CSCI 2041: First Class Functions

Chris Kauffman

Last Updated:
Thu Oct 18 22:42:48 CDT 2018

Logistics

Reading

» OCaml System Manual:

Ch 26: List and Array
Modules, higher-order
functions

» Practical OCaml: Ch 8

Goals

» Functions as parameters

» Higher-order Functions
» Map / Reduce / Filter

Assignment 3 multimanager

| 2

vvyy

v

>

Manage multiple lists
Records to track lists/undo
option to deal with editing

Higher-order funcs for easy
bulk operations

Due Mon 10/22

Test cases over the weekend

Next Week

| 2
>
| 2

Feedback Results
Curried Functions

Deep/Shallow Equality

Exercise: Code Patterns on Lists

1. Describe the code structure that they share

2. Describe which parts differ between them

3. What is the shared purpose of the functions

W ~NO®OD WN -

i e el
OO0 ~NOOWNEFE O

let rec evens list = (* all even ints in list *)
match list with
I 0 -> [1
| h::t when h mod 2 = 0 -> h::(evens t)
| _::t -> evens t
let rec shorter lim list = (* all strings shortenr than lim *)
match list with
(| -> [1
| h::t when String.length h < lim -> h::(shorter lim t)
| _::t -> shorter lim t
let rec betwixt min max list = (* elements between min/max *)

match list with
(N -> [

| h::t when min<h && h<max -> h::(betwixt min max t)
| _::t -> betwixt min max t

Answers: Code Patterns on Lists

1. Describe the code structure that they share
» Each destructures the list and examines which elements satisfy

some criteria.
» List of the "true" elements results while "false" elements are

excluded.
2. Describe which parts differ between them
» The specific criteria for each function differs: evenness, string
length, and within a range
» The parameters associated with these conditions also change
3. What is the shared purpose of the functions
> To filter a list down to elements for which some condition is
true

Identifying a code pattern that is mostly copy-pasted creates an

opportunity to write less and get more. OCaml provides a means
to encapsulate this code pattern and others.

Functions as Parameters

» OCaml features Ist class functions
» Functions can be passed as parameters to other functions
» Functions can be returned as values from functions
» Functions can be bound to names just as other values, global,
local, or mutable names
» Higher-order function: function which takes other functions
as parameters, i.e. a function OF functions
> Many code patterns can be encapsulated via higher-order
functions

Exercise: Basic Examples of Higher-Order Functions

Determine values bound to a,b,c

1
2
3
4
5
6
7
8

9
10
11
12
13
14

(* Higher-order function which
applies func as a function to
arg. *)

let apply func arg =

func arg

3

(*x Simple arithmetic functions. *)
let incr n = n+l;;
let double n = 2%*n;;

let a = apply incr 5;;
let b = apply double 5;;

let ¢ = apply List.hd ["p";"

q";"r“]

Determine values bound to x,y,z

1
2
3
4
5
6
7
8

©

10
11
12
13
14
15
16
17
18

(* Higher-order function taking two
function paramters f1 and f2.
Applies them in succession to

arg. *)
let apply_both f1 f2 arg=
let resl = fl1 arg in
let resl2 = f2 resl in
resl2
let x =
apply_both incr double 10;;
let y =
apply_both double incr 10;;
let z =
apply_both List.tl List.hd ["p";
"q";
llr"] ; ;

Determine the types for the two higher-order functions apply and

apply_both shown below.

Answers: Basic Examples of Higher-Order Functions

a

apply incr 5
(incr 5)
6

apply double 5
(double 5)
10

= apply List.hd [upn;uqu;urn]

List.hd ["p" ;"q"; "yt
"pll

= apply_both incr double 10

(double (incr 10))
(double 11)
22

apply_both double incr 10
(incr (double 10))

(incr 20)

21

Function types:

let apply func arg = ...

val apply :
(’a => ’b) -> ’a -> ’b
| -—func--| arg return

let apply_both f1 f2 arg = ...

val apply_both :

(’a => ’b) -> (’b => ’c) -> ’a -> ‘¢
|---f1-—-]| |---f2---| arg return

Note that apply_both applies
param func f1 first then applies
£2 to that that result

apply_both List.tl List.hd ["p";"q";"r"]

(List.hd (List.tl ["p";"q";"r"1))

(List.hd ["q" ; ")

q

Exercise: Notation for Function Types

» Fill in the 7?77 entries in the table below dealing with types
» Entries deal with function param and return types
» Lower entries are higher-order functions
» Be able to describe in words what each entry means
Return Higher

Type Notation ffargs arg types Type Order?
1 int 0 Not a function int No
2 int -> string 1 777 string No
3 int -> string -> int 2 77?7+ 777 77 No
4 7?77 -> bool 3 int + string + int bool No
5 (int -> string) -> int 1 (int -> string) 77 Yes
6 (int -> string) -> int -> bool e ??77? bool Yes
7 777 2 int + (string-> int) bool Yes
8 (int -> string -> int) -> bool 777 777 bool Yes

Answers: Notation for Function Types

Return Higher

Type Notation #targs arg types Type Order?
1 int 0 Not a function int No
2 int -> string 1 int string No
3 int -> string -> int 2 int + string int No
4 int -> string -> int -> bool 3 int + string + int bool No
5 (int -> string) -> int 1 (int -> string) int Yes
6 (int -> string) -> int -> bool 2 (int -> string) + int bool Yes
7 int -> (string -> int) -> bool 2 int + (string-> int) bool Yes
8 (int -> string -> int) -> bool 1 (int -> string-> int) bool Yes

What about returning a function?

» Natural to wonder about type for returning a function. A good guess
would be something like

int -> (string -> int)

for 1 int param and returning a (string -> int) function
> Will find that this instead written as

int -> string -> int

due to OCaml’s curried functions (more later)

Filtering as a Higher-order Function

» The following function captures the earlier code pattern

v
> OO NooswN e

W ~NO O WN -

e
N = O ©

(* val filter : (’a -> bool) -> ’a list -> ’a list
Higher-order function: pred is a function of a single element that
returns a true/false value, often referred to as a "predicate".
filter returns a all elements from list for which pred is true *)
let rec filter pred list =
match list with
I 0 -> [
| h::t when (pred h)=true -> h::(filter pred t)
| _::t -> filter pred t
llows expression of filtering functions using predicates
let evens list = (* even numbers *)
let is_even n = n mod 2 = 0 in (* predicate: true for even ints *)
filter is_even list (* call to filter with predicate *)
let shorter lim list = (* strings w/ len < lim *)
let short s = (String.length s) < lim in (* predicate *)
filter short list (* call to filter *)
let betwixt min max list = (* elements between min/max *)
let betw e = min < e && e < max in (* predicate *)
filter betw list (* call to filter w/ predicate

3

10

Exercise: Use filter

O ~NOOWN -

el el
B wWN - O ©

» Define equivalent versions of the following functions

» Make use of filter in your solution

(* More functions that filter elements *)

let rec ordered list = (x first pair elem < second *)
match list with
|0 -> [
| (a,b)::t when a < b -> (a,b)::(ordered t)
| _::t -> ordered t
let rec is_some list = (* options that have some *)
match list with
|0 -> I
| (Some a)::t -> (Some a)::(is_some t)
| _::t -> is_some t

11

Answers: Use filter

0N O WN -

el el
B W= O ©

(* Definitions using filter higher-order function *)

let ordered list =
let pred (a,b) = a < b in
filter pred list

3

let is_some list =
let pred opt =
match opt with
| Some a -> true
| None -> false
in
filter pred list

3

(*

(*
(*
(*
(*
(*

first pair elem < second *)

options that have some *)
named predicate with *)
formatted source code *)
that is boring but easy *)
on the eyes *)

12

fun with Lambda Expressions

00 ~N O U WN -

el e
WN = O

» OCaml's fun syntax allows one to "create" a function

» This function has no name and is referred to alternatively as

» An anonymous function (e.g. no name)

> A lambda expression (e.g. many Lisps use keyword lambda
instead of fun to create functions)

» Lambda (Greek letter \) was used by Alonzo Church to
represent "abstractions" (e.g. functions) in his calculus

let addl_stand x =

let xpl
xpl

3

x+1 in

let addil_lambda =
(fun x —>

let xpl

xpl)

I

let eight
let ate

= x+1 in

addl_stand 7;;
addl_lambda 7;;

(*
(*
(*

(*
(*
(*
(*

(*
(*

standard function syntax: addl_normal is *)
parameterized on x and remains unevaluated
until x is given a concrete value *)

bind the name addl_lambda to ... *)

a function of 1 parameter named x. *)

Above standard syntax is "syntatic sugar" *)
for the "fun" version. *)

both versions of the function *)
behave identically *)

13

Common fun Use: Args to Higher-Order Functions

» Many higher-order functions require short, one-off function
arguments for which fun can be useful

let evens list =

let shorter lim
filter (fun s

list =

HY
let betwixt min
filter (fun e

OO0 N O WN -

3

filter (fun n -> n mod 2

-> (String.

= 0)

max list =
-> min < e

&& e

(* even numbers *)
list

(* strings shortenr than lim *)

length s) < lim) list

(* elements between min/max *)
< max) list

If predicates are more than a couple lines, favor a named

helper function with nicely formatted source code: readability

let is_some list =
let pred opt =
match opt with
| Some a -> true
| None -> false
in
filter pred list
Y

let is_some list =

(*
(*
(*
(*
(*

(*

options that have some *)
named predicate with *)
formatted source code *)
that is boring but easy *)
on the eyes *)

magnificent one-liner version... *)

filter (fun opt -> match opt with Some a->true | None->false) list

(*

3

...that will make you cry on later reading *)

14

First Class Functions Mean fun Everywhere

| 2

| 2

fun most often associated with args to higher-order functions
like filter BUT...
A fun / lambda expression can be used anywhere a value is
expected including but not limited to:

» Top-level 1et bindings

» Local let/in bindings

P> Elements of a arrays, lists, tuples

» Values referred to by refs

» Fields of records

lambda_expr.ml demonstrates many of these

Poke around in this file for a few minutes to see things like. ..

1 (* Demo function refs *)

2 let func_ref = ref (fun s -> s™" ""s);; (*x a ref to a function *)

3 1let bambam = !func_ref "bam";; (* call the ref’d function *)
4 func_ref := (fun s -> "!I!11");; (* assign to new function *)
5 1let exclaim = !func_ref "bam";; (* call the newly ref’d func *

15

Families of Higher-Order Functions

» Along with filter, there are several other common use
patterns on data structures

> Most functional languages provide higher-order functions in
their standard library for these use patterns on their built-in
Data Structures (DS)

» Will discuss each of these: to harness the power of functional
programming means getting intimate with all of them

Pattern Description Library Functions

Filter Select some elements from a DS List.filter, Array.filter
(’a -> bool) -> ’a DS -> ’a DS

Iterate Perform side-effects on each element of a DS List.iter, Array.iter
(’a -> unit) -> ’a DS -> unit Queue.iter

Map Create a new DS with different elements, same size ~ List.map, Array.map

Fold/Reduce

(’a -> ’b) -> ’a DS -> ’b DS

Compute single value based on all DS elements
(’a -> ’b -> ’a) -> ’a -> ’b DS -> ’a

List.fold_left / fold_right
Array.fold_left / fold_right
Queue.fold

16

Exercise: iter visits all elements

>

Frequently wish to visit each element of a data structure to do

something for side-effects, e.g. printing

Sometimes referred to as the visitor pattern

List.iter is a higher-order function for iterating on lists
val List.iter : (a -> unit) -> ’a list -> unit

Sample uses: What happens in each case?

1 let ilist = [9; 5; 2; 6; 5; 1;1;;

2 let silist = [("a",2); ("b",9); ("d",7)]1;;

3 let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;
4

5 (* Print all elems of an int list *)

6 List.iter (fun i->printf "%d\n" i) ilist;;

7

8 (* Print all string,int pairs *)

9 List.iter (fun (s,i)->printf "str: %s int: %d\n" s i) silist;;
10
11 (* Double the float referred to by each element *)
12 List.iter (fun r-> r := !r *. 2.0) ref_list;;

13

14 (* Print all floats referred to *)
16 List.iter (fun r-> printf "%f\n" !r) ref_list;;

What would code for iter look like like? Tail Recursive?

17

Answers: lterate via iter

W N O WN -

let ilist = [9; 5; 2; 6; 5; 1;1;; (* Sample definition for iter:x)
List.iter (fun i->printf "%d\n" i) ilist;; (* tail recursive *)
let rec iter func list =
match list with
I 00 -> 0
| h::t -> func hd;
iter func t

I = 0N OO

: unit = ()

let silist = [("a",2); ("b",9); ("d",7)]1;;

List.iter (fun (s,i)->printf "str: %s int: %d\n" s i) silist;;
str: a int: 2

str: b int: 9

str: d int: 7

- ¢ unit = O

let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

List.iter (fun r-> r := !r *. 2.0) ref_list;;

- : unit = O (* refs are doubled *)
List.iter (fun r-> printf "Jf\n" !r) ref_list;;

- : unit =)

3.000000

7.200000

4.800000

14.200000

18

map Creates a Transformed Data Structures

» Frequently want a new, different data structure, each element

based on elements of an existing data structure

» Transforms ’a DS to a ’b DS with same size

» Not mapping keys to values, different kind of map

> List.map is a higher-order function that transforms lists to
other lists via an element transformation function

val List.map

» Example uses of List.map

0 ~NOo O WN -

let ilist = [9; 5; 2; 1

val ilist : int list = [

6; 5; 15153
9; 5; 2; 6; 5; 1]

let doubled_list = List.map (fun n-> 2*n) ilist;;
val doubled_list : int list = [18; 10; 4; 12; 10; 2]

let as_strings_list = List.map string_of_int ilist;;
val as_strings_list : string list = ["9"; "5"; "2"; "6";

(’a -=> ’b) -> ’a list -> ’b list

ngn.
s

"1"]

19

Exercise: Evaluate map Calls

» Code below makes use of List.map to transform a list to a
different list

» Each uses a parameter function to transform single elements

» Determine the value and type of the resulting list in each case

1 let silist = [("a",2); ("b",9); ("d",7)1;;

2 let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;
3

4 (* Swap pair elements in result list *)

5 let swapped_list =

6 List.map (fun (s,i) -> (i,s)) silist;;

7

8 (* Extract only the first element of pairs in result list *)
9 1let firstonly_list =

10 List.map fst silist;;

11

12 (* Dereference all elements in the result list *)

13 1let derefed_list =

14 List.map (!) ref_list;;

15

16 (* Form pairs of original value and its square *)

17 let with_square_list =

18 List.map (fun r-> (!r, !r *. !r)) ref_list;;

Answers: Evaluate map Calls

let silist = [("a",2); ("b",9); ("d",7)]1;;
let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

1
2
3
4
5
6
7
8

©

15
16
17
18

let swapped_list
val swapped_list :

= List.map (fun (s,i) -> (i,s)) silist;;
(int * string) list =

[2, "a"); (9, "b"); (7, "d")]

let firstonly_1i

val firstonly_list :

["a" ; "p" ; "d"]

let derefed_list
val derefed_list :
[1.5; 3.6; 2.4;

let with_square_
val with_square_li

st = List.map fst silist;;
string list =

= List.map (!) ref_list;;
float list =
7.1]

list = List.map (fun r-> (!r, !'r *. !r)) ref_list;;
st : (float * float) list =

[(1.5, 2.25); (3.6, 12.96); (2.4, 5.76); (7.1, 50.41)]

For completion, here is a simple definition for map:

19
20
21
22
23
24

(* Sample implementation of map: not tail recursive *)

let rec map trans
match list with
|0 ->
| head::tail ->

list =

(]

(trans head)::(map trans tail)

21

Compute a Value based on All Elements via fold

» Folding goes by several other names
» Reduce all elements to a computed value OR
» Accumulate all elements to a final result
» Folding is a very general operation: can write Iter, Filter, and
Map via Folding and it is a good exercise to do so

> Will focus first on List.fold_left, then broaden

1 (*

2 wval List.fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a
3 cur elem next init thelist result
4 x)

5 (% sample implementation of fold_left *)

6 let fold_left func init list =

7 let rec help cur 1lst =

8 match 1lst with

9 | 0 -> cur

10 | head::tail -> let next = func cur head in

11 help next tail

12 in

13

help init list

i
'S

3

Exercise: Uses of List.fold left

Determine the values that get bound with each use of fold_left
in the code below. These are common use patterns for fold.

1 let ilist = [9; 5; 2; 6; 5; 1;1;;

let silist = [("a",2); ("b",9); ("d",7];;

let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

(* sum ints in the list *)
let sum_oflist =
List.fold_left (+) 0 ilist;;

W ~NOOd WN

©

(* sum squares in the list *)

10 1let sumsquares_oflist =

11 List.fold_left (fun sum n-> sum + n*n) 0 ilist;;

12

13 (* concatenate all string in first elem of pairs *)

14 let firststrings_oflist =

15 List.fold_left (fun all (s,i)-> all”s) "" silist;;

16

17 (* product of all floats referred to in the list *)

18 1let product_oflist =

19 List.fold_left (fun prod r-> prod *. !r) 1.0 ref_list;;
20

21 (* sum of truncating float refs to ints *)

22 let truncsum_oflist =

23 List.fold_left (fun sum r-> sum + (truncate !'r)) O ref_list;;

Answers: Uses of List.fold left

let ilist = [9; 5; 2; 6; 5; 1;1;;
let silist = [("a",2); ("b",9); ("d",7)]1;;
let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

let sum_oflist = List.fold_left (+) 0 ilist;;
val sum_oflist : int = 28

let sumsquares_oflist = List.fold_left (fun sum n-> sum + n*n) O ilist;;
val sumsquares_oflist : int = 172

let firststrings_oflist = List.fold_left (fun all (s,i)-> all”s) "" silist;;
val firststrings_oflist : string = "abd"

let product_oflist = List.fold_left (fun prod r-> prod *. !r) 1.0 ref_list;;
val product_oflist : float = 92.016

let truncsum_oflist =

List.fold_left (fun sum r-> sum + (truncate !r)) O ref_list;;
val truncsum_oflist : int = 13

24

Folded Values Can be Data Structures

» Folding can produce results of any kind including new lists
» Note that since the "motion" of fold_left left to right, the
resulting lists below are in reverse order
let ilist = [9; 5; 2; 6; 5; 1;1;;

(* Reverse a list via consing / fold *)
let rev_ilist = List.fold_left (fun cur x-> x::cur) [] ilist ;;

val rev_ilist : int list = [1; 5; 6; 2; 5; 9]
(* Generate a list of all reversed sequential sub-lists *)

9 # let rev_seqlists =
10 List.fold_left (fun all x-> (x::(List.hd all))::all) [[]] ilist ;;

11 (% x::|list of prevl| *)
12 (x |--longer list---|::all *)
13 val rev_seqlists : int 1list list =

14 [[1; 5; 6; 2; 5; 9]; (* all reversed *)

15 [5; 6; 2; 5; 9]; (* all but last reversed *)

16 [6; 2; 5; 9]; (* etc. *)

17 [2; 5; 9]; (* 3rd::2nd::1st::init x)

18 [6; 9]; (* 2nd::1st::init *)

19 [91; (* 1st::init *)

20 (11 (* init omnly *)

fold_left vs fold_right
Left-to-right folding, tail recursion, Right-to-left folding, NOT tail

generates reverse ordered results recursive, allows in-order results

1 (* sample implementation of fold_left *) 1 (% sample implementation of fold_right x)
2 let fold_left func init list = 2 let rec fold_right func list init =

3 let rec help cur 1lst = 3 match list with

4 match 1st with 4 | [-> init

5 10 -> cur 5 | head::tail ->

6 | head::tail -> 6 let rest = fold_right func tail init
7 let next = func cur head in 7 func head rest

8 help next tail 8 ;3

9 in 9

10 help init list 10

11 ;5 11

12 12

13 List.fold_left f init [el; e2; ...; en] 13 List.fold_right f [el; e2; ...; en] init
14 =f (... (f (f init el) e2) ...) en 14 =f el (f e2 (... (f en init) ...))

15 15

16 # let nums = [1;2;3;4];; 16 # let nums = [1;2;3;4];;

17 17

18 # List.fold_left (+) O nums;; 18 # List.fold_right (+) nums 0;;

19 - : int = 10 19 - : int = 10

20 20

21 # List.fold_left (fun 1 e-> e::1) [] nums;; 21 # List.fold_right (fun e 1-> e::1) nums [];;
22 - : int list = [4; 3; 2; 1] 22 - : int list = [1; 2; 3; 4]

26

Distributed Map-Reduce

>

>

Have seen that Map + Fold/Reduce are nice ideas to
transform lists and computer answers

In OCaml, tend to have a list of data that fits in memory, call
these functions on that one list

In the broader sense, a data list may instead be extremely
large: a list of millions of web pages and their contents
Won't fit in the memory or even on disk for a single computer

A Distributed Map-Reduce Framework allows processing of
large data collections on many connected computers

» Apache Hadoop

» Google MapReduce
Specify a few functions that transform and reduce single data
elements (mapper and reducer functions)
Frameworks like Hadoop uses these functions to compute
answers based on all data across multiple machines, all
cooperating in the computation

27

Distributed Map-Reduce Schematic

» Map: function that computes category for a datum
» Reduce: function which computes a category's answer

» Individual Computers may be Map / Reduce / Both workers

Assign reduce lasks
Assign map tasks :

\ Output
Map Worker 1 ile 1
. Output
-] ile 2
-_' R mm J!ems
Map Worker M work items
Input Intermediate Shuffle Qutput
files Map files (sort) ~ Reduce feg

Source: MapReduce A framework for large-scale parallel processing by Paul Krzyzanowski

28

https://www.cs.rutgers.edu/~pxk/417/notes/content/mapreduce.html

