CSCI 2041: Advanced Language Processing

Chris Kauffman

Last Updated:
Wed Nov 28 13:25:47 CST 2018



Logistics

Reading

» OSM: Ch 17 The Debugger

» OSM: Ch 13 Lexer and
Parser Generators (optional)

» Practical OCaml: Ch 10
Exception Handling (next)

Goals
» Parsing Left/Right
Associativity

» Lexer/Parser Generators

A5:

vvyyypy v

v

Calculon

Arithmetic language
interpreter

2X credit for assignment

5 Required Problems 100pts
5 Option Problems 50pts
Milestone deadline Wed
12/5

Final deadline Tue 12/11


http://caml.inria.fr/pub/docs/manual-ocaml/debugger.html
http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html

Exercise: Subtraction Trees

Consider these two parse trees for the given expression

let parsetree = parse_tokens (lex_string "10-2-3") in ...;

(x TREE A %) (x TREE B *)
Sub( Const 10, Sub( Sub( Const 10,
Sub( Const 2, Const 2),
Const 3));; Const 3);;

1. What are the arithmetic results of evaluating each of them?
2. Which do you expect to result from our previous parsers?

3. Which gives the "correct" result according to standard rules of
arithmetic?



Answers: Subtraction Trees
Consider these two parse trees for the given expression

let parsetree = parse_tokens (lex_string "10-2-3") in ...;

(* TREE A *) (* TREE B *)
Sub( Const 10, Sub( Sub( Const 10,
Sub( Const 2, Const 2),
Const 3));; Const 3);;

1. What are the arithmetic results of evaluating each of them?
A=11, B =5
2. Which do you expect to result from our previous parsers?
A has been the standard behavior of parsers from lecture lab
3. Which gives the "correct" result according to standard rules of
arithmetic?
B is the standard interpretation for arithmetic with
left-to-right evaluation



"Right-heavy" vs "Left-Heavy" Parse Trees

» Chained operators like 1+2+3+4 have so far yielded
"right-heavy" trees

» Doesn't matter for some operators but matters a lot for
subtraction where "left-heavy" trees match the standard rules
better

» Sometimes called left associative interpretation

» Parser to deal with left associative operators looks a little
different than original



Exercise: Compare Right/Left Associative Parsers

Right Heavy

O VW O~NOOUPd WN -

[

and parse_addsub toks =

let (lexpr, rest) = parse_muldiv toks in (*
match rest with

| Plus :: tail -> (*
let (rexpr,rest) = parse_addsub tail in (*
(Add(lexpr,rexpr), rest) (*
| Minus :: tail -> (x
let (rexpr,rest) = parse_addsub tail in (*
(Sub(lexpr,rexpr), rest) (*
| _ -> (lexpr, rest) (*

Left Heavy

11
12
13
14

and parse_addsub toks =

let (lexpr, rest) = parse_muldiv toks in
let rec iter lexpr toks =
match toks with
| Plus :: rest ->
let (rexpr,rest) = parse_muldiv rest in
iter (Add(lexpr,rexpr)) rest
| Minus :: rest ->
let (rexpr,rest) = parse_muldiv rest in
iter (Sub(lexpr,rexpr)) rest
| _ -> (lexpr, toks)
in
iter lexpr rest

try higher prec first

+ is first

recursively generate right-hand
add left / right

+ is first

recursively generate right-hand
subtract left / right

not add/sub

(*
(*

(*
(*
(*
(*
(*
(*

(*

create the initial left expr
loop through adjacent exprs

found +

consume a higher-prec expr
create Add and iterate again
found -

consume a higher-prec expr
create Sub and iterate again

start iterating

*)

*)
*)
*)
*)
*)
*)
*)

*)
*)

*)
*)
*)
*)
*)
*)

*)



Answers: Compare Right/Left Associative Parsers

P Right-associative recurses deeply to the right to generate right
hand expression

> Left-associative iterates consuming add/sub expressions in a
(tail recursive) loop

> Left-associative creates a left-heavy tree by combining right
and left expressions in an Add/Sub then passing it forward in
the iteration to become the left branch



Token Streams and Buffering

» So far have assumed that Lexer » Lexing buffer stores only part of

tokenizes the entire input string file and lexing stream
prior to starting the parser > API to see next () token and
» This works for small inputs, but consume () it

for | fil ineffici -
or large files may be inefficient » Frequently seen in interpreter

» May need to store entire . .
and compiler tutorials

input (file) in memory during

lexing // imperative pseudocode for
» Must store entire token list in // parsing add/sub expressions

memory during parsing // uses a lexing buffer
global lexbuf;

» Real world lexer/parsers make  function parse_addsub(){
hi ffici . lexi var lexpr := parse_muldiv()
this more efficient via a lexing while lexbuf.next() = "+ o M-

buffer var op := lexbuf.next()
lexbuf . consume ()
var rexpr := parse_muldiv()
lexpr := make_tree(op,lexpr,rexpr)
return lexpr

}



Lexing and Parsing Tools

>

>

>

Generally do NOT want to write large-scale programs in
assembly language: too many things can go wrong
Generally do NOT want to write lexers/parsers by hand for
large-scale languages: too many things can go wrong
High-level programming languages improve over assembly
through a compiler or interpreter: translate high-level code to
low
Lexer/Parser Generators improve over hand-written parser
generators: translate high-level grammars to low-level code
Lex and Yacc! are the classic tools to generate lexer/parsers
Usually involves two input files
1. Parser input to Yacc describes token kinds, grammar, actions
2. Lexer input to Lex describes how characters translate to tokens
Result in compilable code with built-in lexing buffer and
efficient grammar recognition through finite automata

YYacc is short for Yet Another Compiler Compiler as it is often used to
generate the front-end of a compiler



OCaml Lex and Yacc

» OCaml comes with standard tools for language processing
> ocamllex: lexer generator
» ocamlcyacc: parser generator

» Input has special syntax, not all normal OCaml

> Will briefly survey these to get a flavor for them

» Lex/Yacc studied more thoroughly in
» (CSCI 4011: Formal Languages and Automata Theory
» CSCI 5161: Introduction to Compilers

» Couch this in discussion a calculator language arith which is

part of the code pack
> cd arith/
> make

> ./arithmain

arithmain> 1+1

2

arithmain> 5%9-2
43

arithmain> 10-3-2
5

10



Ocaml Lex Input

0N O WN -

e e e e e el e el
O WO NOUd WNEFE OO

» Simple structure mainly used to set up a rule for token kinds

» Has dependency on arithparse.ml for token kinds

(* arithlex.mll : OCaml lex source file x)

(*x First section is raw ocaml between curlies *)

{
open Arithparse;; (* bring in token types from arithparse.mli *)
exception Eof;; (* declare exception type for end of file *)

}

(* second section defines how the lexer works *)
rule token = parse
| [7 ) 7\t7]
[’\n’ 1
[70°-°9’]+ as 1xm
J+7

token lexbuf } (* skip recursing *)
EOL }

INT(int_of _string lxm) } (* regex for numbers x)
PLUS }

MINUS }

TIMES }

SLASH }

OPAREN }

CPAREN }

raise Eof } (x end of file *)

y_

1/)
(2
;))

eof

e e N T

I
|
I
|
| I %
I
|
I
[

11



Ocaml Yacc Input 1

00 ~N O U WN -

o e
N = O ©

13

» Two main sections, first is shown

» Declares token types and main entry into parser

/* arithparse.mly: ocaml yacc sourc file defining a parser. Note the
C-style comments rather than OCaml style */

/* first section defines token types used by parser using % directives */
%token <int> INT

%token PLUS MINUS TIMES SLASH

%token OPAREN CPAREN EOL

%type <int> main /* type returned by production main */
%start main /* entry production for parser */

/* end first section */

hh

12



Ocaml Yacc Input 2

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

» Second section shows grammar productions
» Curlies to the right have actions associated with productions
» Dollar variables correspond to results of recursive grammar

elements

Tt

/* second section which shows expressions

main: /*
| plusminus EOL {$1} /*

plusminus: /*
| muldiv {3%11} /*
| plusminus PLUS muldiv { $1 + $3 } /*
| plusminus MINUS muldiv { $1 - $3 } /*

muldiv: /*
| ident {$1} /*
| muldiv TIMES ident {$1  $3 } /%
| muldiv SLASH ident {$1/ 8372} /*

ident: /*
| INT { %11} /*
| OPAREN plusminus CPAREN { $2 } /*

*/
initial production
$1 is result of plusminus

addition and subtraction
could be just mul/div

or an addition

or a subtraction

multiplication and division
could be just an ident

or a multiplication

or a division

identifier
integer constant
opening parenthesis

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

13



A Main Function

1
2
3
4
5
6
7
8

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

(* arithmain.ml: main routine for lexing/parsing and interpreting an
arithmetic language. This version directly interprets the language
rather than building an expression tree. *)

open Printf;;

let _ =
try
(* Lexing is an OCaml standard module for lexer support. Next line
creates a lexing buffer. *)
let lexbuf = Lexing.from_channel stdin in

while true do (* loop over input until end of file *)
printf "arithmain> %!"; (* print prompt *)

(* Arithlex.token is a function that produces a token.
Arithparse.main function takes a token producer and a lexbuf.
The next line lexes and parses an expression. *)

let result = Arithparse.main Arithlex.token lexbuf in

printf "%d\n/!" result; (* print integer result *)
done; (*x end of input loop *)

with Arithlex.Eof -> (* eof exception pops out of loop *)
printf "That’s all folks!\n";

14



Compiling Gets Complicated

W ~NO O WN -

e
WN = O

» Compiling with lex/yacc is tricky as several functions like
Arithparse.main defined based on grammar production rules

» Also compile order is tricky, best to put build sequence into a
Makefile or other build system

> make

ocamllex arithlex.mll

# creates arithlex.ml

11 states, 267 transitions, table size 1134 bytes
ocamlyacc

ocamlc
ocamlc
ocamlc
ocamlc
ocamlc

> ./arithmain

g
g
g
-8
g

-C

arithparse.mly # creates arithparse.ml / arithparse.mli
arithparse.mli # required by arithlex.ml
arithlex.ml # required by arithparse.ml
arithparse.ml
arithmain.ml # requires arithlex.cmo and arithparse.cmo

arithmain arithlex.cmo arithparse.cmo arithmain.cmo

arithmain> 1+3%2-4

3

» Note report on line 3: lexing statistics for finite automata
generated which will recognize tokens

» arthlex.ml and arithparse.ml: valid OCaml but machine
generated code, not meant for human eyes 15



Generating Parse Trees in Lex/Yacc

> arith/ system directly interprets input during parsing

through grammar actions as in
plusminus: /*
| muldiv {811} /*
| plusminus PLUS plusminus { $1 + $3 } /*
| plusminus MINUS plusminus { $1 - $3 } /x*

>

» This is typical of interpreters perform no

addition and subtraction
could be just mul/div

or an addition

or a subtraction

further

transformations or optimizations on the code
» Code pack include arith-tree/ which changes this to create

a data structure instead via code like
plusminus:
| muldiv {8112
| plusminus PLUS plusminus { Add($1,$3) }
| plusminus MINUS plusminus { Sub($1,$3) }

>

/* addition and subtraction
/* could be just mul/div */
/* or an addition */

/* or a subtraction */

P> Resulting parse tree is captured in a main routine for printing,

transformation, and evaluation

» Typical of a compiler or at least more sophisticated

interpreter

16



How do other languages do it?

>

>

OCaml and Lisp excel at symbolic computation:
manipulating data like expression trees and token sequences

OCaml makes it easy to declare new types of data that are
algebraic with variants: very well suited for symbolic
processing

Lisp has untyped symbols built in, as easy as quoting as in the
code ’add is a symbol with name "add"

Languages like C, Java, Python are a bit clunkier for symbolic
processing

» Symbols aren't innate in any of them: with string constants,
enumerations, classes can emulate them

» Takes more work and more lines of code than OCaml/Lisp
mechanisms

Also, none of these have standard lexer/parser generators
(though many libraries exist for them)

17



Contrast: Symbolic Data in Java vs OCaml

P> As a sample, today's code pack contains equivalent versions
of the arithmetic langauge in OCaml and Java
» Both of these
> Accept the same language like 1+2%3-12/4
> Use lexer/parser generators to specify high-level language
» Accept user input on command line or interactively
» Create an expression tree data structure
» Print the data structure to the screen
» OCaml version uses ocamllex / ocamlparse,
» Build 6 files — 17 files
> Java version uses ANTLR4 parser generator library
» Build 5 files — 35 files

18


https://www.antlr.org/

Contrast Stats: Symbolic Data in Java vs OCaml

OCaml arith-tree/

File LOC  Purpose

arithlex.mll 15  Lexer definition

arithparse.mly 26  Grammar definition
41  Subtotal

arithexpr.ml 33  Tree data type and printing

arithmain.ml 13 Main function for interactive input loop, printing
88  Total Lines of Code

Java arith-java/

File LOC  Purpose
TokenType. java 15  Declare token types with string names
Arith.g 34 Grammar file for ANTLR4
49  Subtotal
ArithMain. java 123 Main routine, tree data, interface code, printing
172 Total Lines of Code

» Not interactive: just parses command line arg and prints tree as

» Most of the code is interface glue matching classes to parse tree types via
Visitor Pattern implementations

» Mostly due to Java classes not fitting expression trees as well as algebraic
variants: classes are the only way to represent data in Java

19


https://en.wikipedia.org/wiki/Visitor_pattern

Summary

» Writing lexers/parsers is hard, riddled with issues like
left/right associativity
» Make life easier by employing a lexer/parser generator

» OCaml is well-suited for symbolic data processing via data
type mechanisms and built-in data structures

Any sufficiently complicated C or Fortran program con-
tains an ad-hoc, informally-specified, bug-ridden, slow im-
plementation of half of Common Lisp.

— Greenspun'’s Tenth Rule

20


https://en.wikipedia.org/wiki/Greenspun%2527s_tenth_rule

