
CSCI 2041: Lists and Recursion

Chris Kauffman Chris Kauffman

Last Updated:
Fri Dec 28 22:33:03 CST 2018

1



Logistics

▶ OCaml System Manual: 1.1
- 1.3

▶ Practical OCaml: Ch 1-2
▶ OCaml System Manual:

25.2 (Pervasives Modules)
▶ Practical OCaml: Ch 3, 9

Goals
▶ Linked List data structure
▶ Recursive Functions
▶ Nested Scope

Assignment 1
▶ Due Wed 9/19

Monday 9/17
▶ Note a few updates

announced on Piazza /
Changelog

▶ Questions?

2

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html


Lists in Functional Languages
▶ Long tradition of Cons boxes and Singly Linked Lists in

Lisp/ML languages
▶ Immediate list construction of with square braces: [1;2;3]
▶ Note unboxed ints and boxed strings and lists in the below1

1"Boxed" means a pointer to data appears in the associated memory cell. 3



List Parts with Head and Tail
▶ List.hd list : "head", returns the first data element
▶ List.tl list : "tail", returns the remaining list

4



List Construction with "Cons" operator ::

5



Immutable Data

▶ Lists are immutable in OCaml
▶ Cannot change list contents once created
▶ let bindings are also immutable

▶ Immutable data is certainly a disadvantage if you want to
change it (duh)

▶ Immutability creates some significant advantages
▶ Easier reasoning: it won’t change
▶ Compiler may be able to optimize based on immutability
▶ Can share structure safely to reduce memory usage

▶ Will have more to say later about trade-offs with immutability
(sometimes called "persistent data")

6



Exercise: List Construction/Decomposition

7



Answers: List Construction/Decomposition

8



Recursive Functions
▶ Introduce with recursive bindings with let rec ...
▶ Make use of a function in its own definition
▶ Will discuss how recursive functions actually "work" later

1 (* rec_funcs.ml : example recursive functions *)
2
3 (* sum the numbers 1 to n using recursion *)
4 let rec sum_1_to_n n =
5 if n=1 then (* base case, reached 1 *)
6 1 (* return 1 *)
7 else (* recursive case *)
8 let below = n-1 in (* start point for nums below *)
9 let sum_below = sum_1_to_n below in (* recurse on nums below *)

10 let ans = n+sum_below in (* add on current n *)
11 ans (* return as answer *)
12 ;;
13
14 (* terse version of the same function *)
15 let rec sum_1_to_n n =
16 if n=1 then
17 1 (* base case *)
18 else
19 n + (sum_1_to_n (n-1)) (* recursive case *)
20 ;;

9



Recursive Functions and Lists
▶ Typically do NOT iterate with linked lists directly
▶ Recurse on them for many basic functionalities like length

1 (* rec_listfuncs.ml : recursive functions on lists *)
2
3 (* Count the number of elements in a linked list *)
4 let rec list_length list =
5 if list = [] then (* base case: empty list *)
6 0 (* has length 0 *)
7 else (* recursive case *)
8 let rest = List.tl list in (* peel of tail *)
9 let len_rest = list_length rest in (* recursive call *)

10 let ans = 1 + len_rest in (* add on for current elem *)
11 ans (* return as answer *)
12 ;;
13
14 (* terse version of the above *)
15 let rec list_length list =
16 if list = [] then (* base case *)
17 0
18 else
19 1 + (list_length (List.tl list)) (* recursive case *)
20 ;;

10



Exercise: Counting Elements

▶ Below function counts how many times elem occurs in list
▶ Identify where the Base and Recursive cases appear in code
▶ Which line/lines have recursive calls?
▶ Explain why two if/else statements are needed

1 (* Count how many times elem appears in lst *)
2 let rec count_occur elem lst =
3 if lst = [] then
4 0
5 else
6 let first = List.hd lst in
7 let rest = List.tl lst in
8 let rest_count = count_occur elem rest in
9 if elem = first then

10 1 + rest_count
11 else
12 rest_count
13 ;;

11



Answers: Counting Elements

▶ First if/else separates base and recursive cases
▶ Second if/else separates equal element (add one) form

unequal
▶ Line 8 has recursive call

1 (* commented version of the above *)
2 let rec count_occur elem lst =
3 if lst = [] then (* base case: empty list *)
4 0 (* 0 occurrences *)
5 else (* recursive case *)
6 let first = List.hd lst in (* peel of head *)
7 let rest = List.tl lst in (* and tail of list *)
8 let rest_count = count_occur elem rest in (* count occurences in rest *)
9 if elem = first then (* if current elem matches *)

10 1 + rest_count (* add 1 and return *)
11 else (* otherwise *)
12 rest_count (* count in rest of lsit *)
13 ;;

12



Use Cons to Construct New Lists during Recursion
1 (* Create a new list which has list1 followed by list2; the builtin @
2 operator does this via list1 @ list2; it functions similarly to the
3 below version *)
4 let rec append_lists list1 list2 =
5 if list1 = [] then (* base case: nothing in list1 *)
6 list2 (* just list2 *)
7 else (* recursive case *)
8 let first = List.hd list1 in (* get first and rest of list1 *)
9 let rest = List.tl list1 in

10 let app_rest = (* answer for rest of list *)
11 append_lists rest list2 in (* recursive call *)
12 let app_all = first :: app_rest in (* cons on first elem to rest *)
13 app_all
14 ;;
15
16 (* terse version of the above *)
17 let rec append_lists list1 list2 =
18 if list1 = [] then
19 list2
20 else
21 (List.hd list1) :: (append_lists (List.tl list1) list2)
22 (* |---first---| |Cons| |---rest----| *)
23 (* |--------recursive call----------| *)
24 ;;

13



Nesting Function Definitions
▶ Functions can be nested, e.g. defined in the local scope of

another function
1 (* nested_funcs.ml : demonstrate nested functions *)
2
3 (* Return the sum of two factorials. Uses an internal function
4 definition to compute factorials of parameters. *)
5 let sum_factorials n m =
6
7 (* compute factorial recursively *)
8 let rec fact i = (* local recursive function *)
9 if i<=1 then

10 1 (* base case *)
11 else
12 i * (fact (i-1)) (* recursive case *)
13 in (* end local function definition *)
14
15 let nfact = fact n in (* call fact on n*)
16 let mfact = fact m in (* call fact on m *)
17 nfact+mfact (* return sum of factorials *)
18 ;;
19 (* end of function scope: fact no longer available *)
20 (* sum_factorials IS available, top-level binding *)

More examples in nested_funcs.ml
14



Combination Punch: List Functions with Recursive Helpers

▶ Frequently see all 3 techniques used for list functions
▶ Example: printing elements by index of a string list
▶ To properly recurse, must pass an extra paramter: index i
▶ Define a recursive helper function with additional params
▶ Call the recursive helper function to do the work

1 (* Print the number the index and element for a string list. Uses a
2 nested recursive helper function. *)
3 let print_elems_idx strlist =
4 let rec helper i lst = (* recursive helper: 2 params *)
5 if lst != [] then (* if any list left *)
6 let first = List.hd lst in (* grab first element *)
7 let rest = List.tl lst in (* and rest of list *)
8 Printf.printf "index %d : %s\n" i first; (* print *)
9 helper (i+1) rest (* recurse on remaining list *)

10 in (* end helper definition *)
11 helper 0 strlist; (* call helper starting at 0 *)
12 ;;

15



Exercise: Elements Between
1 (* Create a list of the elements between the indices start/stop in the
2 given list. Uses a nested helper function for most of the work. *)
3 let elems_between start stop list =
4 let rec helper i lst =
5 if i > stop then
6 []
7 else if i < start then
8 helper (i+1) (List.tl lst)
9 else

10 let first = List.hd lst in
11 let rest = List.tl lst in
12 let sublst = helper (i+1) rest in
13 first :: sublst
14 in
15 helper 0 list
16 ;;

▶ Describe the types for the parameters to function elems_between
▶ Describe the types for the parameters to function helper
▶ Where is the end of the definition of helper? Where is it used?
▶ What 3 situations are handled in the if/else block?
▶ How are the params of helper used?

16



Answers: Elements Between
1 let elems_between start stop list = (* int -> int -> ’a list *)
2 let rec helper i lst = (* int -> ’a list -> ’a list *)
3 if i > stop then (* case for after stop index *)
4 [] (* end of possible elems between *)
5 else if i < start then (* before the start index *)
6 helper (i+1) (List.tl lst) (* recurse further along lst *)
7 else (* case of start <= i <= stop *)
8 let first = List.hd lst in (* get head and tail *)
9 let rest = List.tl lst in

10 let sublst = helper (i+1) rest in (* recurse further to get sublst *)
11 first :: sublst (* cons first onto sublst, return *)
12 in (* end helper definition *)
13 helper 0 list (* call helper at beginning of list *)
14 ;;

▶ helper traverses list from beginning, eventually produces a sublist
▶ Param i is index into list, param lst is remainder of list

▶ When i<start, recurses further into list

▶ When i>start, returns empty list: no elements between after stop

▶ Between start/stop helper recurses then cons’s on an element to the
resulting list which is returned

17


