
CSCI 2041: First Class Functions

Chris Kauffman

Last Updated:
Thu Oct 18 22:42:48 CDT 2018

1

Logistics

Reading
▶ OCaml System Manual:

Ch 26: List and Array
Modules, higher-order
functions

▶ Practical OCaml: Ch 8

Goals
▶ Functions as parameters
▶ Higher-order Functions
▶ Map / Reduce / Filter

Assignment 3 multimanager

▶ Manage multiple lists
▶ Records to track lists/undo
▶ option to deal with editing
▶ Higher-order funcs for easy

bulk operations
▶ Due Mon 10/22
▶ Test cases over the weekend

Next Week
▶ Feedback Results
▶ Curried Functions
▶ Deep/Shallow Equality

2

Exercise: Code Patterns on Lists
1. Describe the code structure that they share
2. Describe which parts differ between them
3. What is the shared purpose of the functions

1 let rec evens list = (* all even ints in list *)
2 match list with
3 | [] -> []
4 | h::t when h mod 2 = 0 -> h::(evens t)
5 | _::t -> evens t
6 ;;
7
8 let rec shorter lim list = (* all strings shortenr than lim *)
9 match list with

10 | [] -> []
11 | h::t when String.length h < lim -> h::(shorter lim t)
12 | _::t -> shorter lim t
13 ;;
14
15 let rec betwixt min max list = (* elements between min/max *)
16 match list with
17 | [] -> []
18 | h::t when min<h && h<max -> h::(betwixt min max t)
19 | _::t -> betwixt min max t

3

Answers: Code Patterns on Lists

1. Describe the code structure that they share
▶ Each destructures the list and examines which elements satisfy

some criteria.
▶ List of the "true" elements results while "false" elements are

excluded.
2. Describe which parts differ between them

▶ The specific criteria for each function differs: evenness, string
length, and within a range

▶ The parameters associated with these conditions also change
3. What is the shared purpose of the functions

▶ To filter a list down to elements for which some condition is
true

Identifying a code pattern that is mostly copy-pasted creates an
opportunity to write less and get more. OCaml provides a means
to encapsulate this code pattern and others.

4

Functions as Parameters

▶ OCaml features 1st class functions
▶ Functions can be passed as parameters to other functions
▶ Functions can be returned as values from functions
▶ Functions can be bound to names just as other values, global,

local, or mutable names
▶ Higher-order function: function which takes other functions

as parameters, i.e. a function OF functions
▶ Many code patterns can be encapsulated via higher-order

functions

5

Exercise: Basic Examples of Higher-Order Functions
Determine values bound to a,b,c

1 (* Higher-order function which
2 applies func as a function to
3 arg. *)
4 let apply func arg =
5 func arg
6 ;;
7
8 (* Simple arithmetic functions. *)
9 let incr n = n+1;;

10 let double n = 2*n;;
11
12 let a = apply incr 5;;
13 let b = apply double 5;;
14 let c = apply List.hd ["p";"q";"r"]

Determine values bound to x,y,z

1 (* Higher-order function taking two
2 function paramters f1 and f2.
3 Applies them in succession to
4 arg. *)
5 let apply_both f1 f2 arg=
6 let res1 = f1 arg in
7 let res12 = f2 res1 in
8 res12
9 ;;

10
11 let x =
12 apply_both incr double 10;;
13 let y =
14 apply_both double incr 10;;
15 let z =
16 apply_both List.tl List.hd ["p";
17 "q";
18 "r"];;

Determine the types for the two higher-order functions apply and
apply_both shown below.

6

Answers: Basic Examples of Higher-Order Functions
a = apply incr 5

= (incr 5)
= 6

b = apply double 5
= (double 5)
= 10

c = apply List.hd ["p";"q";"r"]
= List.hd ["p";"q";"r"]
= "p"

x = apply_both incr double 10
= (double (incr 10))
= (double 11)
= 22

y = apply_both double incr 10
= (incr (double 10))
= (incr 20)
= 21

z = apply_both List.tl List.hd ["p";"q";"r"]
= (List.hd (List.tl ["p";"q";"r"]))
= (List.hd ["q";"r"])
= "q"

Function types:
let apply func arg = ...
val apply :
(’a -> ’b) -> ’a -> ’b
|--func--| arg return

let apply_both f1 f2 arg = ...
val apply_both :
(’a -> ’b) -> (’b -> ’c) -> ’a -> ’c
|---f1---| |---f2---| arg return

Note that apply_both applies
param func f1 first then applies
f2 to that that result

7

Exercise: Notation for Function Types

▶ Fill in the ??? entries in the table below dealing with types
▶ Entries deal with function param and return types
▶ Lower entries are higher-order functions
▶ Be able to describe in words what each entry means

Return Higher
Type Notation #args arg types Type Order?

1 int 0 Not a function int No
2 int -> string 1 ??? string No
3 int -> string -> int 2 ??? + ??? ??? No
4 ??? -> bool 3 int + string + int bool No
5 (int -> string) -> int 1 (int -> string) ??? Yes
6 (int -> string) -> int -> bool ??? ??? bool Yes
7 ??? 2 int + (string-> int) bool Yes
8 (int -> string -> int) -> bool ??? ??? bool Yes

8

Answers: Notation for Function Types

Return Higher
Type Notation #args arg types Type Order?

1 int 0 Not a function int No
2 int -> string 1 int string No
3 int -> string -> int 2 int + string int No
4 int -> string -> int -> bool 3 int + string + int bool No
5 (int -> string) -> int 1 (int -> string) int Yes
6 (int -> string) -> int -> bool 2 (int -> string) + int bool Yes
7 int -> (string -> int) -> bool 2 int + (string-> int) bool Yes
8 (int -> string -> int) -> bool 1 (int -> string-> int) bool Yes

What about returning a function?
▶ Natural to wonder about type for returning a function. A good guess

would be something like
int -> (string -> int)

for 1 int param and returning a (string -> int) function
▶ Will find that this instead written as

int -> string -> int

due to OCaml’s curried functions (more later)
9

Filtering as a Higher-order Function
▶ The following function captures the earlier code pattern

1 (* val filter : (’a -> bool) -> ’a list -> ’a list
2 Higher-order function: pred is a function of a single element that
3 returns a true/false value, often referred to as a "predicate".
4 filter returns a all elements from list for which pred is true *)
5 let rec filter pred list =
6 match list with
7 | [] -> []
8 | h::t when (pred h)=true -> h::(filter pred t)
9 | _::t -> filter pred t

▶ Allows expression of filtering functions using predicates
1 let evens list = (* even numbers *)
2 let is_even n = n mod 2 = 0 in (* predicate: true for even ints *)
3 filter is_even list (* call to filter with predicate *)
4 ;;
5 let shorter lim list = (* strings w/ len < lim *)
6 let short s = (String.length s) < lim in (* predicate *)
7 filter short list (* call to filter *)
8 ;;
9 let betwixt min max list = (* elements between min/max *)

10 let betw e = min < e && e < max in (* predicate *)
11 filter betw list (* call to filter w/ predicate *)
12 ;;

10

Exercise: Use filter

▶ Define equivalent versions of the following functions
▶ Make use of filter in your solution

1 (* More functions that filter elements *)
2 let rec ordered list = (* first pair elem < second *)
3 match list with
4 | [] -> []
5 | (a,b)::t when a < b -> (a,b)::(ordered t)
6 | _::t -> ordered t
7 ;;
8
9 let rec is_some list = (* options that have some *)

10 match list with
11 | [] -> []
12 | (Some a)::t -> (Some a)::(is_some t)
13 | _::t -> is_some t
14 ;;

11

Answers: Use filter

1 (* Definitions using filter higher-order function *)
2 let ordered list = (* first pair elem < second *)
3 let pred (a,b) = a < b in
4 filter pred list
5 ;;
6
7 let is_some list = (* options that have some *)
8 let pred opt = (* named predicate with *)
9 match opt with (* formatted source code *)

10 | Some a -> true (* that is boring but easy *)
11 | None -> false (* on the eyes *)
12 in
13 filter pred list
14 ;;

12

fun with Lambda Expressions
▶ OCaml’s fun syntax allows one to "create" a function
▶ This function has no name and is referred to alternatively as

▶ An anonymous function (e.g. no name)
▶ A lambda expression (e.g. many Lisps use keyword lambda

instead of fun to create functions)
▶ Lambda (Greek letter λ) was used by Alonzo Church to

represent "abstractions" (e.g. functions) in his calculus

1 let add1_stand x = (* standard function syntax: add1_normal is *)
2 let xp1 = x+1 in (* parameterized on x and remains unevaluated *)
3 xp1 (* until x is given a concrete value *)
4 ;;
5
6 let add1_lambda = (* bind the name add1_lambda to ... *)
7 (fun x -> (* a function of 1 parameter named x. *)
8 let xp1 = x+1 in (* Above standard syntax is "syntatic sugar" *)
9 xp1) (* for the "fun" version. *)

10 ;;
11
12 let eight = add1_stand 7;; (* both versions of the function *)
13 let ate = add1_lambda 7;; (* behave identically *)

13

Common fun Use: Args to Higher-Order Functions
▶ Many higher-order functions require short, one-off function

arguments for which fun can be useful
1 let evens list = (* even numbers *)
2 filter (fun n -> n mod 2 = 0) list
3 ;;
4 let shorter lim list = (* strings shortenr than lim *)
5 filter (fun s -> (String.length s) < lim) list
6 ;;
7 let betwixt min max list = (* elements between min/max *)
8 filter (fun e -> min < e && e < max) list
9 ;;

▶ If predicates are more than a couple lines, favor a named
helper function with nicely formatted source code: readability
let is_some list = (* options that have some *)

let pred opt = (* named predicate with *)
match opt with (* formatted source code *)
| Some a -> true (* that is boring but easy *)
| None -> false (* on the eyes *)

in
filter pred list

;;
let is_some list = (* magnificent one-liner version... *)

filter (fun opt -> match opt with Some a->true | None->false) list
;; (* ...that will make you cry on later reading *)

14

First Class Functions Mean fun Everywhere

▶ fun most often associated with args to higher-order functions
like filter BUT. . .

▶ A fun / lambda expression can be used anywhere a value is
expected including but not limited to:
▶ Top-level let bindings
▶ Local let/in bindings
▶ Elements of a arrays, lists, tuples
▶ Values referred to by refs
▶ Fields of records

▶ lambda_expr.ml demonstrates many of these
▶ Poke around in this file for a few minutes to see things like. . .

1 (* Demo function refs *)
2 let func_ref = ref (fun s -> s^" "^s);; (* a ref to a function *)
3 let bambam = !func_ref "bam";; (* call the ref’d function *)
4 func_ref := (fun s -> "!!!");; (* assign to new function *)
5 let exclaim = !func_ref "bam";; (* call the newly ref’d func *)

15

Families of Higher-Order Functions
▶ Along with filter, there are several other common use

patterns on data structures
▶ Most functional languages provide higher-order functions in

their standard library for these use patterns on their built-in
Data Structures (DS)

▶ Will discuss each of these: to harness the power of functional
programming means getting intimate with all of them

Pattern Description Library Functions
Filter Select some elements from a DS List.filter, Array.filter

(’a -> bool) -> ’a DS -> ’a DS

Iterate Perform side-effects on each element of a DS List.iter, Array.iter
(’a -> unit) -> ’a DS -> unit Queue.iter

Map Create a new DS with different elements, same size List.map, Array.map
(’a -> ’b) -> ’a DS -> ’b DS

Fold/Reduce Compute single value based on all DS elements List.fold_left / fold_right
(’a -> ’b -> ’a) -> ’a -> ’b DS -> ’a Array.fold_left / fold_right

Queue.fold

16

Exercise: iter visits all elements
▶ Frequently wish to visit each element of a data structure to do

something for side-effects, e.g. printing
▶ Sometimes referred to as the visitor pattern
▶ List.iter is a higher-order function for iterating on lists

val List.iter : (’a -> unit) -> ’a list -> unit
▶ Sample uses: What happens in each case?

1 let ilist = [9; 5; 2; 6; 5; 1;];;
2 let silist = [("a",2); ("b",9); ("d",7)];;
3 let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;
4
5 (* Print all elems of an int list *)
6 List.iter (fun i->printf "%d\n" i) ilist;;
7
8 (* Print all string,int pairs *)
9 List.iter (fun (s,i)->printf "str: %s int: %d\n" s i) silist;;

10
11 (* Double the float referred to by each element *)
12 List.iter (fun r-> r := !r *. 2.0) ref_list;;
13
14 (* Print all floats referred to *)
15 List.iter (fun r-> printf "%f\n" !r) ref_list;;

▶ What would code for iter look like like? Tail Recursive?
17

Answers: Iterate via iter
1 # let ilist = [9; 5; 2; 6; 5; 1;];; (* Sample definition for iter:*)
2 # List.iter (fun i->printf "%d\n" i) ilist;; (* tail recursive *)
3 9 let rec iter func list =
4 5 match list with
5 2 | [] -> ()
6 6 | h::t -> func hd;
7 5 iter func t
8 1 ;;
9 - : unit = ()

10
11 # let silist = [("a",2); ("b",9); ("d",7)];;
12 # List.iter (fun (s,i)->printf "str: %s int: %d\n" s i) silist;;
13 str: a int: 2
14 str: b int: 9
15 str: d int: 7
16 - : unit = ()
17
18 # let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;
19 # List.iter (fun r-> r := !r *. 2.0) ref_list;;
20 - : unit = () (* refs are doubled *)
21
22 # List.iter (fun r-> printf "%f\n" !r) ref_list;;
23 - : unit = ()
24 3.000000
25 7.200000
26 4.800000
27 14.200000

18

map Creates a Transformed Data Structures

▶ Frequently want a new, different data structure, each element
based on elements of an existing data structure

▶ Transforms ’a DS to a ’b DS with same size
▶ Not mapping keys to values, different kind of map

▶ List.map is a higher-order function that transforms lists to
other lists via an element transformation function

val List.map : (’a -> ’b) -> ’a list -> ’b list
▶ Example uses of List.map

1 # let ilist = [9; 5; 2; 6; 5; 1;];;
2 val ilist : int list = [9; 5; 2; 6; 5; 1]
3
4 # let doubled_list = List.map (fun n-> 2*n) ilist;;
5 val doubled_list : int list = [18; 10; 4; 12; 10; 2]
6
7 # let as_strings_list = List.map string_of_int ilist;;
8 val as_strings_list : string list = ["9"; "5"; "2"; "6"; "5"; "1"]

19

Exercise: Evaluate map Calls
▶ Code below makes use of List.map to transform a list to a

different list
▶ Each uses a parameter function to transform single elements
▶ Determine the value and type of the resulting list in each case

1 let silist = [("a",2); ("b",9); ("d",7)];;
2 let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;
3
4 (* Swap pair elements in result list *)
5 let swapped_list =
6 List.map (fun (s,i) -> (i,s)) silist;;
7
8 (* Extract only the first element of pairs in result list *)
9 let firstonly_list =

10 List.map fst silist;;
11
12 (* Dereference all elements in the result list *)
13 let derefed_list =
14 List.map (!) ref_list;;
15
16 (* Form pairs of original value and its square *)
17 let with_square_list =
18 List.map (fun r-> (!r, !r *. !r)) ref_list;;

20

Answers: Evaluate map Calls
1 # let silist = [("a",2); ("b",9); ("d",7)];;
2 # let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;
3
4 # let swapped_list = List.map (fun (s,i) -> (i,s)) silist;;
5 val swapped_list : (int * string) list =
6 [(2, "a"); (9, "b"); (7, "d")]
7
8 # let firstonly_list = List.map fst silist;;
9 val firstonly_list : string list =

10 ["a"; "b"; "d"]
11
12 # let derefed_list = List.map (!) ref_list;;
13 val derefed_list : float list =
14 [1.5; 3.6; 2.4; 7.1]
15
16 # let with_square_list = List.map (fun r-> (!r, !r *. !r)) ref_list;;
17 val with_square_list : (float * float) list =
18 [(1.5, 2.25); (3.6, 12.96); (2.4, 5.76); (7.1, 50.41)]

For completion, here is a simple definition for map:
19 (* Sample implementation of map: not tail recursive *)
20 let rec map trans list =
21 match list with
22 | [] -> []
23 | head::tail -> (trans head)::(map trans tail)
24 ;; 21

Compute a Value based on All Elements via fold
▶ Folding goes by several other names

▶ Reduce all elements to a computed value OR
▶ Accumulate all elements to a final result

▶ Folding is a very general operation: can write Iter, Filter, and
Map via Folding and it is a good exercise to do so

▶ Will focus first on List.fold_left, then broaden

1 (*
2 val List.fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a
3 cur elem next init thelist result
4 *)
5 (* sample implementation of fold_left *)
6 let fold_left func init list =
7 let rec help cur lst =
8 match lst with
9 | [] -> cur

10 | head::tail -> let next = func cur head in
11 help next tail
12 in
13 help init list
14 ;;

22

Exercise: Uses of List.fold_left
Determine the values that get bound with each use of fold_left
in the code below. These are common use patterns for fold.
1 let ilist = [9; 5; 2; 6; 5; 1;];;
2 let silist = [("a",2); ("b",9); ("d",7)];;
3 let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;
4
5 (* sum ints in the list *)
6 let sum_oflist =
7 List.fold_left (+) 0 ilist;;
8
9 (* sum squares in the list *)

10 let sumsquares_oflist =
11 List.fold_left (fun sum n-> sum + n*n) 0 ilist;;
12
13 (* concatenate all string in first elem of pairs *)
14 let firststrings_oflist =
15 List.fold_left (fun all (s,i)-> all^s) "" silist;;
16
17 (* product of all floats referred to in the list *)
18 let product_oflist =
19 List.fold_left (fun prod r-> prod *. !r) 1.0 ref_list;;
20
21 (* sum of truncating float refs to ints *)
22 let truncsum_oflist =
23 List.fold_left (fun sum r-> sum + (truncate !r)) 0 ref_list;;

23

Answers: Uses of List.fold_left

let ilist = [9; 5; 2; 6; 5; 1;];;
let silist = [("a",2); ("b",9); ("d",7)];;
let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

let sum_oflist = List.fold_left (+) 0 ilist;;
val sum_oflist : int = 28

let sumsquares_oflist = List.fold_left (fun sum n-> sum + n*n) 0 ilist;;
val sumsquares_oflist : int = 172

let firststrings_oflist = List.fold_left (fun all (s,i)-> all^s) "" silist;;
val firststrings_oflist : string = "abd"

let product_oflist = List.fold_left (fun prod r-> prod *. !r) 1.0 ref_list;;
val product_oflist : float = 92.016

let truncsum_oflist =
List.fold_left (fun sum r-> sum + (truncate !r)) 0 ref_list;;

val truncsum_oflist : int = 13

24

Folded Values Can be Data Structures
▶ Folding can produce results of any kind including new lists
▶ Note that since the "motion" of fold_left left to right, the

resulting lists below are in reverse order
1 # let ilist = [9; 5; 2; 6; 5; 1;];;
2
3 (* Reverse a list via consing / fold *)
4 # let rev_ilist = List.fold_left (fun cur x-> x::cur) [] ilist ;;
5
6 val rev_ilist : int list = [1; 5; 6; 2; 5; 9]
7
8 (* Generate a list of all reversed sequential sub-lists *)
9 # let rev_seqlists =

10 List.fold_left (fun all x-> (x::(List.hd all))::all) [[]] ilist ;;
11 (* x::|list of prev| *)
12 (* |--longer list---|::all *)
13 val rev_seqlists : int list list =
14 [[1; 5; 6; 2; 5; 9]; (* all reversed *)
15 [5; 6; 2; 5; 9]; (* all but last reversed *)
16 [6; 2; 5; 9]; (* etc. *)
17 [2; 5; 9]; (* 3rd::2nd::1st::init *)
18 [5; 9]; (* 2nd::1st::init *)
19 [9]; (* 1st::init *)
20 []] (* init only *)

25

fold_left vs fold_right
Left-to-right folding, tail recursion,
generates reverse ordered results

1 (* sample implementation of fold_left *)
2 let fold_left func init list =
3 let rec help cur lst =
4 match lst with
5 | [] -> cur
6 | head::tail ->
7 let next = func cur head in
8 help next tail
9 in

10 help init list
11 ;;
12
13 List.fold_left f init [e1; e2; ...; en]
14 = f (... (f (f init e1) e2) ...) en
15
16 # let nums = [1;2;3;4];;
17
18 # List.fold_left (+) 0 nums;;
19 - : int = 10
20
21 # List.fold_left (fun l e-> e::l) [] nums;;
22 - : int list = [4; 3; 2; 1]

Right-to-left folding, NOT tail
recursive, allows in-order results

1 (* sample implementation of fold_right *)
2 let rec fold_right func list init =
3 match list with
4 | [] -> init
5 | head::tail ->
6 let rest = fold_right func tail init in
7 func head rest
8 ;;
9

10
11
12
13 List.fold_right f [e1; e2; ...; en] init
14 = f e1 (f e2 (... (f en init) ...))
15
16 # let nums = [1;2;3;4];;
17
18 # List.fold_right (+) nums 0;;
19 - : int = 10
20
21 # List.fold_right (fun e l-> e::l) nums [];;
22 - : int list = [1; 2; 3; 4] 26

Distributed Map-Reduce
▶ Have seen that Map + Fold/Reduce are nice ideas to

transform lists and computer answers
▶ In OCaml, tend to have a list of data that fits in memory, call

these functions on that one list
▶ In the broader sense, a data list may instead be extremely

large: a list of millions of web pages and their contents
▶ Won’t fit in the memory or even on disk for a single computer
▶ A Distributed Map-Reduce Framework allows processing of

large data collections on many connected computers
▶ Apache Hadoop
▶ Google MapReduce

▶ Specify a few functions that transform and reduce single data
elements (mapper and reducer functions)

▶ Frameworks like Hadoop uses these functions to compute
answers based on all data across multiple machines, all
cooperating in the computation

27

Distributed Map-Reduce Schematic
▶ Map: function that computes category for a datum
▶ Reduce: function which computes a category’s answer
▶ Individual Computers may be Map / Reduce / Both workers

Source: MapReduce A framework for large-scale parallel processing by Paul Krzyzanowski
28

https://www.cs.rutgers.edu/~pxk/417/notes/content/mapreduce.html

