
CSCI 2021: x86-64 Assembly Extras and Wrap

Chris Kauffman

Last Updated:
Mon Mar 20 03:30:52 PM CDT 2023

1

Logistics
Reading Bryant/O’Hallaron
Read in Full
▶ Ch 3.7 Procedure Calls

Skim the following
▶ Ch 3.8-3.9: Arrays, Structs
▶ Ch 3.10: Pointers/Security
▶ Ch 3.11: Floating Point

Goals
⊠ Finish Assembly Control
⊠ Assembly vs C
⊟ Data in Assembly
□ Security Risks
□ Floating Point Instr/Regs

Date Event
Wed 15-Mar Asm Extras

Lab08: Asm Stack
Fri 17-Mar Asm Extras
Mon 20-Mar Asm Wrap-up
Tue 21-Mar Unified OH

Lind 325
Wed 22-Mar Proc Arch

Lab09: Review
P3 Due

Fri 24-Mar Proc Arch
Mon 27-Mar Proc Arch
Wed 29-Mar Practice Exam 2

Lab10: Timing
Fri 31-Mar Exam 2

Lab08 / HW08
▶ Stack and Function Calls
▶ “Stack Smashing”
▶ Binary Debugging

2

Announcements

Pi a Professor Fund Raiser
▶ $1.50 to vote on professors to pie in the face
▶ Proceeds to support K-12 STEM Education
▶ Cast Votes: https://z.umn.edu/PieAProf23

P3 Support in Lind 325

Date Event
Tue 14-Mar 6pm Tutorial Session
Wed 15-Mar 6pm Tutorial Session
Thu 16-Mar 6pm Tutorial Session
Tue 21-Mar 9-5pm Unified Office Hours

in Lind 325
Wed 22-Mar 11:59pm P3 Due

3

https://z.umn.edu/PieAProf23

Reminders of Techniques for Binary Bomb
GDB Tricks from Quick Guide to GDB

Command Effect
break *0x1248f2 Break at specific instruction address
break *func+24 Break at instruction with decimal offset from a label
break *func+0x18 Break at instruction with hex offset from a label
x $rax Print memory pointed to by register rax
x /gx $rax Print as “giant” 64-bit numbers in hexadecimal format
x /5gd $rax Print 5 64-bit numbers starting where rax points in decimal format

Disassembling Binaries: objdump -d prog > code.txt
>> objdump -d a.out # DISASSEMBLE BINARY
0000000000001119 <main>:

1119: 48 c7 c0 00 00 00 00 mov $0x0,%rax
1120: 48 c7 c1 01 00 00 00 mov $0x1,%rcx
1127: 48 c7 c2 64 00 00 00 mov $0x64,%rdx

000000000000112e <LOOP>:
112e: 48 39 d1 cmp %rdx,%rcx
1131: 7f 08 jg 113b <END>
1133: 48 01 c8 add %rcx,%rax

...
>> objdump -d a.out > code.txt # STORE RESULTS IN FILE

4

https://www-users.cse.umn.edu/~kauffman/tutorials/gdb

Exercise: All Models are Wrong…
▶ Rule #1: The Doctor Lies
▶ Below is our original model for memory layout of C programs
▶ Describe what is incorrect based on x86-64 assembly
▶ What is actually in the stack? How are registers likely used?

9: int main(...){ STACK: Caller main(), prior to swap()
10: int x = 19; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|

+-<12: swap(&x, &y); | main() | #2048 | x | 19 |
| 13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 |
| 14: return 0; |---------+-------+------+-------|
V 15: }
| STACK: Callee swap() takes control
| 18: void swap(int *a,int *b){ | FRAME | ADDR | NAME | VALUE |
+->19: int tmp = *a; |---------+-------+------+-------|

20: *a = *b; | main() | #2048 | x | 19 |<-+
21: *b = tmp; | line:12 | #2044 | y | 31 |<-|+
22: return; |---------+-------+------+-------| ||
23: } | swap() | #2036 | a | #2048 |--+|

| line:19 | #2028 | b | #2044 |---+
| | #2024 | tmp | ? |

5

Answers: All Models are Wrong, Some are Useful
9: int main(...){ STACK: Callee swap() takes control
10: int x = 19; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|

+-<12: swap(&x, &y); | main() | #2048 | x | 19 |
| 13: printf("%d %d\n",x,y); | | #2044 | y | 31 |
| 14: return 0; |---------+-------+------+-------|
V 15: } | swap() | #2036 | rip |Line 13|
| |---------+-------+------+-------|
| 18: void swap(int *a,int *b){ REGS as swap() starts
+->19: int tmp = *a; | REG | VALUE | NOTE |

20: *a = *b; |-----+-------+--------------|
21: *b = tmp; | rdi | #2048 | for *a |
22: return; | rsi | #2044 | for *b |
23: } | rax | ? | for tmp |

| rip | L19 | line in swap |

▶ main() must have stack space for locals passed by address
▶ swap() needs no stack space for arguments: in registers
▶ Return address is next value of rip register in main()
▶ Mostly don’t need to think at this level of detail but can be

useful in some situations
6

Accessing Global Variables in Assembly
Global data can be set up in assembly in .data sections with
labels and assembler directives like .int and .short
.data
an_int: # single int

.int 17
some_shorts: # array of shorts

.short 10 # some_shorts[0]

.short 12 # some_shorts[1]

.short 14 # some_shorts[2]

Modern Access to Globals
movl an_int(%rip), %eax
leaq some_shorts(%rip), %rdi

▶ Uses %rip relative addressing
▶ Default in gcc as it plays nice

with OS security features
▶ May discuss again later during

Linking/ELF coverage

Traditional Access to Globals
movl an_int, %eax # ERROR
leaq (some_shorts), %rdi # ERROR

▶ Not accepted by gcc by default
▶ Yields compile/link errors

/usr/bin/ld: /tmp/ccocSiw5.o:
relocation R_X86_64_32S against `.data'
can not be used when making a PIE object;
recompile with -fPIE

7

Aggregate Data In Assembly (Arrays + Structs)

Arrays
Usually: base + index × size
arr[i] = 12;
movl $12,(%rdi,%rsi,4)

int x = arr[j];
movl (%rdi,%rcx,4),%r8d

▶ Array starting address often
held in a register

▶ Index often in a register
▶ Compiler inserts appropriate

size (1,2,4,8)

Structs
Usually base+offset
typedef struct {

int i; short s;
char c[2];

} foo_t;
foo_t *f = ...;

short sh = f->s;
movw 4(%rdi),%si

f->c[i] = 'X';
movb $88, 6(%rdi,%rax)

8

Packed Structures as Procedure Arguments
▶ Passing pointers to structs is ’normal’: registers contain

addresses to main memory
▶ Passing actual structs may result in packed structs where

several fields are in a single register
▶ Assembly must unpack these through shifts and masking

1 // packed_struct_main.c
2 typedef struct {
3 short first;
4 short second;
5 } twoshort_t;
6
7 short sub_struct(twoshort_t ti);
8
9 int main(){
10 twoshort_t ts = {.first=10,
11 .second=-2};
12 int sum = sub_struct(ts);
13 printf("%d - %d = %d\n",
14 ts.first, ts.second, sum);
15 return 0;
16 }

1 ### packed_struct.s
2 .text
3 .globl sub_struct
4 sub_struct:
5 ## first arg is twoshort_t ts
6 ## %rdi has 2 packed shorts in it
7 ## bits 0-15 are ts.first
8 ## bits 16-31 are ts.second
9 ## upper bits could be anything

10
11 movl %edi,%eax # eax = ts;
12 andl $0xFFFF,%eax # eax = ts.first;
13 sarl $16,%edi # edi = edi >> 16;
14 andl $0xFFFF,%edi # edi = ts.second;
15 subw %di,%ax # ax = ax - di
16 ret # answer in ax

9

Example: coins_t in HW06 / Lab07
// Type for collections of coins
typedef struct { // coint_t has the following memory layout

char quarters; //
char dimes; // | | Pointer | Packed | Packed |
char nickels; // | | Memory | Struct | Struct |
char pennies; // | Field | Offset | Arg# | Bits |

} coins_t; // |----------+---------+--------+--------|
// | quarters | +0 | #1 | 0-7 |
// | dimes | +1 | #1 | 8-15 |
// | nickels | +2 | #1 | 16-23 |
// | pennies | +3 | #1 | 24-31 |

| #2048 | c->quarters | 2 |
| #2049 | c->dimes | 1 |
| #2050 | c->nickels | - |
| #2051 | c->pennies | - |

set_coins:
int set_coins(int cents, coins_t *coins)
%edi = int cents
%rsi = coints_t *coins
...
rsi: #2048
al: 0 %dl: 3
movb %al,2(%rsi) # coins->nickels = al;
movb %dl,3(%rsi) # coins->pennies = dl;

| #2048 | c->quarters | 2 |
| #2049 | c->dimes | 1 |
| #2050 | c->nickels | 0 |
| #2051 | c->pennies | 3 |

total_coins:
args are
%rdi packed coin_t struct with struct fields
{ 0- 7: quarters, 8-15: dimes,
16-23: nickels, 24-31: pennies}
...

rdi: 0x00 00 00 00 03 00 01 02
p n d q
movq %rdi,%rdx # extract dimes

rdx: 0x00 00 00 00 03 00 01 02
p n d q
sarq $8,%rdx # shift dimes to low bits

rdx: 0x00 00 00 00 00 03 00 01
p n d
andq $0xFF,%rdx # rdx = dimes

rdx: 0x00 00 00 00 00 00 00 01
p n d

10

Large Packed Structs
▶ Large structs that don’t fit

into single registers may be
packed across several
argument registers

▶ This is the case in P3

typedef struct{
int day_secs; // 4
short time_secs; // 2
short time_mins; // 2
short time_hours;// 2
char ampm; // 1+1 pad

} tod_t; // 12 bytes

int set_display_from_tod(tod_t tod, ...)
// ^^^ Large packed struct

Bits Shift
C Field Access Register in reg Required Size
tod.day_secs %rdi 0-31 None 4 bytes
tod.time_secs %rdi 32-47 Right by 32 2 bytes
tod.time_mins %rdi 48-63 Right by 48 2 bytes
tod.time_hours %rsi 0-15 None 2 bytes
tod.ampm %rsi 16-23 Right by 16 1 bytes

11

General Cautions on Structs
Struct Layout by Compilers
▶ Compiler honors order of

source code fields in struct
▶ BUT compiler may add

padding between/after fields
for alignment

▶ Compiler determines total
struct size

Struct Layout Algorimths
▶ Baked into compiler
▶ May change from

compiler to compiler
▶ May change through history

of compiler

Structs in Mem/Regs
▶ Local var structs spread

across several registers
▶ Don’t need a struct on the

stack at all in some cases
(just like don’t need local
variables on stack)

▶ Struct arguments packed
into 1+ registers

Stay Insulated
▶ Programming in C insulates

you from all of this
▶ Feel the warmth of gcc’s

abstraction blanket
12

Security Risks in C
Buffer Overflow Attacks
▶ No default bounds checking in C:

Performance favored over safety
▶ Allows classic security flaws:

char buf[1024];
printf("Enter you name:");
fscanf(file,"%s",buf); // BAD
// or
gets(buf); // BAD
// my name is 1500 chars
// long, what happens?

▶ For data larger than buf, begin
overwriting other parts of the stack

▶ Clobber return addresses
▶ Insert executable code and run it

Counter-measures
▶ Stack protection is default

in gcc in the modern era
▶ Inserts “canary” values on

the stack near return address
▶ Prior to function return,

checks that canaries are
unchanged

▶ Stack / Text Section
Start randomized by
kernel, return address and
function addresses difficult
to predict ahead of time

▶ Kernel may also vary virtual
memory address as well

▶ Disabling protections is risky
13

Stack Smashing
▶ Explored in a recent homework
▶ See stack_smash.c for a similar example
▶ Demonstrates detection of changes to stack that could be

harmful / security threat

// stack_smash.c
void demo(){

int arr[4]; // fill array off the end
for(int i=0; i<8; i++){

arr[i] = (i+1)*2;
}

for(int i=0; i<8; i++){
printf("[%d]: %d\n",i,arr[i]);

}
}

int main(){
printf("About to do the demo\n");
demo();
printf("Demo Complete\n");
return 0;

}

> cd 08-assembly-extras-code/
> gcc stack_smash1.c
> ./a.out
About to do the demo
[0]: 2
[1]: 4
[2]: 6
...
[7]: 16
*** stack smashing detected ***:
terminated
Aborted (core dumped)

14

Demonstration of Buffer Overflow Attack
▶ See the code buffer_overflow.c
▶ Presents an easier case to demo stack manipulations
▶ Prints addresses of functions main() and never()
▶ Reads long values which are 64-bits, easier to line up data in

stack than with strings; still overflowing the buffer by reading
too much data as in:
void always(){

long buf[1] = {0xABCD}; // room for 1
...
printf("Enter 4 hex values: ");
fscanf(stdin,"%lx %lx %lx %lx", // reads 4

&buf[0], &buf[1], &buf[2], &buf[3]);

▶ When compiled via
>> gcc -fno-stack-protector buffer_overflow.c

can get never() to run by entering its address as input which
will overwrite the return address

15

Sample Buffer Overflow Code

#include <stdio.h>
void print_all_passwords(){

...
}
int main(){

printf("file to open: ");
char buf[128];
fscanf(stdin,"%s",buf);
printf("You entered: %s\n",buf);

...;
return 0;
// By entering the correct length of string followed by the ASCII
// representation of the address of print_all_passwords(), one might
// be able to get that function when "return" is reached if there
// are no stack protection mechanisms at work ...
// (which was the case in 1999 on Windows :-)

}

16

Details of GCC / Linux Stack Security
▶ Programs compiled with GCC + Glibc on Linux for x86-64

will default to having stack protection
▶ This is can be seen in compiled code as short blocks near the

beginning and end of functions which
1. At the beginning of the function uses an instruction like movq

%fs:40, %rax and places a value in the stack beneath the
return address

2. At the end of the function again accesses %fs:40 and the
value earlier placed in the stack.

▶ The %fs register is a special segment register originally
introduced in the 16-bit era to surmount memory addressing
limitations; now used only for limited purposes

▶ The complete details are beyond the scope of our course BUT
▶ A somewhat detailed explanation has been added to

08-assembly-extras-code/stack_protect.org

17

https://en.wikipedia.org/wiki/X86_memory_segmentation

Floating Point Operations
▶ Original Intel 8086 Processor didn’t do floating point ops
▶ Had to buy a co-processor (Intel 8087) to enable FP ops
▶ Most modern CPUs support FP ops but they feel separate

from the integer ops: FPU versus ALU

x86-64 “Media” Registers
512 256 128-bits Use
%zmm0 %ymm0 %xmm0 FP Arg1/Ret
%zmm1 %ymm1 %xmm1 FP Arg2
… … … …
%zmm7 %ymm7 %xmm7 FP Arg 8
%zmm8 %ymm8 %xmm8 Caller Save
… … … …
%zmm15 %ymm15 %xmm15 Caller Save

▶ Can be used as “scalars” -
single values but…

▶ xmmI is 128 bits big holding
▶ 2 × 64-bit double’s OR
▶ 4 × 32-bit float’s

▶ ymmI / zmmI extend further

Instructions
vaddss %xmm2,%xmm4,%xmm0
xmm0[0] = xmm2[0] + xmm4[0]
Add Scalar Single-Precision

vaddps %xmm2,%xmm4,%xmm0
xmm0[:] = xmm2[:] + xmm4[:]
Add Packed Single-Precision
"Vector" Instruction

▶ Operates on single values or
“vectors” of packed values

▶ 3-operands common in more
“modern” assembly languages

18

Example: float_ops.c to Assembly
// float_ops.c: original C Code
void array_add(float *arr1, float *arr2, int len){

for(int i=0; i<len; i++){
arr1[i] += arr2[i];

}
}

>> gcc -S -Og float_ops.c
Minimal optimizations
array_add: ## 16 lines asm
.LFB0:

.cfi_startproc
movl $0, %eax
jmp .L2

.L3:
movslq %eax, %r8
leaq (%rdi,%r8,4), %rcx
movss (%rsi,%r8,4), %xmm0
addss (%rcx), %xmm0 ## add single
movss %xmm0, (%rcx) ## single prec
addl $1, %eax

.L2:
cmpl %edx, %eax
jl .L3
ret

>> gcc -S -O3 -mavx float_ops.c
Max optimizations, Use AVX hardware
array_add: ## 100 lines asm
...
.L5: ## vector move/adds

vmovups (%rcx,%rdx), %ymm1
vaddps (%rsi,%rdx), %ymm1, %ymm0
vmovups %ymm0, (%rcx,%rdx)
addq $32, %rdx
cmpq %rdi, %rdx
jne .L5

...

.L9: ## single move/adds
vmovss (%rcx,%rax), %xmm0
vaddss (%rsi,%rax), %xmm0, %xmm0
vmovss %xmm0, (%rcx,%rax)
addq $4, %rax
cmpq %rax, %rdx
jne .L9
ret 19

Floating Point and ALU Conversions
▶ Recall that bit layout of Integers and Floating Point numbers

are quite different (how?)
▶ Leads to a series of assembly instructions to interconvert

between types
file:float_convert.c

int eax = ...;
double xmm0 = (double) eax;
cvtsi2sdl %eax, %xmm0

double xmm1 = ...
long rcx = (long) xmm1;
cvttsd2siq %xmm0, %rax

▶ These are non-trivial conversions: 5-cycle latency (delay)
before completion, can have a performance impact on code
which does conversions

20

