
CSCI 2041: Pattern Matching Basics

Chris Kauffman

Last Updated:
Fri Sep 28 08:52:58 CDT 2018

1

Logistics

Reading
▶ OCaml System Manual: Ch

1.4 - 1.5
▶ Practical OCaml: Ch 4

Goals
▶ Code patterns
▶ Pattern Matching

Assignment 2
▶ Demo in lecture
▶ Post today/tomorrow

Next Week
▶ Mon: Review
▶ Wed: Exam 1
▶ Fri: Lecture

2

Consider: Summing Adjacent Elements
1 (* match_basics.ml: basic demo of pattern matching *)
2
3 (* Create a list comprised of the sum of adjacent pairs of
4 elements in list. The last element in an odd-length list is
5 part of the return as is. *)
6 let rec sum_adj_ie list =
7 if list = [] then (* CASE of empty list *)
8 [] (* base case *)
9 else

10 let a = List.hd list in (* DESTRUCTURE list *)
11 let atail = List.tl list in (* bind names *)
12 if atail = [] then (* CASE of 1 elem left *)
13 [a] (* base case *)
14 else (* CASE of 2 or more elems left *)
15 let b = List.hd atail in (* destructure list *)
16 let tail = List.tl atail in (* bind names *)
17 (a+b) :: (sum_adj_ie tail) (* recursive case *)

The above function follows a common paradigm:
▶ Select between Cases during a computation
▶ Cases are based on structure of data
▶ Data is Destructured to bind names to parts of it

3

Pattern Matching in Programming Languages
▶ Pattern Matching as a programming language feature

checks that data matches a certain structure the executes if so
▶ Can take many forms such as processing lines of input files

that match a regular expression
▶ Pattern Matching in OCaml/ML combines

▶ Case analysis: does the data match a certain structure
▶ Destructure Binding: bind names to parts of the data

▶ Pattern Matching gives OCaml/ML a certain "cool" factor
▶ Associated with the match/with syntax as follows

match something with
| pattern1 -> result1 (* pattern1 gives result1 *)
| pattern2 -> (* pattern 2... *)

action; (* does some side-effect action *)
result2 (* then gives result2 *)

| pattern3 -> result3 (* pattern3 gives result3 *)

4

Simple Case Examples of match/with
In it’s simplest form, match/with provides a nice multi-case
conditional structure. Constant values can be matched.
yoda_say bool Conditionally execute code
counsel mood Bind a name conditionally
1 (* Demonstrate conditional action using match/with *)
2 let yoda_say bool =
3 match bool with
4 | true -> printf "False, it is not.\n"
5 | false -> printf "Not true, it is.\n"
6 ;;
7
8 (* Demonstrate conditional binding using match/with *)
9 let counsel mood =

10 let message = (* bind message *)
11 match mood with (* based on mood’s value *)
12 | "sad" -> "Welcome to adult life"
13 | "angry" -> "Blame your parents"
14 | "happy" -> "Why are you here?"
15 | "ecstatic" -> "I’ll have some of what you’re smoking"
16 | s -> "Tell me more about "^s (* match any string *)
17 in
18 print_endline message;

5

Patterns and Destructuring
▶ Patterns can contain structure elements
▶ For lists, this is typically the Cons operator ::

1 let rec length_A list =
2 match list with
3 | [] -> 0
4 | head :: tail -> 1 + (length_A tail)
5 ;;

▶ Line 4 pattern binds names head/tail; compiler generates
low level code like
let head = List.hd list in
let tail = List.tl list in ...

▶ Pattern matching is relatively safe: the following will work and
not generate any errors despite ordering of cases
1 let rec length_B list =
2 match list with
3 | head :: tail -> 1 + (length_B tail)
4 | [] -> 0
5 ;;

6

Compare: if/else versus match/with version
Pattern matching often reduces improves clarity by reducing length
if/else version of summing adjacent elements
1 let rec sum_adj_ie list =
2 if list = [] then (* CASE of empty list *)
3 [] (* base case *)
4 else
5 let a = List.hd list in (* DESTRUCTURE list *)
6 let atail = List.tl list in (* bind names *)
7 if atail = [] then (* CASE of 1 elem left *)
8 [a] (* base case *)
9 else (* CASE of 2 or more elems left *)

10 let b = List.hd atail in (* destructure list *)
11 let tail = List.tl atail in (* bind names *)
12 (a+b) :: (sum_adj_ie tail) (* recursive case *)
13 ;;

match/with version of summing adjacent elements
1 let rec sum_adjacent list =
2 match list with (* case/destructure list separated by | *)
3 | [] -> [] (* CASE of empty list *)
4 | a :: [] -> [a] (* CASE of 1 elem left *)
5 | a :: b :: tail -> (* CASE of 2 or more elems left *)
6 (a+b) :: sum_adjacent tail
7 ;; 7

Exercise: Swap Adjacent List Elements
Write the following function using pattern matching
let rec swap_adjacent list = ...;;
(* Swap adjacent elements in a list. If the list is odd length,

the last element is dropped from the resulting list. *)

REPL EXAMPLES
swap_adjacent [1;2; 3;4; 5;6;];;
- : int list = [2; 1; 4; 3; 6; 5]
swap_adjacent ["a";"b"; "c";"d"; "e"];;
- : string list = ["b"; "a"; "d"; "c"]
swap_adjacent [];;
- : ’a list = []
swap_adjacent [5];;
- : int list = []

For reference, solution to summing adjacent elements
1 let rec sum_adjacent list =
2 match list with (* case/destructure list separated by | *)
3 | [] -> [] (* CASE of empty list *)
4 | a :: [] -> [a] (* CASE of 1 elem left *)
5 | a :: b :: tail -> (* CASE of 2 or more elems left *)
6 (a+b) :: sum_adjacent tail
7 ;;

8

Answers: Swap Adjacent List Elements

1 (* Swap adjacent elements in a list. If the list is odd length,
2 the last element is dropped from the resulting list. *)
3 let rec swap_adjacent list =
4 match list with
5 | [] -> [] (* end of the line *)
6 | a :: [] -> [] (* drop last elem *)
7 | a :: b :: tail -> (* two or more *)
8 b :: a :: (swap_adjacent tail) (* swap order *)
9 ;;

9

Minor Details

▶ First pattern: pipe | is optional
▶ Fall through cases: no action -> given, use next action
▶ Underscore _ matches something, no name bound
▶ Examples of These

1 let cheap_counsel mood =
2 match mood with
3 "empty" -> (* first pipe | optional *)
4 printf "Eat something.\n";
5 | "happy" | "sad" | "angry" -> (* multiple cases, same action *)
6 printf "Tomorrow you won’t feel ’%s’\n" mood;
7 | _ -> (* match anything, no binding *)
8 printf "I can’t help with that.\n";
9 ;;

▶ Arrays work in pattern matching but there is no size
generalization as there is with list head/tail : arrays aren’t
defined inductively thus don’t usually process them with
pattern matching (see code in match_basics.ml)

10

Compiler Checks

Compiler will check
patterns and warn if the
following are found
▶ Duplicate cases:

only one can be used
so the other is
unreachable code

▶ Missing cases: data
may not match any
pattern and an
exception will result

> cat -n match_problems.ml
1 (* duplicate case "hi": second case not used *)
2 let opposites str =
3 match str with
4 | "hi" -> "bye"
5 | "hola" -> "adios"
6 | "hi" -> "oh god, it’s you"
7 | s -> s^" is it’s own opposite"
8 ;;
9

10 (* non-exhaustive matching: missing larger lists *)
11 let list_size list =
12 match list with
13 | [] -> "0"
14 | a :: b :: [] -> "2"
15 | a :: b :: c :: [] -> "3"
16 ;;

> ocamlc -c match_problems.ml
File "match_problems.ml", line 6
Warning 11: this match case is unused.

File "match_problems.ml", line 12
Warning 8: this pattern-matching is not
exhaustive. Here is an example of a
case that is not matched: (_::_::_::_::_|_::[])

11

Limits in Pattern Matching
▶ Patterns have limits

▶ Can bind names to structural parts
▶ Check for constants like [], 1, true, hi
▶ Names in patterns are always new bindings
▶ Cannot compare pattern bound name to another binding
▶ Can’t call functions in a patter

▶ Necessitates use of conditionals in a pattern to further
distinguish cases
1 (* Count how many times elem appears in list *)
2 let rec count_occur elem list =
3 match list with
4 | [] -> 0
5 | head :: tail -> (* pattern doesn’t compare head and elem *)
6 if head=elem then (* need an if/else to distinguish *)
7 1 + (count_occur elem tail)
8 else
9 count_occur elem tail

10 ;;

▶ If only there were a nicer way. . . and there is.

12

when Guards in Pattern Matching
▶ A pattern can have a when clause, like an if that is evaluated

as part of the pattern
▶ Useful for checking additional conditions aside from structure

1 (* version that uses when guards *)
2 let rec count_occur elem list =
3 match list with
4 | [] -> 0
5 | head :: tail when head=elem -> (* check equality in guard *)
6 1 + (count_occur elem tail)
7 | head :: tail -> (* not equal, alternative *)
8 count_occur elem tail
9 ;;
10 (* Return strings in list longer than given
11 minlen. Calls functions in when guard *)
12 let rec strings_longer_than minlen list =
13 match list with
14 | [] -> []
15 | str :: tail when String.length str > minlen ->
16 str :: (strings_longer_than minlen tail)
17 | _ :: tail ->
18 strings_longer_than minlen tail
19 ;;

▶ Pattern Matching and Guards make for powerful programming
13

Exercise: Convert to Patterns/Guards

Convert the following function (helper) to make use of
match/with and when guards.

1 (* Create a list of the elements between the indices start/stop in the
2 given list. Uses a nested helper function for most of the work. *)
3 let elems_between start stop list =
4 let rec helper i lst =
5 if i > stop then
6 []
7 else if i < start then
8 helper (i+1) (List.tl lst)
9 else

10 let first = List.hd lst in
11 let rest = List.tl lst in
12 let sublst = helper (i+1) rest in
13 first :: sublst
14 in
15 helper 0 list
16 ;;

14

Answers: Convert to Patterns/Guards

▶ Note the final "catch-all" pattern which causes failure
▶ Without it, compiler reports the pattern [] may not be

matched

1 (* version of elems_between which uses match/with and when guards. *)
2 let elems_between start stop list =
3 let rec helper i lst =
4 match lst with
5 | _ when i > stop -> []
6 | _ :: tail when i < start -> helper (i+1) tail
7 | head :: tail -> head :: (helper (i+1) tail)
8 | _ -> failwith "out of bounds"
9 in

10 helper 0 list
11 ;;

15

Pattern Match Wrap
▶ Will see more of pattern matching as we go forward
▶ Most things in OCaml can be pattern matched, particularly

symbolic data types for structures

1 open Printf;;
2
3 (* match a pair and swap elements *)
4 let swap_pair (a,b) =
5 let newpair = (b,a) in
6 newpair
7 ;;
8
9 (* 3 value kinds possible *)

10 type fruit = Apple | Orange | Grapes of int;;
11
12 (* match a fruit *)
13 let fruit_string f =
14 match f with
15 | Apple -> "you have an apple"
16 | Orange -> "it’s an orange"
17 | Grapes(n) -> sprintf "%d grapes" n
18 ;;

16

