CSCI 2041: Functions, Mutation, and Arrays

Chris Kauffman

Last Updated:
Fri Sep 14 15:06:04 CDT 2018

Logistics

» OCaml System Manual: 1.1
-13

» Practical OCaml: Ch 1-2

» OCaml System Manual:
25.2 (Pervasives Modules)

» Practical OCaml: Ch 3, 9

Goals Today

» Function Definitions

» Mutation and Arrays

» Polymorphism with
Functions

Friday: Lists/Recursion

Lab01
» Submit/Checkoff by next
Monday
» How did it go?

Assignment 1

» Due Monday 9/17

> Note a few updates
announced on Piazza /
Changelog

» Questions?

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html

» Have seen this several times:

functions can be defined by
binding a name with
parameters

Functions always have a
type that gives their
parameters and return type

Notation for this in ML is
with "arrows" like these
examples

int -> float

(* 1 int param, return float *)

int -> int -> float
(* 2 int params, return float *)

string -> int -> unit
(* string and int params,
return nothing *)

Exercise: Function Definitions and Types

What are the types of the
following functions?

(* func_types.ml :

let do_math x y =
let z = x + y in
let w = z*¥z + z in
W

bR

let do_english s =
let suffix = "-alicious" in
s"suffix

3

open Printf;;
(*x Alternate printing strings *)
let repeat_alt_print n strl str2 =
for i=1 to n do
if i mod 2 = 1 then
printf "¥%s\n" stril
else
printf "%s\n" str2
done;

IR

func defs / types *)

(* do some math

(* make a word *)

Answers: Function Definitions and Types

(* func_types.ml : func defs / types *)

let do_math x y =
let z = x +y in
let w = z*z + z in

W

let do_english s = (* make a word *)
let suffix = "-alicious" in
s"suffix

3

open Printf;;
(*x Alternate printing strings *)
let repeat_alt_print n strl str2 =
for i=1 to n do
if i mod 2 = 1 then
printf "¥%s\n" stri
else
printf "¥%s\n" str2
done;

3

(* do some math

Invoking the compiler as

ocamlc -i will show the inferred
types associated with top-level
bindings like functions.

> ocamlc -i func_types.ml
val do_math : int -> int -> int
val do_english : string -> string
val repeat_alt_print :

int -> string -> string -> unit

Annotating Function Types

» For clarity, may annotate functions with their types
» Sometimes hard to tell types of arguments without some clues
given in documentation or annotation

(* func_types_annotated.ml : func defs with explicit type annotations *)
open Printf;;

(* Annotate only the arguments *)
let do_math (x : int) (y : int) =
let z = x + y in
let w = z*xz + z in
Wi

(* Annotate args and function return *)

let do_english (s : string) : string =
let suffix = "-alicious" in
s"suffix;;

(* Annotate args and function return *)
let repeat_alt_print (n:int) (strl:string) (str2:string) : unit =
for i=1 to n do
if i mod 2 = 1 then
printf "Js\n" stri
else
printf "¥%s\n" str2
done;;

for/do Loops

» Quite limited compared to C/Java/Python

» Count only up by 1's or down by 1's in an integer range

P Last statement of loop gives is the value of the loop expression
» In practice mostly loops have side-effects: unit value

» Focus in most cases is on recursion instead

(*x print the first n even numbers *)
let print_evensl n =

for i=0 to n-1 do (* loop increment by 1 each iter *)

let e = 2%i in (* local let *)

printf "%d : %d\n" i e; (* last statement, semicolon optional *)
done; (* end of scope for i *)

I

(* print first n even numbers, descending order *)
let print_evens_descend n =
for i=n-1 downto 0 do

let e = 2%i in (* local let *)
printf "%d : J%d\n" i e; (* last statement, semicolon optional *)
done; (* end of scope for i *)

)

while/do loops are also available, usually used with refs

if/then/else and Conditional Execution

> if/then/else allows for conditional evaluation
» Usually need both if/else cases as the expression has a value
» When side-effects are intended, only the if portion is required

let is_even n =

if n mod 2 = 0 then (* mod is remainder operator *)
true (* return true *)

else
false (* return false *)

3

(* print a message only if even *)
let print_if_even n =
if is_even n then
printf "/d is even\n" n; (* no associated else case *)

Exercise: if/then/else has value

Contrast the two uses of if/then/else below and describe how
they are used differently

(* form a string based on even/oddness *) (* same result, different style *)

let even_odd_strl n = let even_odd_str2 n =

if n mod 2 = 0 then let nstr = string_of_int n in
let nstr = string_of_int n in let msg =
let msg = " is even" in if n mod 2 = O then
nstr-msg " is even"

else else
let nstr = string_of_int n in " is odd"
let msg = " is odd" in in

nstromsg nstromsg

IR 3

Answers: if/then/else has value

> even_odd_str2 exploits binds msg based on a condition
» More abundant in functional languages than imperative

(* form a string based on even/oddness *)
let even_odd_strl n =

if n mod 2
let nstr
let msg =
nstromsg

else
let nstr
let msg =
nstromsg

3

"

n

0 then

(%
(*

string_of_int n in (*

is even"

string_of_int n in

is odd"

in

in

(*

(*

standard style *)
condition with *)
differing assignments *)

consequent return val of function *)

alternate return val of function *)

(* form a string based on even/oddness *)
let even_odd_str2 n =

let nstr =
let msg =
if n mod

else

string_of_int n in

2

" is odd"

in
nstromsg

3

= 0 then

is even"

(*
(%
(*
(*
(%

(*
(*

more functional style *)
unconditional binding *)
bind this value.. *)
based on this condition *)
condition true *)

condition false *)

return value of function *)

Refs and Mutation

» Mutable bindings are often done via references
» These are set up to "point" at a mutable data location
> Initialize with ref x with x as the initial value
» Alter the location with ref assignment syntax x := y;

» Retrieve ref data with !'x

(* ref_summing.ml : demonstrate use of mutable refs to sum *)

open Printf;;

let sum_1_to_n n =
let sum = ref O in
for i=1 to n do

let next = !sum + i in
sum := next;
(* sum := !sum + i;
done;
!'sum
35
let suml0 = sum_1_to_n 10 in
let sumb0 = sum_1_to_n 50 in

(*
(*
(*
(*
(*
(*

(*

generate the sum of numbers 1 to n *)
initialize ref to 0 *)

loop *)

add on i to current sum *)

assign sum to next; RETURN TYPE unit *)
above two lines as a one-liner *)

return value of sum *)

printf "summing 1 to 10 gives %d\n" sumi0;
printf "summing 1 to 50 gives %d\n" sumb50;

3

10

Exercise: Common Errors involving Refs

» The following two are common bugs involving refs/functions
that use refs

» Explain the two bugs and how to fix them

1 (% ref_errors.ml : contains two errors involving refs *)
2 let ipow x n = (* calculate x to the nth power *)
3 let p = ref 1 in

4 for i=1 to n do

5 P =P * X;

6 done;

7 P

8 s

9 (% File "ref_errors.ml", line 5, characters 9-10:

10 Error: This expression has type int ref

11 but an expression was expected of type int *)
12

13 let sum = (ipow 2 5) + (ipow 3 7);;

14 (* File "ref_errors.ml", line 13, characters 10-20:

15 Error: This expression has type int ref

16 but an expression was expected of type int *)
17

18 Printf.printf "sum is %d\n" sum;;

Answers: Common Errors involving Refs

» Both errors involve dereferencing with the ! operator

» First error: can only add int, not int ref

» Second error: initially inferred type of the function as
int -> int -> int ref which is not intended

1 (* ref_errors_fixed.ml : corrected errors with refs *)

2 1let ipow x n = (* calculate x to the nth power *)

3 let p = ref 1 in

4 for i=1 to n do

5 p := !p * x; (*x 1st error: get contents of p to multiply *)
6 done;

7 'p (* 2nd error: return contents, not ref itself x)
8 i3

9 (* File "ref_errors.ml", line 4, characters 9-10:

10 Error: This expression has type int ref

11 but an expression was expected of type int *)

12

13 1let sum = (ipow 2 5) + (ipow 3 7);;

14 (% File "ref_errors.ml", line 12, characters 10-20:

15 Error: This expression has type int ref

16 but an expression was expected of type int *)

17

18 Printf.printf "sum is %d\n" sum;;

12

Exercise: Array Syntax, Predict Output

©COO~NOOPDd WN -

(* array_demo.ml : demostrate array syntax *)

open Printf;;

(kx%%% BLOCK 1 *%%%x)

let arr = [|10; 20; 30; 40|] in (*
let len = Array.length arr in (*
printf "Length is %d\n" len;

(k*%%% BLOCK 2 *%*%%x)

for i=0 to len-1 do
let eli = arr.(i) in (€
printf "E1 %d : %d\n" i eli;

done;

(kxkkk BLOCK 3 *kkk)

printf "Doubling elements\n"; (*
for i=0 to len-1 do
arr. (i) <- arr.(i) * 2; (*

printf "E1 %d : %d\n" i arr.(i);
done;

(kx%%%x BLOCK 4 *%%%x)

let elem = "Monsier: répéter!" in

let big = Array.make 100 elem in (*

for i=0 to (Array.length big)-1 do (*
printf "¥%s\n" big.(i); (*

done;

3

immediate initialization *)
length calculation *)

access elements with arr.(i) *)

elements are mutable by default *)

assign with arr.(i) <- expr *)

100 long array, filled with elem *)
iterate over elements *)
printing them *)

13

Answers: Array Syntax, Predict Output

Output of array_demo.ml

> ocamlc array_demo.ml

> a.out |
Length is
E1 0 : 10
El1 1 : 20
El1 2 : 30
El 3 : 40
Doubling
E1 0 : 20
El1 1 : 40
El1 2 : 60
El 3 : 80
Monsier:
Monsier:
Monsier:
Monsier:
Monsier:
100 t

head -20
4

elements

répéter!
répéter!
répéter!
répéter!
répéter!
imes

BLOCK 1
BLOCK 2

BLOCK 3

BLOCK 4

Array Syntax Summary

(* immediate initialization *)
let arr = [|10; 20; 30; 40]] in

(* length calculation *)
let len = Array.length arr in

(* access elements with arr.(i) *)
let eli = arr.(i) in

(* assign with arr.(i) <- expr *)
arr. (i) <- x *x 2;

(* Initialize and fill with elem *)
let big = Array.make 100 elem in

14

Arrays are bounds Checked

» Arrays are fixed length so growing them requires re-allocation

» Out of bounds access raises an exception
let arr = [[10; 20; 30; 40[]1;;
val arr : int array = [|10; 20; 30; 40I]
arr.(3);;
- : int = 40
arr.(4);;
Exception: Invalid_argument "index out of bounds".
arr.(-5);;
Exception: Invalid_argument "index out of bounds".
arr.(7) <- 2;;
Exception: Invalid_argument "index out of bounds".

P> Raised exceptions usually end a running program

» Can raise your own Failure exceptions if needed as in

if i < 2 then
raise (Failure "Sainte merde!")

Exception: Failure "Sainte merde!".

P> Will explore exceptions in more detail later

15

Exercise: A Type Puzzle

Consider function swap_0_1
» What is it doing?
» What new syntax is present?

» What is the return type of
the function?

» What is the type of
parameter arr?

=

O OWO0~NOOPd WN-

(*x swap_0_1.ml : function with
interesting type signature *)
let swap_0_1 arr =

if Array.length arr >= 2 then
begin
let x = arr.(0) in
let y = arr.(1) in
arr.(0) <- y;
arr. (1) <- x;
end;

16

Answers: A Type Puzzle
Consider function swap_0_1
» What is it doing? Swapping Oth and 1th elements of an array
» What new syntax is present? begin/end to include multiple
side-effects statements in an if condition
» What is the return type of the function? unit as the last
thing done is array assignment

» What is the type of parameter arr? ’a array???
» any kind of array

1 (% swap first two elems in an array *)

2 1let swap_0_1 (arr : ’a array) : unit =

3 (x any array type return *)

4 if Array.length arr >= 2 then

5 begin (* begin a "block" within if *)
6 let x = arr.(0) in

7 let y = arr.(1) in

8 arr.(0) <- y; (* begin required as multiple *)
9 arr. (1) <- x; (* side-effects are performed *)
10 end; (* last statement is assignment so *)
11 (* function returns unit *)

Polymorphism

polymorphism, (noun)

» The condition of occurring in several different forms.
» COMPUTING: a feature of a programming language
that allows routines to use variables of different
types at different times.
» A function is polymorphic if it works for a range of types

P> The type signatures of these have ’a or variants involved.

> Examples:
’a -> int
’a -=> ’a
’a -> ’b
’a array -> int
’a array -> ’a
’a array -> ’a array
’a array -> ’b array
int -> ’a -> ’a
’a -> ’a -> bool
’a => ’b -> ’a
’a => ’b > ’c

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

any
any
any
any
any
any
any
int
two
any
any

type in, int out *)

type in, same type out *)

type in, any type out *)

type of array in, int out *)
array in, element type out *)
array in, same type array out *)
array in, any array type out *)
and any type in, out matches in type *)
args same kind in, bool out *)
two types in, first type out *)
two types in, any type out *)

18

Polymorphism Pervades OCaml
Polymorphism is everywhere in OCaml as evidenced by many
built-in functions with polymorphic types

(=);; (* comparisons *)

- : ’a -> ’a -> bool = <fun>

(>);;

- : ’a -> ’a -> bool = <fun>

max;;

- : ’a ->’a ->’a = <fun> (* min/max *)

min;;

- :a->’a -> ’a = <fun>

ref;; (* ref operators *)
- : ’a => ’a ref = <fun>

()5

- : ’aref -> ’a = <fun>

(:=);;

- : ’aref -> ’a -> unit = <fun>

Array.make;; (*x array functions *)
- : int -> ’a -> ’a array = <fun>

Array.get;;

- : ’a array -> int -> ’a = <fun>

Array.sub;;

’a array -> int -> int -> ’a array = <fun>

19

Exercise: Writing Polymorphic Functions
Write the function count_times elem arr

» Counts how many times elem occurs in array arr

» Returns an int

» Ensure that operations performed are polymorphic

= operator checks equality, is polymorphic
» Array access is polymorphic
» Should make function polymorphic with type
’a -> ’a array -> int

REPL Demo of count times

#use "count_times.ml";;
- HH

val count_times : ’a -> ’a array -> int = <fun>

count_times 4 [| 10; 2; 4; 1; 4; 11; 4; 71];;

- : int = 3

count_times 11 [| 10; 2; 4; 1; 4; 11; 4; 711;;

- :int =1

count_times true [| false; true; true; false; truell;;
- : int = 3

COunt-timeS "all [l ||a" ; "bll ; llcll ; Ila|l ; Ild" I] ; ;

: int = 2

20

Answers: Writing Polymorphic Functions

W ~NO O WN -

(* count_times.ml : polymorphic counting function *)

(* count number of times elem appears in array arr *)
let count_times elem arr =
let count = ref 0 in (* ref to count *)
let len = Array.length arr in (* array length *)
for i=0 to len-1 do

if arr.(i) = elem then (* check for equal elem *)
count := !count + 1 (* update count if equal *)
(* incr count; *) (* increments an in ref *)
done;
lcount (* deref count and return *)

3

General Guidelines for Polymorphic Functions

>
>

Use only polymorhpic operators like comparisons, assignments

Polymorphism usually applicable to data structures like arrays, lists,
tuples, trees, etc. that contain any kind of element

Polymorphic funcs are more flexible, do it when you can

In some cases, polymorphic functions are slower; explicitly typed
versions can increase speed at the cost of flexibility

21

