CSCI 2041: Lists and Recursion

Chris Kauffman Chris Kauffman

Last Updated:
Fri Dec 28 22:33:03 CST 2018

Logistics

» OCaml System Manual: 1.1
-13

» Practical OCaml: Ch 1-2

» OCaml System Manual:
25.2 (Pervasives Modules)

» Practical OCaml: Ch 3, 9

Goals

» Linked List data structure
» Recursive Functions
» Nested Scope

Assignment 1

» Due Wed 9/19
Menday-9/17

> Note a few updates
announced on Piazza /
Changelog

» Questions?

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html

Lists in Functional Languages

» Long tradition of Cons boxes and Singly Linked Lists in
Lisp/ML languages

» Immediate list construction of with square braces: [1;2;3]

» Note unboxed ints and boxed strings and lists in the below!

Linked Lists and Cons Boxes
Linked lists are comprised of "cons"

leti=7; i
"Cons" bo:
X boxes inOCaml. They have a data part
let str = "e":: ot nen and a pointer to another box which is
& possibly null/nil represented by the empty
list [] and drawn as a slash / in the box
let empty = [];; empty

datanext contents.
let ilist= [6; 1; 21;; m;tB—»{ 6 I H 1 I H 2 I / l

let strlist = ["a"; "b"; "c"; "d"];; stmstw

wwmszon: w[T-EREE]]

len [0] [1] [2] [3] [4]

1"Boxed" means a pointer to data appears in the associated memory cell.

List Parts with Head and Tail

» List.hd list : "head", returns the first data element
» List.tl list : "tail", returns the remaining list

let listl = [6; 1; 21;;

let first = List.hd list1;;

let rest = List.tl list1;;

let restrest = List.tl rest;;

let last = List.hd restrest;;

let nothing = List.tl restrest;;

let nada = [1;;

let lenrr = List.length restrest;;

Accessing List Parts with List.hd and List.tl

listl

sl 1] 2]/
A A

first

s

rest

restrest

las

ﬂ
-

HEE HDT

lenr

nothing| /

nada

~

List Construction with "Cons" operator ::

Constructing a list with successive "cons" applications

let box1 =7 :: [1;;

let box2 = 6 :: box1;;
let box3 = 8 :: box2;;

let len = List.length box3;;

let boxA = 9 :: box2;;

let boxB = 4 :: box1;;

let lenA = List.length boxA;; IenA
let lenB = List.length boxB;; IenB

Immutable Data

» Lists are immutable in OCaml
» Cannot change list contents once created
» let bindings are also immutable
» Immutable data is certainly a disadvantage if you want to
change it (duh)
» Immutability creates some significant advantages
» Easier reasoning: it won't change
» Compiler may be able to optimize based on immutability
» Can share structure safely to reduce memory usage
» Will have more to say later about trade-offs with immutability
(sometimes called "persistent data")

Exercise: List Construction/Decomposition

Fill in the Picture

let initial= [6; 1; 2];; initialB—)| 6 | +—>| 1 | +—>| 2 | / |
let listA = List.tl initial;; IistAl:l

let listB = 7 :: listA;; listB

let valX = List.hd listB;; valX

let listC = (List.tl (List.tl listB));; listC

let listD= 8 :: 5 :: 4 :: listC;; listD

0000

Answers: List Construction/Decomposition

Fill in the Picture: ANSWERS

let initial= [6; 1; 21;;

let listA = List.tl initial;;

let listB = 7 :: listA;;

let valX = List.hd listB;;

let listC = (List.tl (List.tl listB));;

let listD= 8 :: 5 :: 4 :: listC;;

Recu

W ~NO®OD WN -

[i e el e
O WO NP WNEFE O

rsive Functions

» Introduce with recursive bindings with let rec
» Make use of a function in its own definition
» Will discuss how recursive functions actually "work" later

(*
(*
(*
(*
(%
(*
(*

(*

base case, reached 1 *)
return 1 *)

recursive case *)

start point for nums below *)
recurse on nums below *)

add on current n *)

return as answer *)

base case *)

(x rec_funcs.ml : example recursive functions *)
(* sum the numbers 1 to n using recursion *)
let rec sum_1_to_n n =
if n=1 then
1
else
let below = n-1 in
let sum_below = sum_1_to_n below in
let ans = n+sum_below in
ans
HH
(* terse version of the same function *)
let rec sum_1_to_n n =
if n=1 then
1
else

n + (sum_1_to_n (n-1))

(*

recursive case *)

Recursive Functions and Lists

0 ~NO U WN -

S e e e e el e el
QWO NOUIPDd WNEF OO

» Typically do NOT iterate with linked lists directly
» Recurse on them for many basic functionalities like 1length

(* rec_listfuncs.ml : recursive functions on lists *)

(* Count the number of elements in a linked list *)

let rec list_length list =
if list = [] then
0
else
let rest = List.tl list in

let len_rest = list_length rest in

let ans = 1 + len_rest in
ans

3

(x terse version of the above *)
let rec list_length list =
if list = [] then
0
else
1 + (list_length (List.tl list))

(*
(*
(*
(*
(*
(*
(*

(*

(*

base case: empty list *)
has length 0 *)

recursive case %)

peel of tail *)

recursive call *)

add on for current elem *)
return as answer *)

base case *)

recursive case *)

10

Exercise: Counting Elements

00 ~N O U WN -

e et
WN = O

» Below function counts how many times elem occurs in 1ist
> Identify where the Base and Recursive cases appear in code
» Which line/lines have recursive calls?

» Explain why two if /else statements are needed

(* Count how many times elem appears in lst *)
let rec count_occur elem lst =
if 1st = [] then
0
else
let first = List.hd 1lst in
let rest = List.tl 1lst in
let rest_count = count_occur elem rest in
if elem = first then
1 + rest_count
else
rest_count

11

Answers: Counting Elements

W ~NO O WN -

©

10

12
13

> First if/else separates base and recursive cases

» Second if/else separates equal element (add one) form

unequal

» Line 8 has recursive call

(x commented version of the above *)
let rec count_occur elem lst =
if 1st = [] then
0
else

let first = List.hd 1lst in
let rest = List.tl 1lst in
let rest_count = count_occur elem rest in
if elem = first then
1 + rest_count
else
rest_count

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

base case: empty list *)

0 occurrences *)

recursive case *)

peel of head *)

and tail of list *)

count occurences in rest *
if current elem matches *)
add 1 and return *)
otherwise *)

count in rest of lsit x)

12

Use Cons to Construct New Lists during Recursion

1
2
3
4
5
6
7
8

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

(* Create a new list which has listl followed by list2; the builtin @
operator does this via listl @ list2; it functions similarly to the

below version *)
let rec append_lists listl list2 =

if listl = [] then
list2
else
let first = List.hd listl in
let rest = List.tl listl in
let app_rest =
append_lists rest list2 in
let app_all = first :: app_rest in
app_all

3

(*x terse version of the above *)
let rec append_lists listl list2 =

(*
(*
(*
(*

(*
(*
(*

base case: nothing in listl *)
just list2 *)

recursive case *)

get first and rest of listl *)

answer for rest of list *)
recursive call *)
cons on first elem to rest *)

if listl = [] then
list2
else
(List.hd listl) (append_lists (List.tl listl) list2)
(* |---first---| |Cons]| |---rest----| *)
*)

(* | =—m———— recursive call---------- |

3

13

Nesting Function Definitions

» Functions can be nested, e.g. defined in the local scope of
another function

1 (% nested_funcs.ml : demonstrate nested functions *)

2

3 (* Return the sum of two factorials. Uses an internal function
4 definition to compute factorials of parameters. *)

5 let sum_factorials nm =

6

7 (* compute factorial recursively *)

8 let rec fact i = (* local recursive function *)
9 if i<=1 then

10 1 (* base case *)

11 else

12 i * (fact (i-1)) (* recursive case *)

13 in (* end local function definition *)
14

15 let nfact = fact n in (*x call fact on nx*)

16 let mfact = fact m in (* call fact on m *)

17 nfact+mfact (* return sum of factorials *)
18 ;3

19 (% end of function scope: fact no longer available *)

20 (* sum_factorials IS available, top-level binding *)

More examples in nested_funcs.ml

Combination Punch: List Functions with Recursive Helpers

0N O WN -

o e
N = O ©

>
>
>
>
>

Frequently see all 3 techniques used for list functions
Example: printing elements by index of a string list

To properly recurse, must pass an extra paramter: index i
Define a recursive helper function with additional params
Call the recursive helper function to do the work

(* Print the number the index and element for a string list. Uses a

nested recursive helper function. *)
let print_elems_idx strlist =

let rec helper i 1lst = (* recursive helper: 2 params *)
if 1st != [] then (x if any list left *)
let first = List.hd 1st in (* grab first element *)
let rest = List.tl 1lst in (* and rest of list *)
Printf.printf "index %d : %s\n" i first; (x print *)
helper (i+1) rest (* recurse on remaining list *)
in (* end helper definition *)

helper O strlist; (* call helper starting at O *)

IR

15

Exercise: Elements Between

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

(* Create a list of the elements between the indices start/stop in the
given list. Uses a nested helper function for most of the work. *)
let elems_between start stop list =
let rec helper i 1lst =
if i > stop then
0
else if i < start then
helper (i+1) (List.tl 1st)
else
let first = List.hd 1lst in
let rest = List.tl 1st in
let sublst = helper (i+l) rest in
first :: sublst
in
helper 0 list

Describe the types for the parameters to function elems_between
Describe the types for the parameters to function helper
Where is the end of the definition of helper? Where is it used?

What 3 situations are handled in the if/else block?

How are the params of helper used?

16

Answers: Elements Between

OO0 ~NO O WN -

10
11
12
13
14

vV V.V VvV V

let elems_between start stop list =
let rec helper i 1st =
if i > stop then
]
else if i < start then
helper (i+1) (List.tl 1lst)
else
let first = List.hd 1lst in
let rest = List.tl 1lst in
let sublst = helper (i+1) rest in
first :: sublst
in
helper 0 list

3

(*
(*
(*
(*
(*
(*
(*
(*

(*
(*
(*
(*

int -> int -> ’a list

int -> ’a list -> ’a list
case for after stop index

end of possible elems between
before the start index
recurse further along lst
case of start <= i <= stop
get head and tail

recurse further to get sublst
cons first onto sublst, return
end helper definition

call helper at beginning of list

helper traverses list from beginning, eventually produces a sublist

Param 1 is index into list, param lst is remainder of 1list

When i<start, recurses further into list

When i>start, returns empty list: no elements between after stop

Between start/stop helper recurses then cons's on an element to the

resulting list which is returned

17

