
CSCI 2041: Introduction

Chris Kauffman

Last Updated:
Wed Sep 5 11:56:55 CDT 2018

1



Logistics

Reading
▶ OCaml System Manual: 1.1 - 1.3
▶ Practical OCaml: Ch 1-2

Goals
▶ History
▶ Tour of OCaml Language
▶ First Programs
▶ Course Mechanics

2



Origins of ML
▶ 1930s: Alonzo Church invents the Lambda Calculus, a

notation to succinctly describe computable functions.
▶ 1958: John McCarthy and others create Lisp, a programming

language modeled after the lambda calculus. Lisp is the
second oldest programming language still widely used.

▶ 1972: Robin Milner and others at Edinburgh/Stanford develop
the Logic For Computable Functions (LCF) Theorem Prover
to do Math stuff

▶ To tell LCF how to go about its proofs, they invent a Meta
Language (ML) which is like Lisp with a type system
(Hindley-Milner type system)

▶ Folks soon realize that ML is a damn fine general purpose
programming language and start doing things with it besides
programming theorem provers

▶ 2007: Rich Hickey creates Clojure, a dialect of Lisp with a
focus on concurrency and Java interoperability CSCI 2041 is
sometimes taught in Clojure

3



Exercise: Origins of OCaml
▶ Circa 19901, Xavier Leroy at France’s INRIA looks at the

variety of ML implementations and declares "They suck"
▶ No command line compiler: only top level Read-Eval-Print

Loops (REPL)
▶ Only run on Main Frames, not Personal Computers
▶ Hard to experiment with adding new features

▶ Leroy develops the ZINC system for INRIA’s flavor of ML:
Categorical Abstract Machine Language (CAML)
▶ ocamlrun Byte-code runtime interpreter
▶ ocamlc Byte-code compiler
▶ Allows separate compilation, linking, running

▶ Later work introduces
▶ Object system: Objective Caml, shortened to OCaml
▶ Native code compiler ocamlopt
▶ Various other tools sweet tools like a time traveling debugger

▶ Question: Byte Code? Native Code? What common systems
use them? What else is there?

1Xavier Leroy. The ZINC Experiment. Technical report 117, INRIA, 1990
4

http://caml.inria.fr/pub/papers/xleroy-zinc.pdf


Byte Code versus Native Code Compilation
Native Code Compilation
Convert source code to a form directly understandable by a CPU
(an executable program)

Byte Code Compilation
Convert source code to an intermediate form (byte code) that is
must be further converted to native code by an interpreter.

Source Code Interpreter
Directly execute source code as it is read by doing on-the-fly
conversions to native code.

System Compilation/Execution Model
Java Byte Code Compilation: javac and java
C / C++ Native Code Compilation (mostly)
Python Source Code Interpreter (with some byte code)
OCaml Byte Code and Native Code Compilation

And interactive REPL with on-the-fly compilation
5



Motivation to Use OCaml

Bare Metal

Pure Abstraction

Wires

VHDL

Binary 
Opcodes

Assembly C
C++, D

Java

Python, JS 
Ruby, Shell

Haskell, Prolog, 
Lisp, OCaml

Bread
Board

Electrons

Source

▶ Expressing programs at a high
level is usually easier
▶ Fewer lines of code
▶ Closer to natural language

statement of problem
▶ Can effectively reason

about program
correctness

▶ OCaml translates high-level
code to reasonably efficient
low-level instruction
OCaml delivers at least 50% of
the performance of a decent C
compiler –Xavier Leroy, on
Caml Mailing List

▶ In many cases, trading runtime
slow down to get development
speedup is totally worth it

6

http://bpmredux.files.wordpress.com/2012/03/man-vs-machine.jpg
http://caml.inria.fr/pub/ml-archives/caml-list/2003/01/cfbfbda8c795246f69950e2e8ea00083.en.html


"If Programming Languages were Cars. . . "
Courtesy of Mike Vanier
▶ C is a racing car that goes incredibly fast but breaks down

every fifty miles.
▶ C++ is a souped-up version of the C racing car with dozens

of extra features that only breaks down every 250 miles, but
when it does, nobody can figure out what went wrong.

▶ Java is a family station wagon. It’s easy to drive, it’s not too
fast, and you can’t hurt yourself.

▶ Python is a great beginner’s car; you can drive it without a
license. Unless you want to drive really fast or on really
treacherous terrain, you may never need another car.

▶ Ocaml is a very sexy European car. It’s not quite as fast as
C, but it never breaks down, so you end up going further in
less time. However, because it’s French, none of the controls
are in the usual places.

7

http://users.cms.caltech.edu/~mvanier/hacking/rants/cars.html


Aspects of OCaml that Set it Apart
A quick tour of ML features that make it a joy to program include
▶ Type Inference: compiler figures out types for you
▶ Type Checking: compiler checks functions called correctly
▶ Built-in Aggregate Types: Tuples, Linked Lists, Arrays
▶ Algebraic Types: Easy to create new types
▶ Pattern Matching: Easy to create code dealing with algebraic

types
▶ First-Class Functions: Functions can be arguments to other

functions
▶ Map-Reduce Functionality: Easy to work with aggregate data
▶ Module System: Enables separate, safe compilation with

control over exported namespace
What follows is a quick tour of these features to be discussed in
more detail in coming weeks

8



Tour: Type Inference
(* TYPE INFERENCE *)
> ocaml (* start the REPL *)

OCaml version 4.06.0

# let x = 7;; (* bind x to 7 *)
val x : int = 7 (* x must be an integer *)
# let doubler i = 2*i;; (* bind doubler to a function *)
val doubler : int -> int = <fun> (* int argument, int returns *)
(* arg return *)

(* TYPE CHECKING *)
# doubler 9;; (* call doubler on 9 *)
- : int = 18 (* result is an integer *)
# doubler x;; (* call on x *)
- : int = 14 (* ok - x is an integer *)
# doubler "hello";; (* call doubler "hello" *)
Characters 8-15: (* Type Checker says: *)

doubler "hello";; (* NO SOUP FOR YOU *)
^^^^^^^

Error: This expression has type string but an
expression was expected of type int

9



Tour: Built-in Aggregate Types

(* BUILT-IN AGGREGATE DATA TYPES *)
# let pair = (1.23, "hi there");; (* tuple *)
val pair : float * string = (1.23, "hi there")

# let str_list = ["a"; "b"; "c"];; (* linked list *)
val str_list : string list = ["a"; "b"; "c"]

# let float_arr = [|1.23; 4.56;|];; (* array *)
val float_arr : float array = [|1.23; 4.56|]

10



Tour: Creating Types Types

(* Record Types: like C structs / Java classes *)
# type grade = (* new record type *)

{name : string; score : int; max : int };;
type grade = { name : string; score : int; max : int; }

# let a1 = (* bind a1 to record value *)
{name="Assgn 1"; score=86; max=100};;

val a1 : grade = {name = "Assgn 1"; score = 86; max = 100}

(* QUICK ’N EASY ALGEBRAIC TYPES *)
# type fruit = (* create a new type *)

Apple | Orange | Grapes of int;; (* 3 value kinds possible *)
type fruit = Apple | Orange | Grapes of int

# let a = Apple;; (* bind a to Apple *)
val a : fruit = Apple
# let g = Grapes(7);; (* bind g to Grapes *)
val g : fruit = Grapes 7

11



Tour: Pattern Matching

# let a = Apple;; (* bind a to Apple *)
# let g = Grapes(7);; (* bind g to Grapes *)

(* PATTERN MATCHING *)
(* On Algebraic Types *)
# let count_fruit f = (* function of fruit *)

match f with (* pattern match f *)
| Apple -> 1 (* case of Apple *)
| Orange -> 1 (* case of Orange *)
| Grapes(n) -> n (* case of Grapes *)

;;
val count_fruit : fruit -> int = <fun>

# count_fruit a;; (* call on a = Apple *)
- : int = 1
# count_fruit g;; (* call on g = Grapes(7) *)
- : int = 7

12



Tour: First Class Functions and Map/Reduce

(* FIRST-CLASS FUNCTIONS + MAP-REDUCE PARADIGM *)
# let fruit_basket = (* Create a list of fruits *)

[Apple; Apple; Grapes(2); Orange; Grapes(5);];;
val fruit_basket : fruit list = [...]

# let fruit_counts = (* Generate list by applying *)
List.map count_fruit fruit_basket;; (* count_fruit to each el *)

val fruit_counts : int list = [1; 1; 2; 1; 5]

# let total = (* apply + to each el of *)
List.fold_left (+) 0 fruit_counts;; (* fruit_counts list *)

val total : int = 10

13



Influence of Functional Programming and ML
You may never use OCaml for a job, but you will definitely feel its
effects elsewhere, particularly
▶ Functional Programming
▶ ML-inspired type systems

"Main Stream" programming languages have been strongly
influenced by functional programming and ML dialects
▶ Java 8

▶ Added anonymous functions to allow more functional
programming like Map/Reduce

▶ Generics system to allow type-safe containers with limited type
inference

▶ F# (Microsoft) : OCaml + .NET framework
▶ Swift (Apple) : ML + Objective-C library access
▶ Scala : JVM language with type inference, algebraic data

types, functional features, OO features, every lang feature
known and unknown

Thus OCaml is fun to program in and informative about
other modern languages

14



Programming Tools
Functional Programming (FP) is an integral part of any utility belt

Data Structs
& Algorithms

OOP

Functional
Programming

Cmd Line
Tools

Debugger

Formal
Methods

Procedural Progr
 

15



OCaml Tools

OCaml comes with a fairly complete set of tools
▶ ocamlc: Byte Code Compiler & Interpreter
▶ ocamlopt: Native Code Compiler
▶ ocaml: Read-Eval-Print Loop (REPL)
▶ ocamldebug: Debugger (step code forwards or backwards (!))
▶ ocamlprof: Profiler to examine Performance
▶ Fairly Complete Standard Library including Hash Tables, Sets,

Maps, Unix System Calls, and Threads (sort of)
▶ Documentation Generator

16



Interactive REPL versus Batch Compilation

REPL: Interactive Exploration
▶ Will sometimes demonstrate

concepts in the REPL
▶ Type top-level statements

directly or #use a file to
load it

▶ Programs compiled on the
fly and results displayed
interactively

▶ GREAT for learning and
exploration

▶ BAD for medium- to
large-scale program
development

Compiling Code
▶ Convert a source .ml file

into an executable version
(byte code or native code)

▶ Not interactive: compiler
may find errors at compile
time which cannot be
resolved (syntax, types,
missing modules)

▶ Can split program into many
pieces and control their
interfaces

▶ Typically several library files
providing function and a
main file which runs them

17



Exercise: Interactive REPL
Interactive session in ocaml REPL loading source files
> ocaml (* start ocaml REPL *)

OCaml version 4.06.0

# #use "basics.ml";; (* run basics.ml *)
val x : int = 15 (* loads bindings for *)
val y : string = "hi there" (* x, y, repeat_print *)
val repeat_print :

int -> string -> unit = <fun>

# repeat_print 2 y;; (* call repeat_print *)
hi there (* interactively *)
hi there
- : unit = ()

# let msg = "adios";; (* bind msg interactively *)
val msg : string = "adios"

# repeat_print x msg;; (* call function again *)
adios (* Q: How many times *)
adios (* is msg printed? *)
...

18



Answers: Interactive REPL
# #use "basics.ml";;
val x : int = 15 (* x has value 15 *)
...
# let msg = "adios";;

# repeat_print x msg;; (* call function again *)
adios (* Q: How many times *)
adios (* is msg printed? *)
adios
adios (* 15 times *)
adios
adios
adios
adios
adios
adios
adios
adios
adios
adios
adios
- : unit = ()

19



Exercise: Batch Compilation
Batch compilation with ocamlc in a Unix shell
> ls # list files in the working directory
basics_main.ml basics.ml # two OCaml source files

> cat basics_main.ml # show contents of basics_main.ml
(* main actions *)
Basics.repeat_print 4 Basics.y;;
Basics.repeat_print 2 "bye!";;

> ocamlc basics.ml basics_main.ml # compile both files together

> ls # list files again, many more now
a.out basics.cmo basics_main.cmo basics.ml
basics.cmi basics_main.cmi basics_main.ml

> file basics.cmo # what is basics.cmo?
basics.cmo: OCaml object file (.cmo) (Version 022)

> file a.out # what is a.out?
a.out: a /usr/bin/ocamlrun script executable (binary data)

> ./a.out # run a.out as an executable
hi there
...
# What is the remainder of the output?

20



Answers: Batch Compilation

> cat basics.ml # show contents of file
let x = 15;;
let y = "hi there";; # Basics.y is "hi there"
...

> cat basics_main.ml # show contents of file
(* main actions *)
Basics.repeat_print 4 Basics.y;; # print "hi there" 4 times
Basics.repeat_print 2 "bye!";; # print "bye" two times

> ./a.out
hi there # 4 times
hi there
hi there
hi there
bye! # 2 times
bye!

21



Byte-Code versus Native-Code Compilation
# BYTE CODE COMPILER : ocamlc
> ocamlc speedtest.ml # compile to bytecode
> file a.out # show file type
a.out: a /usr/bin/ocamlrun script executable (binary data)

> time ./a.out # time execution
33554432

real 0m0.277s # about a quarter second passed
user 0m0.276s # full debug features available
sys 0m0.000s

# NATIVE CODE COMPILER: ocamlopt
> ocamlopt speedtest.ml # compile to native code
> file a.out # show file type
a.out: ELF 64-bit LSB pie executable x86-64

> time ./a.out
33554432

real 0m0.022s # about 1/10th the time: WAY FASTER
user 0m0.022s # BIG BUT: can’t use native code with
sys 0m0.000s # OCaml’s debugger

22



CSCI 2041: Course Goals
▶ Basic proficiency in a high-level programming language that

facilitates functional programming (OCaml)
▶ An understanding of the advantages and disadvantages of

types in programming languages
▶ An understanding of the importance of polymorphism in

programming language types
▶ The ability to employ functions as first-class values in

common higher-order computation patterns such as mapping,
reducing, and filtering.

▶ An understanding of the advantages and disadvantages of
side-effect free "pure" functions in computation versus
computations based on explicit mutation and state change.

▶ A strong knowledge of how recursive functions perform and
solve problems on data structures and search problems.

▶ Familiarity with program organization mechanisms such as
modules, namespaces, private internals, classes, and nesting.

23


