
CSCI 2041: Functions, Mutation, and Arrays

Chris Kauffman

Last Updated:
Fri Sep 14 15:06:04 CDT 2018

1

Logistics

▶ OCaml System Manual: 1.1
- 1.3

▶ Practical OCaml: Ch 1-2
▶ OCaml System Manual:

25.2 (Pervasives Modules)
▶ Practical OCaml: Ch 3, 9

Goals Today
▶ Function Definitions
▶ Mutation and Arrays
▶ Polymorphism with

Functions

Friday: Lists/Recursion

Lab01
▶ Submit/Checkoff by next

Monday
▶ How did it go?

Assignment 1
▶ Due Monday 9/17
▶ Note a few updates

announced on Piazza /
Changelog

▶ Questions?

2

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html

Exercise: Function Definitions and Types
▶ Have seen this several times:

functions can be defined by
binding a name with
parameters

▶ Functions always have a
type that gives their
parameters and return type

▶ Notation for this in ML is
with "arrows" like these
examples
int -> float
(* 1 int param, return float *)

int -> int -> float
(* 2 int params, return float *)

string -> int -> unit
(* string and int params,

return nothing *)

What are the types of the
following functions?
(* func_types.ml : func defs / types *)

let do_math x y = (* do some math *)
let z = x + y in
let w = z*z + z in
w

;;

let do_english s = (* make a word *)
let suffix = "-alicious" in
s^suffix

;;

open Printf;;
(* Alternate printing strings *)
let repeat_alt_print n str1 str2 =

for i=1 to n do
if i mod 2 = 1 then

printf "%s\n" str1
else

printf "%s\n" str2
done;

;; 3

Answers: Function Definitions and Types
(* func_types.ml : func defs / types *)

let do_math x y = (* do some math *)
let z = x + y in
let w = z*z + z in
w

;;

let do_english s = (* make a word *)
let suffix = "-alicious" in
s^suffix

;;

open Printf;;
(* Alternate printing strings *)
let repeat_alt_print n str1 str2 =

for i=1 to n do
if i mod 2 = 1 then

printf "%s\n" str1
else

printf "%s\n" str2
done;

;;

Invoking the compiler as
ocamlc -i will show the inferred
types associated with top-level
bindings like functions.

> ocamlc -i func_types.ml
val do_math : int -> int -> int
val do_english : string -> string
val repeat_alt_print :

int -> string -> string -> unit

4

Annotating Function Types
▶ For clarity, may annotate functions with their types
▶ Sometimes hard to tell types of arguments without some clues

given in documentation or annotation
(* func_types_annotated.ml : func defs with explicit type annotations *)
open Printf;;

(* Annotate only the arguments *)
let do_math (x : int) (y : int) =

let z = x + y in
let w = z*z + z in
w;;

(* Annotate args and function return *)
let do_english (s : string) : string =

let suffix = "-alicious" in
s^suffix;;

(* Annotate args and function return *)
let repeat_alt_print (n:int) (str1:string) (str2:string) : unit =

for i=1 to n do
if i mod 2 = 1 then

printf "%s\n" str1
else

printf "%s\n" str2
done;; 5

for/do Loops
▶ Quite limited compared to C/Java/Python
▶ Count only up by 1’s or down by 1’s in an integer range
▶ Last statement of loop gives is the value of the loop expression
▶ In practice mostly loops have side-effects: unit value
▶ Focus in most cases is on recursion instead

(* print the first n even numbers *)
let print_evens1 n =

for i=0 to n-1 do (* loop increment by 1 each iter *)
let e = 2*i in (* local let *)
printf "%d : %d\n" i e; (* last statement, semicolon optional *)

done; (* end of scope for i *)
;;

(* print first n even numbers, descending order *)
let print_evens_descend n =

for i=n-1 downto 0 do
let e = 2*i in (* local let *)
printf "%d : %d\n" i e; (* last statement, semicolon optional *)

done; (* end of scope for i *)
;;

while/do loops are also available, usually used with refs 6

if/then/else and Conditional Execution

▶ if/then/else allows for conditional evaluation
▶ Usually need both if/else cases as the expression has a value
▶ When side-effects are intended, only the if portion is required

let is_even n =
if n mod 2 = 0 then (* mod is remainder operator *)

true (* return true *)
else

false (* return false *)
;;

(* print a message only if even *)
let print_if_even n =

if is_even n then
printf "%d is even\n" n; (* no associated else case *)

;;

7

Exercise: if/then/else has value

Contrast the two uses of if/then/else below and describe how
they are used differently
(* form a string based on even/oddness *) (* same result, different style *)
let even_odd_str1 n = let even_odd_str2 n =

if n mod 2 = 0 then let nstr = string_of_int n in
let nstr = string_of_int n in let msg =
let msg = " is even" in if n mod 2 = 0 then
nstr^msg " is even"

else else
let nstr = string_of_int n in " is odd"
let msg = " is odd" in in
nstr^msg nstr^msg

;; ;;

8

Answers: if/then/else has value
▶ even_odd_str2 exploits binds msg based on a condition
▶ More abundant in functional languages than imperative

(* form a string based on even/oddness *)
let even_odd_str1 n = (* standard style *)

if n mod 2 = 0 then (* condition with *)
let nstr = string_of_int n in (* differing assignments *)
let msg = " is even" in
nstr^msg (* consequent return val of function *)

else
let nstr = string_of_int n in
let msg = " is odd" in
nstr^msg (* alternate return val of function *)

;;

(* form a string based on even/oddness *)
let even_odd_str2 n = (* more functional style *)

let nstr = string_of_int n in (* unconditional binding *)
let msg = (* bind this value.. *)

if n mod 2 = 0 then (* based on this condition *)
" is even" (* condition true *)

else
" is odd" (* condition false *)

in
nstr^msg (* return value of function *)

;; 9

Refs and Mutation
▶ Mutable bindings are often done via references
▶ These are set up to "point" at a mutable data location
▶ Initialize with ref x with x as the initial value
▶ Alter the location with ref assignment syntax x := y;
▶ Retrieve ref data with !x

(* ref_summing.ml : demonstrate use of mutable refs to sum *)
open Printf;;

let sum_1_to_n n = (* generate the sum of numbers 1 to n *)
let sum = ref 0 in (* initialize ref to 0 *)
for i=1 to n do (* loop *)

let next = !sum + i in (* add on i to current sum *)
sum := next; (* assign sum to next; RETURN TYPE unit *)
(* sum := !sum + i; *) (* above two lines as a one-liner *)

done;
!sum (* return value of sum *)

;;
let sum10 = sum_1_to_n 10 in
let sum50 = sum_1_to_n 50 in
printf "summing 1 to 10 gives %d\n" sum10;
printf "summing 1 to 50 gives %d\n" sum50;
;;

10

Exercise: Common Errors involving Refs
▶ The following two are common bugs involving refs/functions

that use refs
▶ Explain the two bugs and how to fix them

1 (* ref_errors.ml : contains two errors involving refs *)
2 let ipow x n = (* calculate x to the nth power *)
3 let p = ref 1 in
4 for i=1 to n do
5 p := p * x;
6 done;
7 p
8 ;;
9 (* File "ref_errors.ml", line 5, characters 9-10:

10 Error: This expression has type int ref
11 but an expression was expected of type int *)
12
13 let sum = (ipow 2 5) + (ipow 3 7);;
14 (* File "ref_errors.ml", line 13, characters 10-20:
15 Error: This expression has type int ref
16 but an expression was expected of type int *)
17
18 Printf.printf "sum is %d\n" sum;;

11

Answers: Common Errors involving Refs
▶ Both errors involve dereferencing with the ! operator
▶ First error: can only add int, not int ref
▶ Second error: initially inferred type of the function as

int -> int -> int ref which is not intended
1 (* ref_errors_fixed.ml : corrected errors with refs *)
2 let ipow x n = (* calculate x to the nth power *)
3 let p = ref 1 in
4 for i=1 to n do
5 p := !p * x; (* 1st error: get contents of p to multiply *)
6 done;
7 !p (* 2nd error: return contents, not ref itself *)
8 ;;
9 (* File "ref_errors.ml", line 4, characters 9-10:

10 Error: This expression has type int ref
11 but an expression was expected of type int *)
12
13 let sum = (ipow 2 5) + (ipow 3 7);;
14 (* File "ref_errors.ml", line 12, characters 10-20:
15 Error: This expression has type int ref
16 but an expression was expected of type int *)
17
18 Printf.printf "sum is %d\n" sum;;

12

Exercise: Array Syntax, Predict Output
1 (* array_demo.ml : demostrate array syntax *)
2 open Printf;;
3
4 (***** BLOCK 1 *****)
5 let arr = [|10; 20; 30; 40|] in (* immediate initialization *)
6 let len = Array.length arr in (* length calculation *)
7 printf "Length is %d\n" len;
8
9 (***** BLOCK 2 *****)

10 for i=0 to len-1 do
11 let eli = arr.(i) in (* access elements with arr.(i) *)
12 printf "El %d : %d\n" i eli;
13 done;
14
15 (***** BLOCK 3 *****)
16 printf "Doubling elements\n"; (* elements are mutable by default *)
17 for i=0 to len-1 do
18 arr.(i) <- arr.(i) * 2; (* assign with arr.(i) <- expr *)
19 printf "El %d : %d\n" i arr.(i);
20 done;
21
22 (***** BLOCK 4 *****)
23 let elem = "Monsier: répéter!" in
24 let big = Array.make 100 elem in (* 100 long array, filled with elem *)
25 for i=0 to (Array.length big)-1 do (* iterate over elements *)
26 printf "%s\n" big.(i); (* printing them *)
27 done;
28 ;; 13

Answers: Array Syntax, Predict Output

Output of array_demo.ml

> ocamlc array_demo.ml
> a.out |head -20
Length is 4 # BLOCK 1
El 0 : 10 # BLOCK 2
El 1 : 20
El 2 : 30
El 3 : 40
Doubling elements # BLOCK 3
El 0 : 20
El 1 : 40
El 2 : 60
El 3 : 80
Monsier: répéter! # BLOCK 4
Monsier: répéter!
Monsier: répéter!
Monsier: répéter!
Monsier: répéter!
... 100 times

Array Syntax Summary

(* immediate initialization *)
let arr = [|10; 20; 30; 40|] in

(* length calculation *)
let len = Array.length arr in

(* access elements with arr.(i) *)
let eli = arr.(i) in

(* assign with arr.(i) <- expr *)
arr.(i) <- x * 2;

(* Initialize and fill with elem *)
let big = Array.make 100 elem in

14

Arrays are bounds Checked
▶ Arrays are fixed length so growing them requires re-allocation
▶ Out of bounds access raises an exception

let arr = [|10; 20; 30; 40|];;
val arr : int array = [|10; 20; 30; 40|]
arr.(3);;
- : int = 40
arr.(4);;
Exception: Invalid_argument "index out of bounds".
arr.(-5);;
Exception: Invalid_argument "index out of bounds".
arr.(7) <- 2;;
Exception: Invalid_argument "index out of bounds".

▶ Raised exceptions usually end a running program
▶ Can raise your own Failure exceptions if needed as in

if i < 2 then
raise (Failure "Sainte merde!")

;;
Exception: Failure "Sainte merde!".

▶ Will explore exceptions in more detail later
15

Exercise: A Type Puzzle

Consider function swap_0_1
▶ What is it doing?
▶ What new syntax is present?
▶ What is the return type of

the function?
▶ What is the type of

parameter arr?

1 (* swap_0_1.ml : function with
2 interesting type signature *)
3 let swap_0_1 arr =
4 if Array.length arr >= 2 then
5 begin
6 let x = arr.(0) in
7 let y = arr.(1) in
8 arr.(0) <- y;
9 arr.(1) <- x;

10 end;
11 ;;

16

Answers: A Type Puzzle
Consider function swap_0_1
▶ What is it doing? Swapping 0th and 1th elements of an array
▶ What new syntax is present? begin/end to include multiple

side-effects statements in an if condition
▶ What is the return type of the function? unit as the last

thing done is array assignment
▶ What is the type of parameter arr? ’a array???

▶ any kind of array

1 (* swap first two elems in an array *)
2 let swap_0_1 (arr : ’a array) : unit =
3 (* any array type return *)
4 if Array.length arr >= 2 then
5 begin (* begin a "block" within if *)
6 let x = arr.(0) in
7 let y = arr.(1) in
8 arr.(0) <- y; (* begin required as multiple *)
9 arr.(1) <- x; (* side-effects are performed *)

10 end; (* last statement is assignment so *)
11 ;; (* function returns unit *)

17

Polymorphism
polymorphism, (noun)
▶ The condition of occurring in several different forms.
▶ COMPUTING: a feature of a programming language

that allows routines to use variables of different
types at different times.

▶ A function is polymorphic if it works for a range of types
▶ The type signatures of these have ’a or variants involved.
▶ Examples:

’a -> int (* any type in, int out *)
’a -> ’a (* any type in, same type out *)
’a -> ’b (* any type in, any type out *)
’a array -> int (* any type of array in, int out *)
’a array -> ’a (* any array in, element type out *)
’a array -> ’a array (* any array in, same type array out *)
’a array -> ’b array (* any array in, any array type out *)
int -> ’a -> ’a (* int and any type in, out matches in type *)
’a -> ’a -> bool (* two args same kind in, bool out *)
’a -> ’b -> ’a (* any two types in, first type out *)
’a -> ’b -> ’c (* any two types in, any type out *)

18

Polymorphism Pervades OCaml
Polymorphism is everywhere in OCaml as evidenced by many
built-in functions with polymorphic types
(=);; (* comparisons *)
- : ’a -> ’a -> bool = <fun>
(>);;
- : ’a -> ’a -> bool = <fun>
max;;
- : ’a -> ’a -> ’a = <fun> (* min/max *)
min;;
- : ’a -> ’a -> ’a = <fun>

ref;; (* ref operators *)
- : ’a -> ’a ref = <fun>
(!);;
- : ’a ref -> ’a = <fun>
(:=);;
- : ’a ref -> ’a -> unit = <fun>

Array.make;; (* array functions *)
- : int -> ’a -> ’a array = <fun>
Array.get;;
- : ’a array -> int -> ’a = <fun>
Array.sub;;
- : ’a array -> int -> int -> ’a array = <fun>

19

Exercise: Writing Polymorphic Functions
Write the function count_times elem arr
▶ Counts how many times elem occurs in array arr
▶ Returns an int
▶ Ensure that operations performed are polymorphic

▶ = operator checks equality, is polymorphic
▶ Array access is polymorphic

▶ Should make function polymorphic with type
’a -> ’a array -> int

REPL Demo of count_times

#use "count_times.ml";;
val count_times : ’a -> ’a array -> int = <fun>
count_times 4 [| 10; 2; 4; 1; 4; 11; 4; 7|];;
- : int = 3
count_times 11 [| 10; 2; 4; 1; 4; 11; 4; 7|];;
- : int = 1
count_times true [| false; true; true; false; true|];;
- : int = 3
count_times "a" [|"a"; "b"; "c"; "a"; "d"|];;
- : int = 2

20

Answers: Writing Polymorphic Functions
1 (* count_times.ml : polymorphic counting function *)
2
3 (* count number of times elem appears in array arr *)
4 let count_times elem arr =
5 let count = ref 0 in (* ref to count *)
6 let len = Array.length arr in (* array length *)
7 for i=0 to len-1 do
8 if arr.(i) = elem then (* check for equal elem *)
9 count := !count + 1 (* update count if equal *)

10 (* incr count; *) (* increments an in ref *)
11 done;
12 !count (* deref count and return *)
13 ;;

General Guidelines for Polymorphic Functions
▶ Use only polymorhpic operators like comparisons, assignments
▶ Polymorphism usually applicable to data structures like arrays, lists,

tuples, trees, etc. that contain any kind of element
▶ Polymorphic funcs are more flexible, do it when you can
▶ In some cases, polymorphic functions are slower; explicitly typed

versions can increase speed at the cost of flexibility 21

