
CSCI 2041: Deep and Shallow Equality

Chris Kauffman

Last Updated:
Thu Oct 18 22:42:18 CDT 2018

1

Logistics

Goals Today
▶ Finish Higher-order Funcs
▶ Deep/Shallow Equality

Later this Week
▶ Wed: Scope and Functions
▶ Fri: Curried Funcs/Return

Vals

Next Week
▶ Mon: Review
▶ Wed: Exam 2
▶ Fri: Lecture

Exam 1
Regrade requests via Gradescope,
Due Mon 10/15

Assignment 3 multimanager

▶ Manage multiple lists
▶ Records to track lists/undo
▶ option to deal with editing
▶ Higher-order funcs for easy

bulk operations
▶ Due Mon 10/22
▶ Test cases over the weekend

2

Exercise: Deep and Shallow Equality

▶ Some folks have noticed
OCaml has two means of
comparing values
▶ a = b : structural or

deep equality
▶ a == b : physical or

shallow equality
▶ Code in equality.ml to

the right uses both
▶ What gets printed for the

examples shown?

1 let a = 5 in
2 let b = 5 in
3 let c = a in
4 printf "---ints---\n";
5 printf "a=b : %b\n" (a=b);
6 printf "a==b : %b\n" (a==b);
7 printf "a=c : %b\n" (a=c);
8 printf "a==c : %b\n" (a==c);
9

10 let x = ref 5 in
11 let y = ref 5 in
12 let z = x in
13 printf "---int Refs---\n";
14 printf "x=y : %b\n" (x=y);
15 printf "x==y : %b\n" (x==y);
16 printf "x=z : %b\n" (x=z);
17 printf "x==z : %b\n" (x==z);

3

Answers: Deep and Shallow Equality

1 let a = 5 in (* box with 5 *)
2 let b = 5 in (* box with 5 *)
3 let c = a in (* box with copy a’s contents *)
4 printf "---ints---\n";
5 printf "a=b : %b\n" (a=b); (* a=b : true *)
6 printf "a==b : %b\n" (a==b); (* a==b : true *)
7 printf "a=c : %b\n" (a=c); (* a=c : true *)
8 printf "a==c : %b\n" (a==c); (* a==c : true *)
9

10 let x = ref 5 in (* pointer to box w/ 5 *)
11 let y = ref 5 in (* pointer to new box w/ 5 *)
12 let z = x in (* copy x’s pointer *)
13 printf "---int Refs---\n";
14 printf "x=y : %b\n" (x=y); (* x=y : true : same contents *)
15 printf "x==y : %b\n" (x==y); (* x==y : false : different locations*)
16 printf "x=z : %b\n" (x=z); (* x=z : true : same contents *)
17 printf "x==z : %b\n" (x==z); (* x==z : true : same location *)

4

Answers: Deep and Shallow Equality

▶ Deep equality checks entire
structure for corresponding
equal values

▶ Shallow equality checks only
if memory box contains the
same value

▶ Pointers are stored as
integers (notated in figure as
#2048)

▶ Both work the same for
boxed values like int

▶ Return different answers for
unboxed values like refs

5

Deep vs Shallow Equality is in Every Language

C/C++

▶ == and != operators
compare single blocks of
memory, mostly shallow
equality

▶ Typically write an equality
function to compare
deep/recursive data

Java
▶ == and != identical to C
▶ a.equals(b): create

methods to define meaning
of deep equality for a class

Scheme
▶ equal? : deep equality
▶ eq? : shallow equality

; create two distinct lists, same elems
guile-scheme> (define x (list 1 2 3))
guile-scheme> (define y (list 1 2 3))

; check deep and shallow equality
guile-scheme> (equal? x y) ; deep
#t ; true
guile-scheme> (eq? x y) ; shallow
#f ; false

Python
Like Scheme, different op names
▶ x == y : deep equality
▶ x is y : shallow equality

6

Convenient Deep Equality in OCaml
Equal Unequal

= <> Deep
== != Shallow

▶ Data defined via standard mechanisms in OCaml gets
automatically has deep equality defined for it

▶ Arrays, Strings, Tuples, Records, Algebraic, all "just work"
1 let s = "hi" in (* pointer to string of chars *)
2 let t = "hi" in (* pointer to different string of chars *)
3 let u = s in (* pointer to same place as s *)
4 printf "---Strings---\n";
5 printf "s=t : %b\n" (s=t); (* s=t : true : same contents *)
6 printf "s==t : %b\n" (s==t); (* s==t : false : different locations*)
7 printf "s=u : %b\n" (s=u); (* s=u : true : same contents *)
8 printf "s==u : %b\n" (s==u); (* s==u : true : same location *)
9

10 let f = {s="yo"; i=2} in (* pointer to new record *)
11 let g = {s="yo"; i=2} in (* pointer to new record *)
12 let h = f in (* pointer to existing record *)
13 printf "---Records---\n";
14 printf "f=g : %b\n" (f=g); (* f=g : true : same contents *)
15 printf "f==g : %b\n" (f==g); (* f==g : false : different locations*)
16 printf "f=h : %b\n" (f=h); (* f=h : true : same contents *)
17 printf "f==h : %b\n" (f==h); (* f==h : true : same location *)

7

Choosing Deep vs Shallow Equality

▶ Generally use Deep equality, usually what is "intended"
Are these two things equal to one another?

▶ Keep in mind Deep equality may visit whole data structure
▶ All chars of a string
▶ All elements of a list or array
▶ All fields of a record, etc.

▶ O(N) operation where N is the size of the data structure
▶ This may have performance implications:
▶ In some special cases, may be reasonable to use Shallow

equality which is an O(1) operation

8

Library Functions and Deep/Shallow Equality
▶ Some Library function distinguish between use of

Deep/Shallow equality
▶ q suffix in function name indicates Shallow Equality is used
▶ Examples from the List module

val mem : ’a -> ’a list -> bool
’mem elem list’ is true if and only if elem is equal to an element
of list.

val memq : ’a -> ’a list -> bool
Same as List.mem, but uses physical (shallow) equality instead of
structural (deep) equality to compare list elements.

val assoc : ’a -> (’a * ’b) list -> ’b
’assoc key alist’ returns the value associated with key in the list
of pairs alist.

val assq : ’a -> (’a * ’b) list -> ’b
Same as List.assoc, but uses physical (shallow) equality instead
of structural (deep) equality to compare keys.

9

Exercise: Deep / Shallow Differences
▶ Code below searches a list for an element using

▶ mem : deep equality
▶ memq : shallow equality

▶ Determine values for results of searches
▶ Draw a picture of x,y,z, listA, listB to justify answers

1 let x = "yikes" in
2 let y = "boo!" in
3 let z = "gulp" in
4
5 let listA = [x; y; z] in
6 let listB = ["yikes"; "boo!"; "gulp"] in
7
8 let d_yA = List.mem y listA in
9 let s_yA = List.memq y listA in

10
11 let d_yB = List.mem y listB in
12 let s_yB = List.memq y listB in

10

Answers: Deep / Shallow Differences
1 let x = "yikes" in
2 let y = "boo!" in
3 let z = "gulp" in
4
5 let listA = [x; y; z] in
6 let listB = ["yikes"; "boo!"; "gulp"] in
7
8 let d_yA = List.mem y listA in (* deep equals: true *)
9 let s_yA = List.memq y listA in (* shallow equals: true *)

10
11 let d_yB = List.mem y listB in (* deep equals : true *)
12 let s_yB = List.memq y listB in (* shallow equals: false *)

11

