CSCI 2021: Memory Systems

Chris Kauffman

Last Updated: Mon Apr 10 04:44:24 PM CDT 2023

Logistics

Reading Bryant/O'Hallaron

- Ch 4: Finish / Skim
- Ch 6: Memory

Assignments

- Lab/HW 11: Timing Memory Strides
- Lab/HW 12: Code Optimizations
- P4 on the Horizon

Goals

- Finish Arch
- Timing code
- Cache Basics + Details
- 2D arrays + Cache
- Permanent Storage

Announcements

None

Architecture Performance

```
// LOOP 1
for(i=0; i<iters; i++){</pre>
  retA += delA;
  retB += delB;
}
*start = retA+retB;
// LOOP 2
for(i=0; i<iters; i++){</pre>
  retA += delA:
  retA += delB;
}
*start = retA;
```

From Lab10 + HW10
LOOP1 or LOOP2 faster?
Why?

Measuring Time in Code

- Measure CPU time with the standard clock() function; measure time difference and convert to seconds
- Measure Wall (real) time with gettimeofday() or related functions; fills struct with info on time of day (duh)

```
CPU Time
                                              Real (Wall) Time
#include <time.h>
                                              #include <svs/time.h>
clock t begin, end;
                                              struct timeval tv1. tv2:
begin = clock(); // current cpu moment
                                              gettimeofday(&tv1, NULL); // early time
do something();
                                              do something():
end = clock(): // later moment
                                              gettimeofday(&tv2, NULL); // later time
double cpu_time =
                                              double wall time =
  ((double) (end-begin)) / CLOCKS PER SEC;
                                                ((tv2.tv sec-tv1.tv sec)) +
                                                ((tv2.tv usec-tv1.tv usec) / 1000000.0);
```

Exercise: Time and Throughput

```
Consider the following simple
loop to sum elements of an array
from stride_throughput.c
int *data = ...; // global array
int sum_simple(int len, int stride){
 int sum = 0;
 for(int i=0; i<len; i+=stride){</pre>
    sum += data[i];
 }
 return sum;
}
int main(){
  ...;
 int x1 = sum_simple(n,1);
 int x2 = sum_simple(n,2);
 int x3 = sum_simple(n,3);
 // total time for each stride?
 // throughput for each stride?
}
```

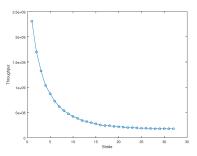
- Param stride controls step size through loop
- Interested in two features of the sum_simple() function:
 - 1. Total Time to complete
 - 2. Throughput:

 $Throughput = \frac{\#Additions}{Second}$

- How would one measure and calculate these two in a program?
- As stride increases, predict how Total Time and Throughput change

Answers: Time and Throughput

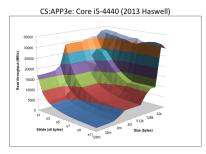
Measuring Time/Throughput

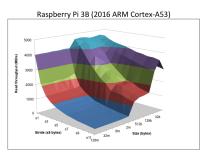

```
throughput = ((double) length) /
    stride /
    cpu_time;
```

Time vs Throughput

As stride increases...

- Time decreases: doing fewer additions (duh)
- Throughput decreases


Plot of Stride vs Throughput



- Stride = 1: consecutive memory accesses
- Stride = 16: jumps through memory, more time

Memory Mountains from Bryant/O'Hallaron

- Varying stride for a fixed length leads to decreasing performance, 2D plot
- Can also vary length for size of array to get a 3D plot
- Illustrates features of CPU/memory on a system
- The "Memory Mountain" on the cover of our textbook
- What interesting structure do you see?

Increasing Efficiency

- Can increase the efficiency of loop summing with tricks
- B/O'H use multiple accumulators: multiple variables for summing
- Facilitates pipelining / superscalar processor
- Code is significantly faster BUT less readable
- This optimization can be performed by the compiler, will discuss later (among the many gcc optimization options, ~67 pages)

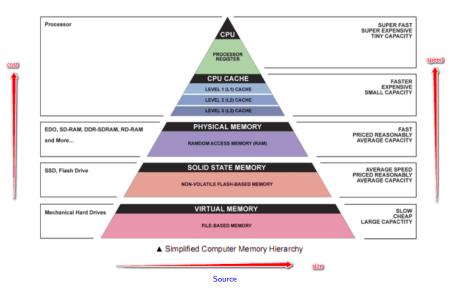
```
// From Brvant/O'Hallaron
int sum add4(int elems, int stride){
  int i,
    sx1 = stride*1, sx2 = stride*2,
    sx3 = stride*3, sx4 = stride*4,
    acc0 = 0, acc1 = 0,
    acc2 = 0, acc3 = 0;
  int length = elems;
  int limit = length - sx4;
  /* Combine 4 elements at a time */
  for (i = 0; i < limit; i += sx4) {
    acc0 = acc0 + data[i];
    acc1 = acc1 + data[i+sx1];
    acc2 = acc2 + data[i+sx2];
    acc3 = acc3 + data[i+sx3]:
```

```
}
```

```
/* Finish any remaining elements */
for (; i < length; i += stride) {
    acc0 = acc0 + data[i];
}
return acc0+acc1+acc2+acc3;
}</pre>
```

Cache Favors Temporal and Spatial Locality

- In the beginning, there was only CPU and Memory
- Both ran at about the same speed (same clock frequency)
- CPUs were easier to make faster, began outpacing speed of memory
- Hardware folks noticed programmers often write loops like


```
for(int i=0; i<len; i++){
   sum += array[i];
}</pre>
```

which exhibits two Memory Locality features

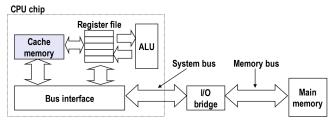
- Temporal Locality: memory recently used likely to be used again soon (like sum and i used in every loop iteration)
- Spatial Locality: memory near to recently used memory likely to be used (like arr[0] first then arr[1],arr[2])

Register file and Cache were developed to exploit locality

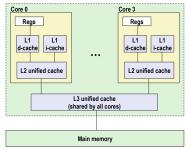
The Memory Pyramid

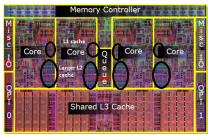
Numbers Everyone Should Know

 "Main Memory" is comprised of many different physical devices that work together and have differing sizes/speeds


Accessing memory at #4096 may involve some or all of...

- Several Levels of Cache Memory on CPU (SRAM)
- DRAM memory on separate chips
- Permanent storage (SSDs and HDDs)
- Edited Excerpt of Jeff Dean's talk on data centers.


Reference	Time	Analogy
Register	-	Your brain
L1 cache reference	0.5 ns	Your desk
L2 cache reference	7 ns	Neighbor's Desk
DRAM memory reference	100 ns	This Room
Disk seek	10,000,000 ns	Salt Lake City


Big-O Analysis does NOT capture these; proficient programmers do

Diagrams of Memory Interface and Cache Levels

Source: Bryant/O'Hallaron CS:APP 3rd Ed.

Source: SO "Where exactly L1, L2 and L3 Caches located in computer?"

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Why isn't Everything Cache?

Metric	1985	1990	1995	2000	2005	2010	2015	2015/1985
SRAM \$/MB	2,900	320	256	100	75	60	25	116
SRAM access (ns)	150	35	15	3	2	1.5	1.3	115
DRAM \$/MB	880	100	30	1	0.1	0.06	0.02	44,000
DRAM access (ns)	200	100	70	60	50	40	20	10

Source: Bryant/O'Hallaron CS:APP 3rd Ed., Fig 6.15, pg 603

1 bit SRAM = 6 transistors

1 bit DRAM = 1 transistor + 1 capacitor

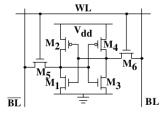


Figure 2.4: 6-T Static RAM

Figure 2.5: 1-T Dynamic RAM

"What Every Programmer Should Know About Memory" by Ulrich Drepper, Red Hat, Inc.

Cache Principles: Hits and Misses

CPU-Memory is a Client-Server

- CPU makes requests
- Memory system services request as fast as possible

Cache Hit

- CPU requests memory at address 0xFFFF1234 be loaded into register %rax
- Finds valid data for 0xFFFF1234 in L1 Cache: L1 Hit
- Loads into register fast

Cache Miss

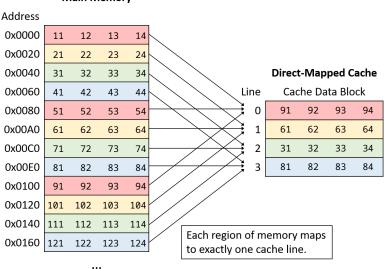
- CPU requests memory at address 0xFFFF7890 be loaded into register %rax
- 0xFFFF7890 not in L1 Cache: L1 Miss
- Search L2: if found move into L1, then %rax
- Search L3: if found move into L2, L1, %rax
- Search main memory: if found, move into caches, if not...

Wait, how could 0xFFFF7890 not be in main memory... ?

Types of Cache Misses

Compulsory "Cold" Miss: Program Getting Started

- All cache entries start with valid=0: cache contains leftover garbage from previous program runs
- After the cache "warms up" most entries will have Valid=1, data for running program


Capacity Miss: Data Too Big to Fit

- Working set is set of memory being frequently accessed in a particular phase of a program run
- Large working set may exceed the size of a cache causing misses

Conflict Miss: This Stall Occupied

- Internal placement policy of cache dictates where data goes
- If two needed piece of data both go to the same position in cache, leads to misses as they overwrite each other

Diagram of Direct Mapped Cache

Main Memory

Source: Dive into Systems dot org, with modifications

Memory Address Determines Location in a Cache

Cache is like a Hash Table

- Cache has a # of Sets which can hold a copy of Main Memory
- Each Main Memory address has some bits indicating
 - Set where in cache data should go
 - Tag identifier to track what's in cache
- Each cache Set can hold 1 or more Lines of data with a specific Tag
- Main Memory divides into cache Blocks which share Tag/Set and move in/out of cache together

Address Bits to Cache Location

- Bits from address determine location for memory in cache
- Direct-Mapped cache, 4 sets and 16 byte blocks/lines

 0x20 in the same line, will also be loaded int set #2

Exercises: Anatomy of a Simple CPU Cache

MA	MAIN MEMORY						
T	Addr	T	Addı	r Bit	ts	Ι	Value
-		+-				-+	+
T	00	T	00	00	0000	Ι	331
T	08	T	00	00	1000	Ι	332
T	10	T	00	01	0000	Ι	333
T	18	T	00	01	1000	Ι	334
T	20	T	00	10	0000	Ι	335
T	28	T	00	10	1000	Ι	336
T	30	T	00	11	0000	Ι	337
T	38	T	00	11	1000	Ι	338
T		T	•••			Ι	1
T	CO	T	11	00	0000	Ι	551
L	C8	L	11	00	1000	Ι	552
L	DO	L	11	01	0000	Ι	553
T	D8		11	01	1000	Ι	554
L	EO	L	11	10	0000	Ι	555
T	E8	T	11	10	1000	Ι	556
L	FO	I.	11	11	0000	T	557
L	F8	I.	11	11	1000	T	558
-		-+-				-+	+
I		I	Tag	${\tt Set}$	Offset	I	I

		Block	s/Line
V	Tag	0-7	8-15
++		+	
	-	-	
1	00	333	334
1	11	555	556
1	00	337	338
+4		+	
		0-7	8-15
-MAPF	PED Ca	che	
ct-ma	apped:	1 Line	per Set
·			offset
ts =	2-bit	index	
			0
l Cad	che Si	ze = 64	bytes
sets	* 16	bytes	
R MIS	SES?	Show ef:	fects
d OxO)8		
d OxF	70		
d Ox1	8		
	+ 0 1 1 1 + 1 1	0 - 1 00 1 11 1 00 1 11 -MAPPED Ca ct-mapped: yte lines ts = 2-bit t Address 1 Cache Si sets * 16	V Tag 0-7 +++

Answers: Anatomy of a Simple CPU Cache

MAIN MEM Addr			: Bit	s	I	Value
+	+-				+.	+
00		00	00	0000	I.	331
08		00	00	1000	Ι	332
10		00	01	0000	L	333
18		00	01	1000	Т	334
20		00	10	0000	Т	335
28		00	10	1000	Т	336
30		00	11	0000	Т	337
38		00	11	1000	T	338
					T	1
C0		11	00	0000	T	551
C8		11	00	1000	T	552
D0		11	01	0000	T	553
D8		11	01	1000	Т	554
E0		11	10	0000	T	555
E8		11	10	1000	T	556
F0		11	11	0000	T	557
F8		11	11	1000	Ì.	558 I
	+-				+-	+
i I		Tag	Set	Offset	I	I.

CACHE				
I			Block	s/Line
Set	V	Tag	0-7	8-15
	++	+		
00	1	*00	331	332
01	1	00	333	334
10	1	11	555	556
11	1	*11	557	558 I
	++	+		
i		1	0-7	8-15 I
DIRECT	-MAPF	ED Cac	he	
- Dire	ct-ma	pped:	1 line	per set
- 16-b	yte l	ines =	4-bit	offset
- 4 Set	ts =	2-bit	index	
- 8-bi	t Add	ress =	2-bit	tag
			e = 64	-
		* 16 b		5
			5	
HITS O	R MIS	SES? S	show ef	fects
1. Load	d OxO	8: MIS	S to s	et 00
2. Load	d OxF	O: MIS	S over	write
		set	: 11	
3. Load	d 0x1	8: HIT	' in s	et 01
		no	change	
			80	

Direct vs Associative Caches

Direct Mapped

One line per set

 Set	l I V	 Tag	Bloc 0-7	ks/Line 8-15	
	-+	0	-+		i
00	0	-	-		İ
01	1	00	333	334	L
10	1	11	555	556	L
11	1	00	337	338	L
	-+	-+	+		L
	Sim	ole circ	0-7	8-15	I
	շուր		Juiliy		

- Conflict misses may result: 1 slot for many possible tags
- Thrashing: need memory with overlapping tags

	-++-	+		I
01	1	00 333	334	Line1
1	1	11 553	554	Line2
	-++-	+		
10	1	11 555	556	Line1
1	0	- -		Line2
	-++-	+		
11	1	00 337	338	Line1
1	1	11 557	558	Line2
	-++-	+		I
•		ex circuitry		•

 Requires an eviction policy, usually least recently used

```
How big is your cache? Check Linux System special Files
                                         Detailed Hardware Info
  1scpu Utility
                                         Files under /sys/devices/...
  Handy Linux program that
                                         show hardware info (caches)
  summarizes info on CPU(s)
                                         > cd /sys/devices/system/cpu/cpu0/cache/
  > lscpu
                                         > ls
  Architecture:
                 x86 64
                                         index0 index1 index2 index3 ...
  CPU op-mode(s): 32-bit, 64-bit
  Byte Order:
              Little Endian
                                         > ls index0/
  Address sizes: 36 bits physical,
                                         number_of_sets type level size
                 48 bits virtual
                                         ways_of_associativity ...
  CPU(s):
                 4
  Vendor ID:
                 GenuineIntel
                                         > cd index0
  CPU family:
                 6
                                         > cat level type number * ways * size
  Model:
                 58
                                         1 Data 64 8 32K
  Model name:
                 Intel(R) Core(TM)
                 i7-3667U CPU @ 2.00GHz
                                         > cd ../index1
  . . .
                                         > cat level type number_* ways_* size
  L1d cache:
                 64 KiB
                                         1 Instruction 64 8 32K
  L1i cache:
                 64 KiB
  L2 cache:
               512 KiB
                                         > cd ../index3
  L3 cache:
                 4 MiB
                                         > cat level type number * ways * size
  Vulnerability Meltdown: Mitigation; ...
                                         3 Unified 8192 20 10240K
  Vulnerability Spectre v1: Mitigation ...
```

. . .

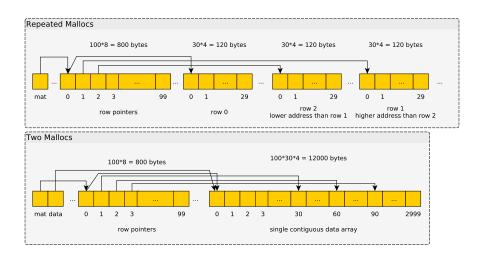
Exercise: 2D Arrays

- Several ways to construct "2D" arrays in C
- All must embed a 2D construct into 1-dimensional memory
- Consider the 2 styles below: how will the picture of memory look different?

```
// REPEATED MALLOC
// allocate
int rows=100, cols=30;
int **mat =
   malloc(rows * sizeof(int*));
```

```
for(int i=0; i<rows; i++){
   mat[i] = malloc(cols*sizeof(int));
}</pre>
```

```
// do work
mat[i][j] = ...
```

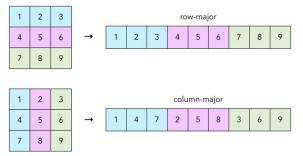

```
// free memory
for(int i=0; i<rows; i++){
   free(mat[i]);
}
free(mat);</pre>
```

```
// TWO MALLOCs
// allocate
int rows=100, cols=30;
int **mat =
    malloc(rows * sizeof(int*));
int *data =
    malloc(rows*cols*sizeof(int));
for(int i=0; i<rows; i++){
    mat[i] = data+i*cols;
}</pre>
```

```
// do work
mat[i][j] = ...
```

```
// free memory
free(data);
```

Answer: 2D Arrays


Single Malloc Matrices

```
Somewhat common to use a 1D array as a 2D matrix as in
int *matrix =
  malloc(rows*cols*sizeof(int));
int i=5, j=20;
int elem_ij = matrix[ i*cols + j ]; // retrieve element i,j
HWs / Labs / P4 will use this technique along with some structs
and macros to make it more readable:
matrix_t mat;
matrix_init(&mat, rows, cols);
int elij = MGET(mat,i,j);
// elij = mat.data[ mat.cols*i + j]
MSET(mat,i,j, 55);
// mat.data[ mat.cols*i + j ] = 55;
```

Aside: Row-Major vs Col-Major Layout

- Many languages use Row-Major order for 2D arrays/lists
 - C, Java, Python, Ocaml,...
 - mat[i] is a contiguous row, mat[i][j] is an element
- Numerically-oriented languages use Column-Major order
 - Fortran, Matlab/Octave, R, Ocaml (?)...
 - mat[j] is a contiguous column, mat[i][j] is an element

Being aware of language convention can increase efficiency

Source: The Craft of Coding

Exercise: Matrix Summing

How are the two codes below different?

- Are they doing the same number of operations?
- Which will run faster?

```
int sumR = 0;
for(int i=0; i<rows; i++){
  for(int j=0; j<cols; j++){
    sumR += mat[i][j];
  }
}

int sumC = 0;
for(int j=0; j<cols; j++){
  for(int i=0; i<rows; i++){
    sumC += mat[i][j];
  }
}
```

Answer: Matrix Summing

- Show timing in matrix_timing.c
- sumR faster the sumC: caching effects
- Discuss timing functions used to determine duration of runs

> gcc -Og matrix_timing.c > a.out 50000 10000 sumR: 1711656320 row-wise CPU time: 0.265 sec, Wall time: 0.265 sumC: 1711656320 col-wise CPU time: 1.307 sec, Wall time: 1.307

- sumR runs about 6 times faster than sumC
- Understanding why requires knowledge of the memory hierarchy and cache behavior

Tools to Measure Performance: perf

- The Linux perf tool is useful to measure performance of an entire program
- Shows variety of statistics tracked by the kernel about things like memory performance
- Examine examples involving the matrix_timing program: sumR vs sumC
- Determine statistics that explain the performance gap between these two?

Exercise: perf stats for sumR vs sumC, what's striking?

> perf stat \$perfopts ./matrix timing 8000 4000 row ## RUN sumR ROW SUMMING sumR: 1227611136 row-wise CPU time: 0.019 sec, Wall time: 0.019 Performance counter stats for './matrix timing 8000 4000 row': %SAMPLED (45.27%)135,161,407 cycles:u 417,889,646 instructions:u # 3.09 insn per cycle (56.22%)L1-dcache-loads:u (55.96%)56,413,529 3,843,602 L1-dcache-load-misses:u # 6.81% of all L1-dcache hits (50.41%)28,153,429 L1-dcache-stores:u (47.42%)L1-icache-load-misses:u (44.77%)125 3,473,211 cache-references:u # last level of cache (56.22%)1.161.006 # 33.427 % of all cache refs (56.22%)cache-misses:u

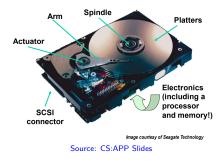
sumC: 1227611136 col-wise CPU time: 0.086 sec. Wall time: 0.086 Performance counter stats for './matrix_timing 8000 4000 col': %SAMPLED 372,203,024 cvcles:u (40.60%)instructions:u (57.23%)404.821.793 # 1.09 insn per cycle 61,990,626 L1-dcache-loads:u (60.21%)39,281,370 L1-dcache-load-misses:u # 63.37% of all L1-dcache hits (45.66%)23,886,332 L1-dcache-stores:u (43.24%)2,486 L1-icache-load-misses:u (40.82%)32,582,656 cache-references:u # last level of cache (59.38%)1,894,514 cache-misses:u # 5.814 % of all cache refs (60.38%)

Answers: perf stats for sumR vs sumC, what's striking?

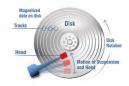
Observations

- Similar number of instructions between row/col versions
- ▶ #cycles lower for row version \rightarrow higher insn per cycle
- L1-dcache-misses: marked difference between row/col version
- Last Level Cache Refs : many, many more in col version
- Col version: much time spent waiting for memory system to feed in data to the processor

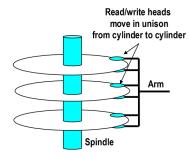
Notes


- The right-side percentages like (50.41%) indicate how much of the time this feature is measured; some items can't be monitored all the time.
- Specific perf invocation is in 10-memory-systems-code/measure-cache.sh

Flavors of Permanent Storage


- Have discussed a variety of fast memories which are small
- At the bottom of the pyramid are disks: slow but large memories, may contain copies of what is in higher parts of memory pyramid
- These are persistent: when powered off, they retain information
- Permanent storage often referred to as a "drive"
- Comes in many variants but these 3 are worth knowing about in the modern era
 - 1. Rotating Disk Drive
 - 2. Solid State Drive
 - 3. Magnetic Tape Drive
- Surveyed in the slides that follow

Ye Olde Rotating Disk


- Store bits "permanently" as magnetized areas on special platters
- Magnetic disks: moving parts → slow
- Cheap per GB of space

HARD DRIVE DATA READ & WRITE OPERATION MOTION DIAGRAM

Source: Realtechs.net

Source: CS:APP Slides

Rotating Disk Drive Features of Interest

Measures of Quality

- Capacity: bigger is usually better
- Seek Time: delay before a head assembly reaches an arbitrary track of the disk that contains data
- ► Rotational Latency: time for disk to spin around to correct position; faster rotation → lower Latency
- Transfer Rate: once correct read/write position is found, how fast data moves between disk and RAM

Sequential vs Random Access

Due to the rotational nature of Magnetic Disks...

- Sequential reads/writes comparatively FAST
- Random reads/writes comparatively very SLOW

Solid State Drives

- ▶ No moving parts \rightarrow speed
- Most use "flash" memory, non-volatile circuitry
- Major drawback: limited number of writes, disk wears out eventually

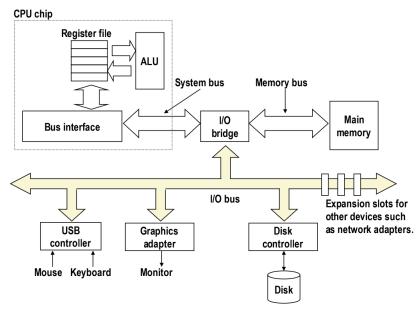
- Reads faster than writes
- Sequential somewhat faster than random access

Expensive:

A 1TB internal 2.5-inch hard drive costs between \$40 and \$50, but as of this writing, an SSD of the same capacity and form factor starts at \$250. That translates into

- 4 to 5 cents/GB for HDD

– 25 cents/GB for the SSD.

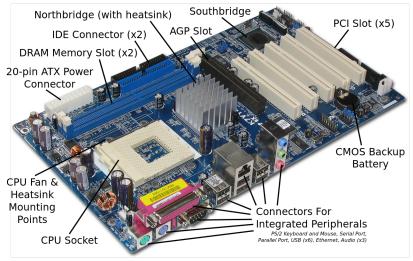

PC Magazine, "SSD vs HDD" by Tom Brant and Joel Santo Domingo March 26, 2018

Tape Drives

- Slowest yet: store bits as magnetic field on a piece of "tape" a la 1980's cassette tape / video recorder
- Extremely cheap per GB so mostly used in backup systems
- Ex: CSELabs does nightly backups of home directories, recoverable from tape at request to Operator

The I/O System Connects CPU and Peripherals

Terminology


Bus A collection of wires which allow communication between parts of the computer. May be serial (single wire) or parallel (several wires), must have a communication protocol over it.

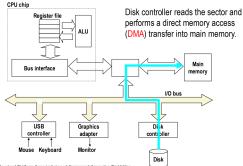
Bus Speed Frequency of the clock signal on a particular bus, usually different between components/buses requiring interface chips

CPU Frequency > Memory Bus > I/O Bus

- Interface/Bridge Computing chips that manage communications across the bus possibly routing signals to correct part of the computer and adapting to differing speeds of components
- Motherboard A printed circuit board connects to connect CPU to RAM chips and peripherals. Has buses present on it to allow communication between parts. *Form factor* dictates which components can be handled.


The Motherboard

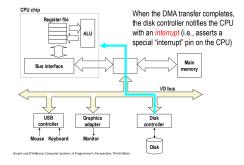
Picture Source: Wikipedia Live Props Courtesy of Free Geek Minneapolis


Memory Mapped I/O

- Modern systems are a collection of devices and microprocessors
- CPU usually uses memory mapped I/O: read/write certain memory addresses translated to communication with devices on I/O bus

Direct Memory Access

- Communication received by *other* microprocessors like a Disk Controller or Memory Management Unit (MMU)
- Other controllers may talk: Disk Controller loads data directly into Main Memory via direct memory access


Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Interrupts and $\ensuremath{\mathsf{I}}\xspace/\ensuremath{\mathsf{O}}\xspace$

Recall access times

Place	Time
L1 cache	0.5 ns
RAM	100 ns
Disk	10,000,000 ns

- While running Program X, CPU reads an int from disk into %rax
- Communicates to disk controller to read from file
- Rather than wait, OS puts Program X to "sleep", starts running program Y

- When disk controller completes read, signals the CPU via an interrupt, electrical signals indicating an event
- OS handles interrupt, schedules Program X as "ready to run"

Interrupts from Outside and Inside

- Examples of events that generate interrupts
 - Integer divide by 0
 - I/O Operation complete
 - Memory address not in RAM (Page Fault)
 - User generated: x86 instruction int 80
- Interrupts are mainly the business of the Operating System
- Usually cause generating program to immediately transfer control to the OS for handling
- When building your own OS, must write "interrupt handlers" to deal with above situations
 - Divide by 0: signal program usually terminating it
 - I/O Complete: schedule requesting program to run
 - Page Fault: sleep program until page loaded
 - User generated: perform system call
- User-level programs will sometimes get a little access to interrupts via signals, a topic for CSCI 4061