 | calleE save |

cmpq $21, %rdi # unpredictable
cmpq $7, %rbx # predictably equal

main MUST restore %rbx and %r12 to
original values as function above
main() expects them to be unchanged

CalleR Save Regs
May all change across
function call boundaries.
Not a problem for Leaf
Functions which do not call
any other funcs

CalleE Save Regs
Have the same values in them
after a function call
Using them requires saving
their original values in the
stack and restoring them

sumrange_asm.s
Full example of callee save
regs like sumrange_c.c 24

Pushing and Popping the Stack
▶ If local variables or callee save regs are needed on the stack,

can use push / pop for these
▶ Push and Pop Instructions are compound: manipulate %rsp

and move data in single instruction
pushX data Grow Stack, store data at top
pushq %rax Like: subq $8,%rsp; movq %rax,(%rsp)
pushl $24 Like: subq $4,%rsp; movq $25, (%rsp)

popX data Shrink Stack, restore data from it
popl %edi Like: movl (%rsp),%edi; addq $4,%rsp;
popq %rax Like: movq (%rsp),%rax; addq $8,%rsp;

main:
pushq %rbp # save register, aligns stack

like subq $8,%rsp; movq %rbp,(%rsp)
call sum_range # call function
movl %eax, %ebp # save answer
...
call sum_range # call function, ebp not affected
...
popq %rbp # restore rbp, shrinks stack

like movq (%rsp),%rbp; addq $8,%rsp
ret 25

Exercise: Local Variables which need an Address

Compare code in files
▶ swap_pointers.c : familiar C code for swap via pointers
▶ swap_pointers_asm.s : hand-coded assembly version

Determine the following
1. Where are local C variables x,y stored in assembly version?
2. Where does the assembly version “grow” the stack?
3. How are the values in main() passed as arguments to

swap_ptr()?
4. Where does the assembly version “shrink” the stack?

26

Exercise: Local Variables which need an Address

1 // swap_pointers.c
2 #include <stdio.h>
3
4 void swap_ptr(int *a, int *b){
5 int tmp = *a;
6 *a = *b;
7 *b = tmp;
8 return;
9 }
10
11 int main(int argc, char *argv[]){
12 int x = 19;
13 int y = 31;
14 swap_ptr(&x, &y);
15 printf("%d %d\n",x,y);
16 return 0;
17 }

1 # swap_pointers_asm.s
2 .text
3 .global swap_ptr
4 swap_ptr:
5 movl (%rdi), %eax
6 movl (%rsi), %edx
7 movl %edx, (%rdi)
8 movl %eax, (%rsi)
9 ret
10 .global main
11 main:
12 subq $8, %rsp
13 movl $19, (%rsp)
14 movl $31, 4(%rsp)
15 movq %rsp, %rdi
16 leaq 4(%rsp), %rsi
17 call swap_ptr
18
19 leaq .FORMAT(%rip), %rdi
20 movl (%rsp), %esi
21 movl 4(%rsp), %edx
22 movl $0, %eax
23 call printf@PLT
24
25 addq $8, %rsp
26 movl $0, %eax
27 ret
28 .data
29 .FORMAT:
30 .asciz "%d %d\n" 27

Answers: Local Variables which need an Address

1. Where are local C variables x,y stored in assembly version?
2. Where does the assembly version “grow” the stack?
3. How are the values in main() passed as arguments to swap_ptr()?

// C CODE
int x = 19, y = 31;
swap_ptr(&x, &y) // need main mem addresses for x,y

ASSEMBLY CODE
main: # main() function

subq $8, %rsp # grow stack by 8 bytes
movl $19, (%rsp) # move 19 to local variable x
movl $31, 4(%rsp) # move 31 to local variable y
movq %rsp, %rdi # address of x into rdi, 1st arg to swap_ptr()
leaq 4(%rsp), %rsi # address of y into rsi, 2nd arg to swap_ptr()
call swap_ptr # call swap function

4. Where does the assembly version “shrink” the stack?
addq $8, %rsp # shrink stack by 8 bytes
movl $0, %eax # set return value
ret

28

Diagram of Stack Variables
▶ Compiler determines if local variables go on stack
▶ If so, calculates location as rsp + offsets

1 // C Code: locals.c
2 int set_buf(char *b, int *s);
3 int main(){
4 // locals re-ordered on
5 // stack by compiler
6 int size = -1;
7 char buf[16];
8 ...
9 int x = set_buf(buf, &size);

10 ...
11 }

|-------+-------+--------------|
| REG | VALUE | Name |
|-------+-------+--------------|
| rsp | #1024 | top of stack |
| | | during main |
|-------+-------+--------------|
MEM		
...
#1031	h	buf[3]
#1030	s	buf[2]
#1029	u	buf[1]
#1028	p	buf[0]
#1024	-1	size
-------+-------+--------------		

1 ## EQUIVALENT ASSEMBLY
2 main:
3 subq $24, %rsp # space for buf/size and stack alignment
4 movl $-1,(%rsp) # retAddr:8, locals: 20, padding: 4, tot: 32
5 # initialize buf and size: main line 6
6 leaq 4(%rsp), %rdi # address of buf arg1
7 leaq 0(%rsp), %rsi # address of size arg2
8 call set_buf # call function, aligned to 16-byte boundary
9 movl %eax,%r8 # get return value

10 ...
11 addq $24, %rsp # shrink stack size 29

Summary of Procedure Calls: ABC() calls XYZ()
ABC() Caller callq XYZ # ABC to XYZ
XYZ() Callee retq # XYZ to ABC

1. ABC() “saves” any Caller Save registers it needs by either copying them into
Callee Save registers or pushing them into the stack

2. ABC() places up to 6 arguments in %rsi, %rdi, %rdx, ..., remaining
arguments in stack

3. ABC() ensures that stack is “aligned”: %rsp contains an address that is evenly
divisible by 16

4. ABC() issues the callq ABC instruction which (1) grows the stack by
subtracting 8 from %rsp and copies a return address to that location and (2)
changes %rip to the staring address of func

5. XYZ() now has control: %rip points to first instruction of XYZ()
6. XYZ() may issue pushX val instructions or subq N,%rsp instructions to grow

the stack for local variables
7. XYZ() may freely change Caller Save registers BUT Callee Save registers it

changes must be restored prior to returning.
8. XYZ() must shrink the stack to its original position via popX %reg or

addq N,%rsp instructions before returning.
9. XYZ() sets %rax / %eax / %ax to its return value if any.

10. XYZ() finishes, issues the retq instruction which (1) sets the %rip to the 8-byte
return address at the top of the stack (pointed to by %rsp) and (2) shrinks the
stack by doing addq $8,%rsp

11. ABC() function now has control back with %rip pointing to instruction after
call XYZ; may have a return value in %rax register

12. ABC() must assume all Caller Save registers have changed 30

History: Base Pointer rbp was Special Use

int bar(int, int, int);
int foo(void) {

int x = bar(1, 2, 3);
return x+5;

}

▶ 32-bit x86 / IA32 assembly used rbp and
rsp to describe stack frames

▶ All function args pushed onto the stack
when calling, changes both rsp and rbp

▶ x86-64: optimizes rbp to general purpose
register, not used for stack purposes

Old x86 / IA32 calling sequence: set both %esp and %ebp for function call
Push all argumnets into the stack
foo:

pushl %ebp # modifying ebp, save it
Set up for function call to bar()
movl %esp,%ebp # new frame for next function
pushl 3 # push all arguments to
pushl 2 # function onto stack
pushl 1 # no regs used
call bar # call function, return val in %eax
Tear down for function call bar()
movl %ebp,%esp # restore stack top: args popped
Continue with function foo()
addl 5,%eax # add onto answer
popl %ebp # restore previous base pointer
ret 31

