
CSCI 2041: Data Types in OCaml

Chris Kauffman

Last Updated:
Thu Oct 18 22:43:05 CDT 2018

1

Logistics

Reading
▶ OCaml System Manual:

Ch 1.4, 1.5, 1.7
▶ Practical OCaml: Ch 5

Goals
▶ Tuples
▶ Records
▶ Algebraic / Variant Types

Assignment 3 multimanager

▶ Manage multiple lists
▶ Records to track lists/undo
▶ option to deal with editing
▶ Higher-order funcs for easy

bulk operations
▶ Post tomorrow
▶ Due in 2 weeks

Next week
First-class / Higher Order
Functions

2

Overview of Aggregate Data Structures / Types in OCaml

▶ Despite being an older functional language, OCaml has a wealth of
aggregate data types

▶ The table below describe some of these with some characteristics
▶ We have discussed Lists and Arrays at some length
▶ We will now discuss the others

Elements Typical Access Mutable Example
Lists Homoegenous Index/PatMatch No [1;2;3]
Array Homoegenous Index Yes [|1;2;3|]
Tuples Heterogeneous PatMatch No (1,"two",3.0)
Records Heterogeneous Field/PatMatch No/Yes {name="Sam"; age=21}
Variant Not Applicable PatMatch No type letter = A | B | C;

Note: data types can be nested and combined in any way
▶ Array of Lists, List of Tuples
▶ Record with list and tuple fields
▶ Tuple of list and Record
▶ Variant with List and Record or Array and Tuple

3

Tuples
▶ Potentially mixed data
▶ Commas separate elements
▶ Tuples: pairs, triples,

quadruples, quintuples, etc.
▶ Parentheses conventional

but not required
▶ No general indexing

functions: only fst and
snd for pairs

▶ Generally use Pattern
Matching to extract
elements

▶ Type notation: separate
types by asterisk *

let int_pair = (1,2);;
val int_pair : int * int = (1, 2)

let mixed_triple = (1,"two",3.0);;
val mixed_triple : int * string * float =

(1, "two", 3.)

let mixed_pair = ("a",5);;
val mixed_pair : string * int = ("a", 5)

fst mixed_pair;;
- : string = "a"

snd mixed_pair;;
- : int = 5

fst mixed_triple;;
Error: This expression has type
int * string * float but an expression
was expected of type ’a * ’b

match mixed_triple with
| (a,b,c) -> a;;

- : int = 1

match mixed_triple with
| (a,b,c) -> c;;

- : float = 3. 4

Why Tuples?
▶ Arrays and Lists require

homogeneous elements
(all same kind)

▶ Records / Variants
require declaration ahead
of time

▶ Tuples are heterogeneous
(different kinds) and
built-in

▶ Useful for functions to
return multiple items
with differing types

▶ Ex: Returns mixed pair
of string * int

▶ Ex: Pattern matches
func arg as a pair

1 (* Return the longest string and its
2 length from the list given. If the
3 list is empty return ("",0) *)
4 let longest_string strlist =
5 let rec help (max_str,max_len) list =
6 match list with
7 | [] -> (max_str,max_len)
8 | str :: tail ->
9 let len = String.length str in

10 if len > max_len then
11 help (str,len) tail
12 else
13 help (max_str,max_len) tail
14 in
15 help ("",0) strlist
16 ;;

longest_string ["Mario"; "Toad";
"Princess"; "Luigi"];;

- : string * int = ("Princess", 8)

longest_string ["Bowser"; "Wario";
"Boo"; "Waluigi";
"Koopa"];;

- : string * int = ("Waluigi", 7)
5

Tuple Restrictions

▶ Tuples ALWAYS have a known cardinality: 2 or 3 or 8 etc.
▶ Lists/Arrays do not have a known length
▶ A function cannot take a pair OR a triple: must be one or the

other, same with return values
▶ Cannot expand or grow tuples: a ref to a pair will always refer

to a pair
▶ Cannot index tuples by number: must pattern match them so

impractical for more than 4-5 items

6

Exercise: Tuple Warm-up

▶ How does one declare a tuple generally?
▶ Declare the following tuples

▶ Pair hitch of int 42 and string "life"
▶ Quadruple nums of 1 2 3 4
▶ Triple of thresh float 1.23 boolean false int 123

▶ How do you access the first/second element of hitch?
▶ How do you access the third element of thresh?

7

Answers: Tuple Warm-up

let hitch = (42,"life") in
let nums = (1,2,3,4) in
let thresh = (1.23,false,123) in
let first = fst hitch in
let second = snd hitch in
let third =

match thresh with
| (a,b,c) -> c

in
();;

8

Pattern Matching Tuples

1 (* Pattern match a pair of booleans,
2 return a relevant string *)
3 let boolpair_str bpair =
4 match bpair with
5 | true,true -> "all true"
6 | false,false -> "all false"
7 | true,false
8 | false,true -> "mixed bag"
9 ;;

10
11 (* Pattern match a pair of lists to
12 determine which is longer *)
13 let rec longer_list lista listb =
14 match lista,listb with
15 | [],[] -> "same length"
16 | _,[] -> "a is longer"
17 | [],_ -> "b is longer"
18 | (a::atail),(b::btail) ->
19 longer_list atail btail
20 ;;

▶ Extremely useful for
destructuring multiple inputs
together (like two sorted lists
being merged)

▶ Can be exhaustive on tuple
(boolean example)

▶ Or can use catch-alls /
underscore to match
anything for a tuple element
(list example)

9

Exercise: Min-Max of a List

▶ Write minmax, returns the
minimum and maximum
elements of an arbitrary list

▶ Returns min/max as a pair
(2-tuple)

▶ On empty list inputs, use
failwith "empty list"
to raise an exception

▶ Exploit pattern matching as
much as possible, likely 2
layers deep
▶ List structure
▶ Relation of element to

min/max
▶ Tail Recursive OR Not are

both fine

REPL demo of minmax

minmax;;
- : ’a list -> ’a * ’a = <fun>

minmax [3];;
- : int * int = (3, 3)

minmax [5;3];;
- : int * int = (3, 5)

minmax [5;3;4;1;2;9;7];;
- : int * int = (1, 9)

minmax ["c";"x"];;
- : string * string = ("c", "x")

minmax ["v";"c";"x";"r";"q"];;
- : string * string = ("c", "x")

minmax ["v";"c";"r";"x";"q";"y"];;
- : string * string = ("c", "y")

10

Answers: Min-Max of a List
1 (* Returns min/max of a list as a pair. *)
2 let rec minmax list =
3 match list with
4 | [] -> failwith "empty list" (* empty list fail *)
5 | last :: [] -> (last,last) (* base case: 1 element *)
6 | head :: tail -> (* recursive case *)
7 let (min,max) = minmax tail in (* recurse, then match results *)
8 match (head < min),(head > max) with
9 | false,false -> (min,max) (* head in the middle *)

10 | true,false -> (head,max) (* head is smaller *)
11 | false,true -> (min,head) (* head is bigger *)
12 | true,true -> (head,head) (* both? stranger things... *)
13 ;;
14 (* Same as above with tail recursiv helper function *)
15 let rec minmax list =
16 match list with
17 | [] -> failwith "empty list"; (* empty list fail *)
18 | first :: rest -> (* peel off first element *)
19 let rec help (min,max) lst = (* define TR helper *)
20 match lst with
21 | [] -> (min,max) (* end of list *)
22 | head :: tail -> (* keep going *)
23 match (head < min),(head > max) with
24 | false,false -> help (min,max) tail
25 | true,false -> help (head,max) tail
26 | false,true -> help (min,head) tail
27 | true,true -> help (head,head) tail
28 in
29 help (first,first) rest;; (* call helper *)
30 ;; 11

Records
▶ Hetergeneous with named fields, Like C struct / Java object
▶ Introduced via the type keyword, each field is given a type
▶ Constructed with {..}, assign each field

type hobbit = {name : string; age : int};; (* two fields *)
type hobbit = { name : string; age : int; }

let bilbo = {name="Bilbo Baggins"; age=111};;
val bilbo : hobbit = {name = "Bilbo Baggins"; age = 111}

let sam = {name="Samwise Gamgee"; age=21};;
val sam : hobbit = {name = "Samwise Gamgee"; age = 21}

type ring = { (* three fields *)
number : int;
power : float;
owner : string;

};;
type ring = { number : int; power : float; owner : string; }

let nenya = {number=3; power=5000.2; owner="Galadriel"};;
val nenya : ring = {number = 3; power = 5000.2; owner = "Galadriel"}

let one = {number=1; power=9105.6; owner="Sauron"};;
val one : ring = {number = 1; power = 9105.6; owner = "Sauron"}

12

Basic Record Use
▶ Dot notation is used to

access record field values
sam.age;;
- : int = 21
sam.name;;
- : string = "Samwise Gamgee"
nenya.power;;
- : float = 5000.2

▶ Records and their fields are
immutable by default

sam.age <- 100;;
Characters 0-14:

sam.age <- 100;;
^^^^^^^^^^^^^^

Error: The record field age is
not mutable
sam.age = 100;;
- : bool = false
sam;;
- : hobbit =
{name = "Samwise Gamgee"; age = 21}

▶ Create new records using with
syntax to replace field values

let old_sam = {sam with age=100};;
val old_sam : hobbit =
{name = "Samwise Gamgee"; age = 100}
let lost_one = {one with

owner="Bilbo";
power=1575.1};;

val lost_one : ring =
{number = 1; power = 1575.1;
owner = "Bilbo"}

▶ Fields declared mutable are
changeable using <- operator

type mut_hob = {
mutable name : string; (*changable*)
age : int (*not*)

};;
let h = {name="Smeagol"; age=25};;
val h: mut_hob = {name="Smeagol"; age=25}
h.name <- "Gollum";; (* assignment *)
- : unit = ()
h;;
- : mut_hob = {name="Gollum"; age=25}

13

Exercise: Define two Record Functions
let hobs = [{m_name="Frodo"; age=23}; (* list of hobbits *)

{m_name="Merry"; age=22};
{m_name="Pippin"; age=25};];;

val hobbit_bdays : mut_hob list -> mut_hob list = <fun>
(* DEFINE: creates a new list of mut_hob with all ages incremented by 1 *)

let older_hobs = hobbit_bdays hobs;;
val older_hobs : mut_hob list =
[{m_name = "Frodo"; age = 24}; (* new list; ages updated *)
{m_name = "Merry"; age = 23}; (* distinct from old list *)
{m_name = "Pippin"; age = 26}]

val hobbit_fellowship : mut_hob list -> unit = <fun>
(* DEFINE: name of each hobbit has the string "Fellow" prepended to it so

that "Frodo" becomes "Fellow Frodo" *)

hobbit_fellowship hobs;; (* changes original list of hobs *)
- : unit = ()

hobs;; (* show changed names *)
- : mut_hob list =
[{m_name = "Fellow Frodo"; age = 23};
{m_name = "Fellow Merry"; age = 22};
{m_name = "Fellow Pippin"; age = 25}]

14

Answers: Define two Record Functions
1 (* DEFINE: creates a new list of mut_hob with all ages incremented by 1 *)
2 let rec hobbit_bdays (list : mut_hob list) =
3 match list with
4 | [] -> []
5 | hob :: tail ->
6 {hob with age=hob.age+1} :: (hobbit_bdays tail)
7 ;;
8
9 (* DEFINE: name of each hobbit has the string "Fellow" prepended to it so

10 that "Frodo" becomes "Fellow Frodo" *)
11 let rec hobbit_fellowship (list : mut_hob list) =
12 match list with
13 | [] -> ()
14 | hob :: tail ->
15 hob.m_name <- "Fellow "^hob.m_name;
16 hobbit_fellowship tail;
17 ;;

hobbit_bdays hobbit_fellowship
Uses with : new records uses <- : old records, new field values
Uses cons operator: new list Does NOT use cons, same list
NOT tail recursive IS tail recursive

15

Refs are Just Mutable Records

▶ Have seen that OCaml’s ref allows for mutable data
▶ These are built from Records with a single mutable field
▶ Examine myref.ml which constructs the equivalent of

standard refs in a few lines of code
type ’a myref = {mutable contents : ’a};;

▶ Notable: a polymorphic record
▶ Field contents can be any type
▶ int ref or string list ref etc.

▶ File includes make_ref, deref, assign functions which are
ref x, !x, x := y

▶ Shows how to bind symbols like := to functions though not
how to determine if they are infix/prefix

16

Algebraic / Variant Data Types
Following strange construct appeared in week 1
type fruit = (* create a new type *)

Apple | Orange | Grapes of int;; (* 3 value kinds possible *)

let a = Apple;; (* bind a to Apple *)
let g = Grapes(7);; (* bind g to Grapes *)

let count_fruit f = (* function of fruit *)
match f with (* pattern match f *)
| Apple -> 1 (* case of Apple *)
| Orange -> 1 (* case of Orange *)
| Grapes(n) -> n (* case of Grapes *)

;;

▶ As with records, type introduces a new type
▶ fruit is an Algebraic or Variant type
▶ Has exactly 3 kinds of values

▶ Apple and Orange which have no additional data
▶ Grapes which has an additional int of data

▶ Closest C/Java equivalent: enumerations (i.e. enum)
▶ OCaml’s take on this is different and more powerful

17

Algebraic Types Allow Mixtures
▶ An algebraic type is just one type however its variants may

have different kinds of data associated with them
▶ Allows mixed list/array as data is housed in a unified type

1 (* Establish a type that is either an int or string *)
2 type age_name =
3 | Age of int (* Age constructor takes an int *)
4 | Name of string (* Name constructor takes a string *)
5 ;;
6
7 (* Construction of individual age_name values *)
8 let i = Age 21;; (* construct an Age with data 21 *)
9 let s = Name "Sam";; (* construct a Name with data "Sam" *)

10 let j = Age 15;;
11
12 (* age_name list to demonstrate how they are the same type and can
13 therefore be in a list together. *)
14 let mixed_list = [
15 Age 1;
16 Name "Two";
17 Age 3;
18 Name "Four";
19];;

18

Pattern Matching and Algebraic Types
▶ Pattern matching is used extensively with algebraic types
▶ The below function pattern matches on a age_name list
▶ Note use of list AND variant destructuring

1 (* Establish a type that is either an int or string *)
2 type age_name =
3 | Age of int (* Age constructor takes an int *)
4 | Name of string (* Name constructor takes a string *)
5 ;;

6 (* Sum all the Age data in the given age_name list *)
7 let rec sum_ages list =
8 match list with
9 | [] -> 0 (* base case *)

10 | (Age i)::tail -> (* have an age with data i *)
11 i + (sum_ages tail) (* add i onto recursive call *)
12 | _ :: tail -> (* must be a Name *)
13 sum_ages tail (* don’t add anything *)
14 ;;

sum_ages;;
- : age_name list -> int = <fun>
sum_ages [Age 1; Name "Two"; Age 3; Name "Four"; Age 5];;
- : int = 9

19

Exercise: Sum Lengths of age_name
Define the following function
let rec sum_lengths list = <fun>
(* Sum the "lengths" of Ages and Names. Length of an Age is 1; Length

of a Name is the string length of the associated data. *)

sum_lengths [];;
- : int = 0
sum_lengths [Age 4];;
- : int = 1
sum_lengths [Name "bugger"];;
- : int = 6
sum_lengths [Age 4; Name "bugger"];;
- : int = 7
sum_lengths [Age 4; Name "bugger"; Age 2];;
- : int = 8
sum_lengths [Age 4; Name "bugger"; Age 2; Name "bug"];;
- : int = 11

▶ In match/with destructure both list and data variants Age
and Name to deal with them separately

▶ Age a elements contribute 1
▶ Name n elements contribute String.length n

20

Answers: Sum Lengths of age_name

15 (* Sum the "lengths" of Ages and Names. Length of an Age is 1; Length
16 of a Name is the string length of the associated data. *)
17 let rec sum_lengths list =
18 match list with
19 | [] -> 0
20 | (Age _)::tail -> (* don’t need data for age *)
21 1 + (sum_lengths tail) (* add 1 onto total *)
22 | (Name n) :: tail -> (* do need data for name *)
23 (String.length n) + (sum_lengths tail) (* add on length of name *)
24 ;;

21

An Interesting Algebraic Type: ’a option

▶ Ocaml has a built-in type
called option which is
defined roughly as

type ’a option = None | Some of ’a;;

▶ Type is polymorphic
let iopt = Some 5;;
val iopt : int option = ...
let bopt = Some false;;
val bopt : bool option = ...
let stropt_list = [

None;
Some "dude";
Some "sweet"

];;
val stropt_list :

string option list = ...

▶ option used to indicate
presence or absence of
something, often in function
return values

▶ Compare assoc and
assoc_opt operations on
association lists

(* An association list *)
let alist = [("a",5);

("b",10)];;
val alist :
(string * int) list = ...

(* assoc: return element or
raise exception *)

List.assoc "b" alist;;
- : int = 10
List.assoc "z" alist;;
Exception: Not_found.

(* assoc_opt: return Some or
None to indicate failure *)

List.assoc_opt "a" alist;;
- : int option = Some 5
List.assoc_opt "z" alist;;
- : int option = None

22

Exercise: Implement assoc_opt

Below is code for assoc from Lab04. Alter it to fulfill the
requirements of assoc_opt

1 (* Return the value associated with query key in association
2 list alist. Raises a Not_found exception if there is no
3 association *)
4 let rec assoc query alist =
5 match alist with
6 | [] -> raise Not_found (* not found *)
7 | (k,v)::tail when query=k -> v (* found *)
8 | _::tail -> assoc query tail (* recurse deeper *)
9 ;;

10
11 (* Find association of query key in given association
12 list. Return (Some value) if found or None if not found. *)
13 let rec assoc_opt query alist =

23

Answers: Implement assoc_opt

1 (* Return the value associated with query key in association
2 list alist. Raises a Not_found exception if there is no
3 association *)
4 let rec assoc query alist =
5 match alist with
6 | [] -> raise Not_found (* not found *)
7 | (k,v)::tail when query=k -> v (* found *)
8 | _::tail -> assoc query tail (* recurse deeper *)
9 ;;

10
11 (* Find association of query key in given association
12 list. Return (Some value) if found or None if not found. *)
13 let rec assoc_opt query alist =
14 match alist with
15 | [] -> None (* not found *)
16 | (k,v)::tail when query=k -> Some v (* found *)
17 | _::tail -> assoc_opt query tail (* recurse deeper *)
18 ;;

▶ Change empty list case to None rather than exception
▶ Change found case to Some v

24

Exercise: Counting Some
▶ Implement the following two functions on option lists
▶ Both solution have very similar recursive structure

count_some : ’a option list -> int = <fun>
(* Count how many times a (Some _) appears in the ’a option list *)

sum_some_ints : int option list -> int = <fun>
(* Sum i’s in all (Some i) that appear in the int option list *)

count_some [];;
- : int = 0
count_some [None; None];;
- : int = 0
count_some [Some 5];;
- : int = 1
count_some [Some "a"; None; Some "b"; None; None; Some "c"];;
- : int = 3

sum_some_ints [];;
- : int = 0
sum_some_ints [None; None];;
- : int = 0
sum_some_ints [Some 2];;
- : int = 2
sum_some_ints [Some 2; None; Some 4; Some 9; Some 3; None];;
- : int = 18 25

Answers: Counting Some

1 (* Count how many times a (Some _) appears in a list of options *)
2 let rec count_some opt_list =
3 match opt_list with
4 | [] -> 0
5 | None::tail -> count_some tail
6 | (Some _)::tail -> 1 + (count_some tail)
7 ;;
8
9

10 (* Sum all (Some i) options that appear in the list *)
11 let rec sum_some_ints opt_list =
12 match opt_list with
13 | [] -> 0
14 | None::tail -> sum_some_ints tail
15 | (Some i)::tail -> i + (sum_some_ints tail)
16 ;;

26

Options vs Exceptions

▶ Consider code in opt_v_exc.ml which underscores the
differences in style between assoc and assoc_opt

▶ Exception version crashes when something is not found
▶ Many built-in operators functions have these two alternatives

1. Return an option: found as Some v, not found as None
2. Return found value directly or raise a Not_found exception

▶ Will contrast these more later when discussing exception
handling

27

Lists are Algebraic Types
▶ OCaml’s built-in list type is based on Algebraic types
▶ The file alg_lists.ml demonstrates how one can re-create

standard lists with algebraic types (but don’t do that)
▶ Note the use of type parameter in ’a mylist: can hold any

type of data so it is a polymorphic data type
▶ Note also the type is recursive referencing itself in Cons

1 type ’a mylist = (* type parameter *)
2 | Empty (* end of the list *)
3 | Cons of (’a * ’a mylist) (* an element with more list *)
4 ;;
5
6 (* construct a string list *)
7 let list1 = Cons ("a", Cons("b", Cons("c", Empty)));;
8
9 (* construct a boolean list *)

10 let list2 = Cons (true, Cons(false, Cons(true, Cons(true, Empty))));;
11
12 (* function that calculates the length of a mylist *)
13 let rec length_ml list =
14 match list with
15 | Empty -> 0
16 | Cons (_,tail) -> 1 + (length_ml tail)
17 ;; 28

Uses for Algebraic Types: Tree Structures

▶ In the future we will use Algebraic Types in several major ways
▶ Will study functional data structures, rely heavily on trees
▶ Algebraic types give nice null-free trees

type strtree =
| Bottom (* no more tree *)
| Node of string * strtree * strtree (* data with left/right tree *)

;;
let empty = Bottom;;
let single = Node ("alone",Bottom,Bottom);;
let small = Node ("Mario",

Node("Bowser",
Bottom,
Node("Luigi",

Bottom,
Bottom)),

Node("Princess",
Bottom,
Bottom));;

29

Uses for Algebraic Types: Lexer/Parser Results

▶ In the future we will use Algebraic Types in several major ways
▶ Will study converting a text stream to an executable program
▶ Usually done in 2 phases: lexing and parsing
▶ Both usually employ algebraic types

let input = "5 + 9*4 + 7*(3+1)";; (* Lexing: convert this string.. *)
let lexed = [Int 5; Plus; Int 9; (* Into this stream of tokens *)

Times; Int 4; Plus;
Int 7; Times;
OParen; Int 3; Plus;
Int 1; CParen];;

let parsed = (* Parsing: convert lexed tokens.. *)
Add(Const(5), (* Into a semantic data structure, *)

Add(Mul(Const(9), (* in this case a tree reflecting the *)
Const(4)), (* order in which expressions should *)

Mul(Const(7), (* be evaluated. Intrepretation involves *)
Add(Const(3), (* walking the tree to compute a *)

Const(1))))) (* result. Compilation converts the tree *)
;; (* into a linear set of instructions. *)

30

Algebraic Extras
Multiple Type Params

▶ Records and Algebraic types can take type parameters as in
type ’a option = None | Some of ’a;;

▶ Shows up less frequently but can use multiple type parameters
type (’a, ’b) thisthat = This of ’a | That of ’b;;

▶ File thisthat.ml explores this a little but is not required reading
▶ Will make use of multiple type params for polymorphic Maps and Hashtables

Anonymous Records in Algebraic Types
▶ Algebraic types can have any kind of data, typically tuples of different kinds
▶ Anonymous records with named fields are also allows
▶ Relatively new feature of OCaml, helps to document data in type

type fieldtree =
| Bot (* no fields *)
| Nod of {data : string; (* anonymous record with data *)

left : fieldtree; (* left and *)
right : fieldtree} (* right fields *)

;;
let tree = ...;;
let rootdata = match tree with (* assign data from root node *)

| Bot -> "" | Nod(n) -> n.data
;; 31

