CSCI 2041: Exception Handling

Chris Kauffman

Last Updated:
Fri Nov 30 10:26:08 CST 2018

Logistics

Reading

Practical OCaml: Ch 10
Exception Handling

Goals

» Exception Handling
» Control Flow

A5:

>

vvyyypwy

v

Calculon

Arithmetic language
interpreter

2X credit for assignment

5 Required Problems 100pts
5 Option Problems 50pts
Milestone deadline Wed
12/5

Final deadline Tue 12/11

Exceptions

Exceptions are a means to
alter control flow usually
associated with errors

Widely used by most modern
programming environments

Briefly discuss raising or
"throwing' exceptions
and defining our own kinds

Most often you will need to
handle or "catch"
exceptions raised by library
code so will spend
significant time on this

Declaration and Raising

» Declare with the keyword exception and endow with data
via same syntax as algebraic types.
P Raise exceptions with raise keyword

1 (% declaration is similar to syntax for algebraic types *)
2 exception Screwup;;

3

4 exception Meltdown of int;;

5

6 exception Kersplosion of { radius : float;

7 damage : int; ¥}

8

9 (% keyword raise will raise an exception *)

10 raise Screwup;;

11

12 raise (Meltdown 5);;

13

14 raise (Meltdown 2);;

15

16 raise (Kersplosion{radius=5.46; damage=20});;

17

18 1let e = Meltdown 2 in (* create, don’t raise *)
19 raise e;; (* now raise *)

Two Alternatives

©O0O~NOUd WN-

>

| 4

| 2

(* look up kind using assoc_opt *)

1
2
let print_kindl pok = 3
printf "Js: " pok; 4
let result = assoc_opt pok alist in 5
match result with 6 let kind = assoc pok alist in
| None -> printf "Unknown\n" 7
| Some(kind) -> printf "Ys\n" kind 8
; 9
0

>

Recall the assoc operation: look up a value based on a key in
a list of pairs like this one

let alist = [("Bulbasaur" ,"Grass");
("Squirtle" ,"Water");
("Charmander" ,"Fire");]

Contrast List module’s assoc_opt and assoc below in
functions from print_kind.ml

Note that assoc may raise a Not_found exception which
should be handled in a try/with block

Experiment with these two in the REPL

(* look up kind using assoc;
catch exceptions *)
let print_kind2 pok =
printf "Js: " pok;
try

printf "%s\n" kind;
with
| Not_found -> printf "Unknown\n"

3

From the REPL

#use "print_kind.ml";;

print_kindl "Squirtle";;
Squirtle: Water
- : unit =

print_kindl "Charmander";;
Charmander: Fire
- : unit = O

» Both functions work # print_kindl "Jigglypuff";;

identically Jigglypuff: Unknown
. - : unit = ()
» Print "Unknown" when
there is something missing # print_kind2 "Squirtle";;
) Squirtle: Water
from the list - : unit =

print_kind2 "Charmander";;
Charmander: Fire
- : unit = ()

print_kind2 "Jigglypuff";;
Jigglypuff: Unknown
- : unit = QO

Error-Checking

» assoc_opt follows the old-school approach

» run a function
» check immediately whether it succeded
» handle errors if things went sideways

» This is how non-exception languages like C deal with errors

while(1){

printf ("query: ");
result = fscanf(stdin,"%s",buf);

if (result==EOF){ // check for error
printf("end of file\n");
break;

}

char *input = malloc(strlen(buf));

if (input == NULL){ // check for error
printf ("out of memory");
exit(1);

}

Error-checking is error-prone and tedious

No separation of error generation from error policy: e.g.
have to handle errors immediately where they are identified
without broader context: motivates exceptions

A Third, Tempting Alternative

» OCaml does not require exception-generating code to be
wrapped in a try/with block!

» This allows below version print_kind3 to use assoc sans
try/with

» In a REPL, this appears to have no major effect other than
not printing Unknown like the previous versions

1 (% look up kind but don’t # print_kind3 "Squirtle";;
2 catch exceptions *) Squirtle: Water

3 1let print_kind3 pok = - :unit = QO

4 printf "¥%s: " pok; # print_kind3 "Charmander";;
5 let kind = assoc pok alist in Charmander: Fire

6 printf "%s\n" kind; - : unit = O

7 .

HY # print_kind3 "Jigglypuff";;
Jigglypuff: Exception: Not_found.
#

1OCaml uses unchecked exceptions like most programming languages aside
from Java which also has checked exceptions which must be either caught or
declared in function prototypes.

Consequences of not Catching

00 ~N O O WN -

e e el
~NO O WN R O

» Despite the innocuous appearance in the REPL, exceptions

can have dire consequences in programs

» An unhandled / uncaught exception typically ends a

program (to the dismay of users)

(* main loop which asks for
repeated input *)
let _ =
let quit_now = ref false in
while not !quit_now do
printf "query: ";
let pok = read_line () in
if pok="quit" then
quit_now := true
else
begin
print_kindl pok;
print_kind2 pok;
print_kind3 pok (x !! *)
end;
done;

3

> ocamlc print_kind.ml print_kind_main.ml

> a.out

query: Charmander
Charmander: Fire
Charmander: Fire
Charmander: Fire

query: Bulbasaur
Bulbasaur: Grass
Bulbasaur: Grass
Bulbasaur: Grass

query: Pikachu
Pikachu: Unknown
Pikachu: Unknown

Pikachu: Fatal error: exception Not_found

>

9

Getting Exception Backtraces in OCaml

| 2

>

A backtrace shows what functions were active when an
exception was thrown

Useful when programs crash to help diagnose the path to the
error condition
OCaml disables backtraces by default
» Performance is improved by this decision
> Most other languages w/ exceptions enable backtraces by
default to assist with debugging
Compile with debugging information: ocamlc -g
Enable backtrace printing in one of two ways
1. Via environment variable 0CAMLRUNPARAM
> ocamlc -g prog.ml
> export OCAMLRUNPARAM=b
> ./a.out
2. In source code, call record_backtrace
Printexc.record_backtrace true;;
Exceptions that cause the program to crash produce a listing
of the functions that were active at the time of the crash

10

Example: Backtrace for print_kind main.ml

Not going to edit the source code so enable backtraces via
command line

> ocamlc -g print_kind.ml print_kind_main.ml # compile with debug info

> export OCAMLRUNPARAM=b # set env var to enable backtraces
> a.out # run program

query: Squirtle

Squirtle: Water

Squirtle: Water

Squirtle: Water

query: Jigglypuff # not found

Jigglypuff: Unknown

Jigglypuff: Unknown

Jigglypuff: Fatal error: exception Not_found # BACKTRACE
Raised at file "list.ml", line 187, characters 16-25 # origin
Called from file "print_kind.ml", line 35, characters 13-28 # active func

Called from file "print_kind_main.ml", line 17, characters 8-23 # active func

11

Exercise: Exceptions Percolate Up

» Exceptions work their way up the call stack

» On the way up, applicable try/with blocks are consulted to
see if they can handle the exception

> Note that the raise location may be very different from the
handle position and may be many function calls away

» What else can go wrong in the main loop?

let _ = (* inner_catch.ml *)
let quit_now = ref false in
while not !quit_now do
printf "query: ";
let pok = read_line () in
if pok="quit" then

> ocamlc print_kind.ml \
inner_catch.ml

> a.out

query: Bulbasaur

Bulbasaur: Grass

query: Jigglypuff

quit_now := true :

else Jlgglypuff; Oops!
try (* begin try *) g?iryQ ?1gach?
print_kind3 pok (* may throw *) i ac-ul_lI ops!
with (* exc handling *) query: Mewtwo

Mewtwo: Oops!
query: quit
>

| Not_found -> printf "Oops!\n";
done;

12

Answers: End of File

> ocamlc print_kind.ml inner_catch.ml

> a.out
query: Squirtle # found
Squirtle: Water

query: Pikachu # not found
Pikachu: Oops!

query: 123 # "123" not found
123: Oops!
query: !@#@!7%891 # "le#@!7891"

10#0!7%891: Oops!

query: # Press Ctrl-d
Fatal error: exception End_of_file
>

» Pressing Ctrl-d sends "End of file" character to indicate no
more input. Causes read_line to rais an exception

» How can this be "fixed"?

Answers: Several Things May Go Wrong

» print_kind3 may raise Not_found
» read_line may raise End_of_file
> May want to catch both of them

let _ = (* separate_catch.ml *)
let quit_now = ref false in
while not 'quit_now do
printf "query: ";

let pok =
try (* begin try *)
read_line () (* may throw *)
with (* exc handling *)

| End_of_file -> "Default"
in
if pok="quit" then

quit_now := true
else
try (* begin try *)
print_kind3 pok (* may throw *)
with (* exc handling *)

| Not_found -> printf "Oops!\n";
done;

» Starts getting ugly style-wise, like the C-style of immediate
error handling after running a function 14

There are Many Kinds of Exceptions
Exception types are like algebraic variants

» Can carry data, match individual types in try/with

» No warnings for missing a relevant type of exception

1 let _ =

2 let quit_now = ref false in

3 while not !quit_now do

4 printf "query: ";

5 let pok = read_line () in

6 if pok="quit" then

7 quit_now := true

8 else

9 try

10 print_kind3 pok

11 with (* no handlers apply to Not_found
12 | Failure msg -> printf "Error: %s!\n" msg;

13 | Invalid_argument a -> printf "Invalid arg!\n";
14 done;

15

16 ---DEMO---

17 > ocamlc print_kind.ml wrong_exc.ml

18 > a.out

19 query: Pikachu
20 Pikachu: Fatal error: exception Not_found

21 >

*)

15

Handle/Catch Cases are like match/with

> Match exception specific kinds to appropriate actions

» May include a "catch-all" case with continue or exit actions

1 let _ = (* catch_em_all.ml *)

2 let quit_now = ref false in

3 while not !'quit_now do

4 try (* begin try *)

5 printf "query: ";

6 let pok = read_line () in (* may throw End_of_file *)
7 if pok="quit" then

8 quit_now := true

9 else
10 print_kind3 pok; (* may throw Not_found *)
11 with (* exc handling *)
12 | Not_found -> printf "QOops!\n";
13 | End_of_file -> printf "Catch more!\n"
14 | exc -> (* catch any other exception *)
15 printf "\nSomething went wrong somewhere!\n";
16 let excstr = Printexc.to_string exc in
17 printf "Exception: %s\n" excstr;
18 (* keep looping after reporting exception *)

19 done;

REPL Session / Wrap-up

Error generation
. . > ocamlc print_kind.ml catch_em_all.ml
» Calling read_line returns a > a.out

H H query: Bulbasaur
strlng but may raise Bulbasaur: Crass

End_of_file query: Pikachu
. . . Pikachu: Oops!
> Ca“mg pr1nt_k1nd3 may query: Catch more!
raise a Not_found query: Catch more!
- query: Squirtle
Error-handling policy specific to Squirtle: Water

. uery: quit
this program duerys 4

» Print "Oops" for Not_found

» Print "Don’t leave.." for

>

Exceptions separate error

End_of file generation and error handling
Other programs can establish allowing program-specific policies
different error-handling policies to handle the same kinds of

like Quit on End_of file errors

