
CSCI 2021: CPU Architecture Basics

Chris Kauffman

Last Updated:
Mon Mar 27 01:14:37 PM CDT 2023

1

Logistics
Reading Bryant/O’Hallaron
Ch 4: Architectures
▶ Skimming is OK
▶ Lecture: high-level coverage

Goals
▶ Circuits that Compute
▶ Basics of CPU Arch
▶ Pipelining

Assignments
▶ P3 Due
▶ Lab09: Reflection
▶ HW09: ASM Review

Date Event
Mon 20-Mar Asm Wrap-up
Tue 21-Mar Unified OH

Lind 325
Wed 22-Mar Proc Arch

Lab09: Review
P3 Due

Fri 24-Mar Proc Arch
Mon 27-Mar Proc Arch
Tue 28-Mar Lab09/HW09 Due
Wed 29-Mar Practice Exam 2

Lab10: Timing
Fri 31-Mar Exam 2

2

Announcements

Due Date for Lab09 Reflection
▶ Inadvertently set to end of day Wed 22-Mar
▶ Now set to Tue 28-Mar as normal
▶ Complete Reflection by next Tuesday for 1 EP

3

Machines that Compute

▶ Humans can perform
algorithms, sadly slow and
error-prone

▶ Want a machine which can
do this faster with fewer
errors

▶ Variety of machines have
been built over time and
technology to implement
them has changed rapidly

▶ The following are high-level
principles that haven’t
changed much

Bare Metal

Pure Abstraction

Wires

VHDL

Binary
Opcodes

Assembly C
C++, D

Java

Python, JS
Ruby, Shell

Prolog, Lisp
ML,Haskell

Bread
Board

Electrons

4

Logic Gates

▶ Abstract physical device that implements a Boolean function
▶ May be implemented with a variety of components including

transistors, mosfets, vacuum tubes, mechanical devices, and
water pressure

▶ Physical implementations have many trade-offs: cost, speed,
difficulty to manufacture, miniaturization potential, wetness

5

http://www.blikstein.com/paulo/projects/project_water.html

On Transistors

▶ Transistors come in a variety of flavors depending on the
materials/technology used to implement them

▶ Often the NAND gate is simplest to implement with
transistors1 but even that can

be done in several ways which requires additional knowledge of
digital electronics to grasp and is beyond the scope of this course.
Depending on the type of technology/materials used

1https://en.wikipedia.org/wiki/NAND_gate
6

https://en.wikipedia.org/wiki/NAND_gate

Combinatorial Circuits

▶ Combination of wires/gates with output solely dependent on
inputs entering circuit

▶ No storage of information involved / stateless
▶ Distinguished from sequential circuits which necessarily

introduce time and state
▶ Combinatorial circuits can compute any Boolean Function of

inputs
▶ Set inputs as 0/1
▶ After a (short) delay, outputs are set

▶ Examples: AND, OR, NOT are obvious

7

Exercise: Example Combinatorial Circuit

Calculate the Truth Table for the
circuit

A B C Out
0 0 0 ?
0 0 1 ?
0 1 0 ?
0 1 1 ?
1 0 0 ?
1 0 1 ?
1 1 0 ?
1 1 1 ?

▶ Speculate on the “meaning” of this circuit

8

Answer: Example Combinatorial Circuit

A B C Out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

A “majority” circuit: Out is 1 when two or more of A,B,C are 1

9

Exercise: Comparing Majority-3 Circuits

▶ Both upper and lower
circuits implement
Majority-3: Same truth table

▶ Which is better?
▶ What criteria for “better”

seems appropriate?

10

Answer: Comparing “Majority-3” Circuits

Criteria Upper Lower
Gate Kinds 2 3
Gate Count 4 8
Gate “Depth” 2 3
“Scalability” Low High

▶ “Scalability” is not
well-defined, roughly how to
“scale up” to majority 64

▶ Hardware designers spend
time trying to design
“better” circuits where
“better” involves many
criteria

11

Adders
▶ Obviously want computers to add stuff
▶ An adder is a circuit that performs addition

1-bit Half Adder

▶ “Adds” A and B
▶ S is the sum
▶ C is the carry
▶ Construct a Truth Table for

the circuit

1-bit Full Adder

▶ “Adds” A, B, and Cin

▶ S is the sum
▶ Cout is the carry out
▶ Carry In/Out used to string

adders together
12

Multi-bit Addition

Combine 4 full adders to get a
4-bit ripple carry adder

Easily extends to 32- or 64-bit
adders

Full Gate Layout

13

Multiplexers: MUX

▶ Used to “select” output
from several inputs

▶ 2N Inputs A,B,C,…
▶ N selection bits S0,S1,…
▶ Output will be one of inputs

“chosen” by selection bits
▶ Block diagram is a rectangle

or trapezoid with
inputs/outputs

▶ Will prove useful
momentarily

▶ 4-to-1 MUX

▶ 8-to-1 MUX

▶ 16-to-1 MUX

14

4-to-1 Multiplexer Circuit Diagram

▶ Variety of ways
to design a
MUX

▶ One shown
uses NAND
gates
exclusively

▶ Note output is
true when
selected input
is true

15

Arithmetic Logic Unit ALU: Select an Operation
▶ Combine some gates,

an adder, and a MUX
▶ Start having

something that looks
useful

▶ Input for multiple ops
like AND, OR, XOR,
ADD are
simulataneously
computed

▶ Select an “operation”
with selection bits,
really just selecting
which output to pass
through

16

ALU and FLAGS

▶ Block diagram for ALUs are usually a wedge shape
▶ Along with arithmetic/logic, ALU usually produces condition

codes which are among outputs from ALU
▶ ZF: zero flag
▶ OF: overflow flag
▶ SF: sign flag

▶ Used in other parts of CPU for conditional jumps/moves

17

Hardware Design in the Old Days
▶ Hardware design originally

done by hand
▶ Draw all the gates, transfer

it to technical drawing
material, peel, send, hope to
heaven that nothing gets
munged…

▶ Required tremendous
discipline, still had bugs

Ted Jenkins remembers working on the first Intel product, the
3101 64-bit RAM. Actually, the first version was only a 63-bit
RAM due to a simple error peeling one layer on the rubylith
(drawing medium).2

2Andrew Volk, Peter Stoll, Paul Metrovich, “Recollections of Early Chip
Development at Intel”, Intel Technology Journal Q1, 2001

18

https://www.intel.com/content/dam/www/public/us/en/documents/research/2001-vol05-iss-1-intel-technology-journal.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/research/2001-vol05-iss-1-intel-technology-journal.pdf

Modern Hardware Design: Specification Languages
▶ Modern design uses

hardware description
languages

▶ Verilog and VHDL pervasive,
describe behavior of circuit

▶ Synthesis: convert
description to gate layout
with constraints like “use
only NAND”

▶ Verification: simulate circuit
to ensure correctness

▶ The invention of computers
greatly accelerated
development of better
computers

VHDL for 4-bit ALU ^ & | +
library IEEE;
entity alu is
Port(A_IN : in signed(3 downto 0);

B_IN : in signed(3 downto 0);
OPER : in STD_LOGIC_VECTOR(1 downto 0);
OUTP : out signed(3 downto 0));

end alu;

architecture Behavioral of alu is
begin

process(A_IN, B_IN, OPER)
begin

case OPER is
when "00" =>

OUTP <= A_IN xor B_IN; --XOR gate
when "01" =>

OUTP <= A_IN and B_IN; --AND gate
when "10" =>

OUTP <= A_IN or B_IN; --OR gate
when "11" =>

OUTP <= A_IN + B_IN; --addition
end case;

end process;
end Behavioral;

19

Combinatorial vs Sequential Circuits
▶ Combinatorial circuits can

do lots of things BUT don’t
constitute a complete
programming system

▶ Need to represent state:
store values, make future
values depend on past state

▶ Sequential circuits
introduce the notion of time
and state to allow actual
computation

▶ Most actual machines are
state machines in some class
like push-down automata or
Turing machines (studied in
2011 and 4011)

The class of problems that can
be solved grows with more
powerful machines.

20

Clock Circuits
▶ To move beyond combinatorial circuits,

need a way to measure time
▶ A Clock Circuit does this
▶ Provides an oscillating signal of high/low

voltages at a fixed frequency

▶ Physical device: often quartz crystal which contracts when voltage is
applied (electrostriction), expands when released

▶ Manufactured to have different periods/frequencies
▶ Circuitry attached to crystal causes oscillation at crystal’s resonant

frequency; circuitry can increase/decrease output frequency

21

Examine: A Strange Circuit: SR Latch

▶ This one should bug you a
little - why?

▶ Try computing a Truth
Table for it…

22

Answers: A Strange Circuit: SR Latch

▶ SR Latch uses feedback to
store one bit which is
output as Q

▶ Truth Tables less relevant
than State Transition
Table

▶ Shows what the next state
will be based on previous
state

▶ Inputs and Outputs
▶ S is for “SET”
▶ R is for “RESET”
▶ Q is current stored value
▶ Qnext is new stored value

State Transition Table
S R Qnext Action
0 0 Q hold state
0 1 0 reset
1 0 1 set
1 1 X not allowed

23

Storage via Latches ≈ Flip-Flops

Specific combinations of latches yield the following nice properties
▶ Store a bit of information so long as power is supplied (not

shown in diagrams)
▶ Constantly output the stored bit
▶ Change the bit on certain inputs
▶ Only change stored bit during the rising edge of an input

signal - the clock tick
▶ Often referred to as a Flip Flop, commonly a rising edge

flip-flop3

▶ Latches/Flip Flops can serve as a basis for registers

3There is no agreement on whether latches and flip-flops are the same or
different so take care to understand context if going deeper. Relation above is
adopted from some textbooks on digital design.

24

Example: Master Slave SR Flip-Flop and Timing
▶ Shows how a flip-flop

(combination of two
latches) stores a bit

▶ Set to 1: S=1, R=0
▶ Set to 0: S=0, R=1

State Transition Table
S R Qnext Action
0 0 Q hold state
0 1 0 reset
1 0 1 set
1 1 X not allowed

et

eset

lock

Latch 1 Latch 2

Q=??
Q=1 Q=0

R=0 R=0R=1

S=0 S=0S=1

Set Reset

25

Registers: a form of Static RAM (SRAM)

▶ Combine 4 flip-flops (each
storing one bit) and one has
a 4-bit register: circuitry
that holds a changeable
multi-bit quantity

▶ Combine more flip-flops to
get larger registers, 8- 16-
32- 64-bit

▶ Combine several registers
with some access control
circuitry (multiplexers) and
one has a register file
containing %rax %rbx ...
%r15

Typical register file allows
simultaneous
▶ read from two regs
▶ write to one reg

Register File with 4 registers, each with 4 bits

26

Register File with 16 Regs X 16 Bits + I/O

Source: Mostafa Khatib “Aging Analysis of Datapath Sub-blocks Based on CET Map Model for Negative Bias
Temperature Instability (NBTI)”, Masters of Science Thesis, Center for Materials and Microsystems, Trento, Italy

January 2014
27

https://www.researchgate.net/publication/269818702_Aging_Analysis_of_Datapath_Sub-blocks_Based_on_CET_Map_Model_for_Negative_Bias_Temperature_Instability_NBTI
https://www.researchgate.net/publication/269818702_Aging_Analysis_of_Datapath_Sub-blocks_Based_on_CET_Map_Model_for_Negative_Bias_Temperature_Instability_NBTI
https://www.researchgate.net/publication/269818702_Aging_Analysis_of_Datapath_Sub-blocks_Based_on_CET_Map_Model_for_Negative_Bias_Temperature_Instability_NBTI

Other Registers/CPU Memory of Note (SRAM)
Instruction Memory/Cache
Fast access to binary opcodes of program text
Program Counter (rip)
Position in instruction memory
Intermediate Results
For internal communication between different parts of the CPU to
facilitate pipelining, usually accessible in assembly language
Some Memory Caches
Small, fast cache of main memory close to the cpu has similar
circuitry to register file
NOT “Main Memory”
▶ While fast, SRAM is expensive in terms of transistors/space
▶ DRAM (dynamic RAM) is slower but compact and cheap

enough to scale to gigabytes (will discuss DRAM soon)
28

The Full Shebang
▶ Connect an Clock, ALU, and

Register file, and you’ve got
a quasi-computer

▶ Add some instruction
decoding, a place to store
instructions, and perhaps
some main memory and a
full computer is born

▶ Must specify exact encoding
of instructions so that
signals between gates/units
are routed correctly

▶ Note that processor design
to the right is broken into
stages to help
understanding

29

Exercise: Timing Problems

▶ Each gate creates a delay: time before output to stabilizes
based on new inputs

▶ Inputs are “allowed” to change on the clock signal’s rising
edge

▶ Simplest sequential implementation sets clock frequency slow
enough for outputs to stabilize each cycle (tick)

▶ Easy to do, but… it’s slow

Increasing Efficiency
Propose two ways that a complex, multi-part process can be
completed faster
▶ Draw from experience/knowledge
▶ Think manufacturing, group projects, car wash, Chipotle…

30

Answer: Timing Problems
General solutions to process speed are familiar to all of us

Assembly Line

▶ Break single instruction into
multiple “stages” which
must all complete

▶ Pipelined processors
execute stages
simultaneously

Multiple Resources

▶ Implement multiple
functional units and do
instructions in parallel

▶ Superscalar processors (and
parallel processors)

31

Pipelining for Efficiency

▶ Break up processor into
“stages” which feed into
each other

▶ Individual instructions like
addl %ecx, %eax go
through each stage

▶ Instruction completes
(retires) when all stages
complete

▶ Begin next instruction
when previous clears first
stage

▶ Some multi-cycle operations
like multiplication may be
pipelined as well

A.1 B.1 C.1

A.2 B.2 C.2

A.3 B.3 C.3

Time

Op1

Op2

Op3

Clock

ABC.1

Time

Op1

Op2

Op3

ABC.2

ABC.3

High
Frequency

Clock
Low

Frequency

Finish

Finish

Sequential

3-Stage Pipeline

32

Y86-64: Textbook Processor SEQ vs PIPE

▶ Textbook discusses 5-stages of a simple CPU design
1. Fetch next PC
2. Decode instruction
3. Execute instruction
4. Main Memory operations
5. Write-back to register file

▶ Diagrams and Hardware Description Language for
▶ SEQ: sequential implementation
▶ PIPE: pipelined version of processor

PIPE Version
▶ Each of 5 stages happens in parallel
▶ Up to 5 instructions in flight
▶ Introduces internal registers to facilitate pipeline

33

Y86-64 SEQ sequential Y86-64 PIPE 5-stage pipeline

34

Pipelines Aren’t All that and a Bag of Chips
▶ Pipelining is effective with predictable control flow and

independent instructions
▶ Cases exist in which this doesn’t play out: pipeline hazards

Data Interdependencies
INDEPENDENT
imull $3, %eax # mul and add
addl $1, %edx # different reg

DEPENDENT: "Hazard"
imull $3, %eax # mul and add
addl $1, %eax # same reg

▶ Dependencies between
register results break the
pipeline

▶ Must serialize instructions
(sequential execution)

Branching
.LOOP:

addl %edx,%eax
addl $1, %ecx
cmp %esi,%ecx
jl .LOOP # which instruction
popq %rbx # next? "hazard"

▶ Modern Processors use
branch prediction to guess
the next instruction

▶ Incorrect guesses lead to
restarting the pipeline

35

Superscalar Block Diagram

Source: Kilo-Instruction Processors: Overcoming the Memory Wall by Cristal et al.

Note several ALUs, separate queues for different instructions,
asynchronous execution of instructions

36

https://www.researchgate.net/publication/3215476_Kilo-Instruction_Processors_Overcoming_the_Memory_Wall

Superscalar Processing
▶ Modern processors may have

several functional units to
do arithmetic, logic, other
ops

▶ Allows instruction-level
parallelism: do two things
simultaneously

▶ Example:
SEQ 1: Multiply only
imull $3, %eax

SEQ 2: Multiply and Add
imull $3, %eax
addl $5, %edx

▶ SEQ 1 and SEQ 2 may take
the same amount of time

▶ Separate mult/add units
used simultaneously

▶ Instruction parallelism
automatically done at the
hardware level leading to
naming conventions for
processors:
▶ “Scalar”: sequential only,

one thing at a time
▶ “Superscalar”:

automatic instruction
parallelism, no explicit
control

▶ “Parallel”: explicit
instructions that do
multiple things
simultaneously

▶ Modern processors are an
amalgam of the above

37

Modern Processors are Weird
Assembly Code as an Interface
▶ Assembly/Binary Opcodes are a target for high level languages
▶ Modern processors execute these, guarantee correctness BUT

make no guarantees about how or in what order
▶ Most use very deep pipelines which must be “fed” to keep

speed high
▶ Has led to exotic processor designs with speculative and out

of order execution: keep things in the pipeline
▶ This hasn’t always gone well: Meltdown / Spectre

Lab10 + HW10: Timing Arithmetic Codes
▶ Leads to surprising results
▶ Explainable by considering CPU is pipelined and superscalar
▶ Timing results vary with different Cups

38

https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)

Pipeline + Superscalar VS Multi-Core / Multi-Thread
▶ An individual processor or “core” is capable of executing a stream

of assembly instructions, a program
▶ Individual cores have hardware-level parallelism to speed up

execution of that stream of instructions
▶ Superscalar features, Deep Pipeline

▶ No programmer effort required to get speedup from hardware
▶ Most modern processors also have multiple cores
▶ Each core can executes its own stream of assembly instructions, can

run multiple programs simultaneously OR through use of threads
can use multiple processors for same program

▶ Multi-threaded programs are studied in CSCI 4061 (required for
CSCI majors, 2021 is a pre-req)

39

Additional Resources the Architecture-Inclined

Building an 8-bit breadboard computer! by Ben Eater
(Youtube)
▶ Discusses many components we briefly touched on in more

detail with a very practical bent of using them
▶ Results in a full CPU + Memory system that you can “see”
▶ A great introduction to components, breadboards, and general

small electronics work

MIT 6.004 Computation Structures, Spring 2017 (Youtube)
▶ Much deeper detail on many aspects of CPU design
▶ Includes discussion of Multiplier circuits, power considerations,

etc.

40

https://www.youtube.com/playlist?list=PLowKtXNTBypGqImE405J2565dvjafglHU
https://www.youtube.com/playlist?list=PLowKtXNTBypGqImE405J2565dvjafglHU
https://www.youtube.com/playlist?list=PLUl4u3cNGP62WVs95MNq3dQBqY2vGOtQ2

