
CSCI 2041: Exception Handling

Chris Kauffman

Last Updated:
Fri Nov 30 10:26:08 CST 2018

1

Logistics

Reading
Practical OCaml: Ch 10
Exception Handling

Goals
▶ Exception Handling
▶ Control Flow

A5: Calculon
▶ Arithmetic language

interpreter
▶ 2X credit for assignment
▶ 5 Required Problems 100pts
▶ 5 Option Problems 50pts
▶ Milestone deadline Wed

12/5
▶ Final deadline Tue 12/11

2

Exceptions

▶ Exceptions are a means to
alter control flow usually
associated with errors

▶ Widely used by most modern
programming environments

▶ Briefly discuss raising or
"throwing" exceptions
and defining our own kinds

▶ Most often you will need to
handle or "catch"
exceptions raised by library
code so will spend
significant time on this

3

Declaration and Raising
▶ Declare with the keyword exception and endow with data

via same syntax as algebraic types.
▶ Raise exceptions with raise keyword

1 (* declaration is similar to syntax for algebraic types *)
2 exception Screwup;;
3
4 exception Meltdown of int;;
5
6 exception Kersplosion of { radius : float;
7 damage : int; };;
8
9 (* keyword raise will raise an exception *)

10 raise Screwup;;
11
12 raise (Meltdown 5);;
13
14 raise (Meltdown 2);;
15
16 raise (Kersplosion{radius=5.46; damage=20});;
17
18 let e = Meltdown 2 in (* create, don’t raise *)
19 raise e;; (* now raise *)

4

Two Alternatives
▶ Recall the assoc operation: look up a value based on a key in

a list of pairs like this one
let alist = [("Bulbasaur" ,"Grass");

("Squirtle" ,"Water");
("Charmander" ,"Fire");]

;;

▶ Contrast List module’s assoc_opt and assoc below in
functions from print_kind.ml

▶ Note that assoc may raise a Not_found exception which
should be handled in a try/with block

▶ Experiment with these two in the REPL

1 (* look up kind using assoc_opt *)
2
3 let print_kind1 pok =
4 printf "%s: " pok;
5 let result = assoc_opt pok alist in
6 match result with
7 | None -> printf "Unknown\n"
8 | Some(kind) -> printf "%s\n" kind
9 ;;

1 (* look up kind using assoc;
2 catch exceptions *)
3 let print_kind2 pok =
4 printf "%s: " pok;
5 try
6 let kind = assoc pok alist in
7 printf "%s\n" kind;
8 with
9 | Not_found -> printf "Unknown\n"

10 ;; 5

From the REPL

▶ Both functions work
identically

▶ Print "Unknown" when
there is something missing
from the list

#use "print_kind.ml";;

print_kind1 "Squirtle";;
Squirtle: Water
- : unit = ()

print_kind1 "Charmander";;
Charmander: Fire
- : unit = ()

print_kind1 "Jigglypuff";;
Jigglypuff: Unknown
- : unit = ()

print_kind2 "Squirtle";;
Squirtle: Water
- : unit = ()

print_kind2 "Charmander";;
Charmander: Fire
- : unit = ()

print_kind2 "Jigglypuff";;
Jigglypuff: Unknown
- : unit = () 6

Error-Checking
▶ assoc_opt follows the old-school approach

▶ run a function
▶ check immediately whether it succeded
▶ handle errors if things went sideways

▶ This is how non-exception languages like C deal with errors
1 while(1){
2 printf("query: ");
3 result = fscanf(stdin,"%s",buf);
4 if(result==EOF){ // check for error
5 printf("end of file\n");
6 break;
7 }
8
9 char *input = malloc(strlen(buf));

10 if(input == NULL){ // check for error
11 printf("out of memory");
12 exit(1);
13 }

1. Error-checking is error-prone and tedious
2. No separation of error generation from error policy: e.g.

have to handle errors immediately where they are identified
without broader context: motivates exceptions 7

A Third, Tempting Alternative
▶ OCaml does not require exception-generating code to be

wrapped in a try/with block1

▶ This allows below version print_kind3 to use assoc sans
try/with

▶ In a REPL, this appears to have no major effect other than
not printing Unknown like the previous versions

1 (* look up kind but don’t
2 catch exceptions *)
3 let print_kind3 pok =
4 printf "%s: " pok;
5 let kind = assoc pok alist in
6 printf "%s\n" kind;
7 ;;

print_kind3 "Squirtle";;
Squirtle: Water
- : unit = ()
print_kind3 "Charmander";;
Charmander: Fire
- : unit = ()
print_kind3 "Jigglypuff";;
Jigglypuff: Exception: Not_found.
#

1OCaml uses unchecked exceptions like most programming languages aside
from Java which also has checked exceptions which must be either caught or
declared in function prototypes.

8

Consequences of not Catching
▶ Despite the innocuous appearance in the REPL, exceptions

can have dire consequences in programs
▶ An unhandled / uncaught exception typically ends a

program (to the dismay of users)

1 (* main loop which asks for
2 repeated input *)
3 let _ =
4 let quit_now = ref false in
5 while not !quit_now do
6 printf "query: ";
7 let pok = read_line () in
8 if pok="quit" then
9 quit_now := true

10 else
11 begin
12 print_kind1 pok;
13 print_kind2 pok;
14 print_kind3 pok (* !! *)
15 end;
16 done;
17 ;;

> ocamlc print_kind.ml print_kind_main.ml

> a.out
query: Charmander
Charmander: Fire
Charmander: Fire
Charmander: Fire

query: Bulbasaur
Bulbasaur: Grass
Bulbasaur: Grass
Bulbasaur: Grass

query: Pikachu
Pikachu: Unknown
Pikachu: Unknown
Pikachu: Fatal error: exception Not_found

> 9

Getting Exception Backtraces in OCaml
▶ A backtrace shows what functions were active when an

exception was thrown
▶ Useful when programs crash to help diagnose the path to the

error condition
▶ OCaml disables backtraces by default

▶ Performance is improved by this decision
▶ Most other languages w/ exceptions enable backtraces by

default to assist with debugging
▶ Compile with debugging information: ocamlc -g
▶ Enable backtrace printing in one of two ways

1. Via environment variable OCAMLRUNPARAM
> ocamlc -g prog.ml
> export OCAMLRUNPARAM=b
> ./a.out

2. In source code, call record_backtrace
Printexc.record_backtrace true;;

▶ Exceptions that cause the program to crash produce a listing
of the functions that were active at the time of the crash

10

Example: Backtrace for print_kind_main.ml

Not going to edit the source code so enable backtraces via
command line

> ocamlc -g print_kind.ml print_kind_main.ml # compile with debug info
> export OCAMLRUNPARAM=b # set env var to enable backtraces
> a.out # run program
query: Squirtle
Squirtle: Water
Squirtle: Water
Squirtle: Water
query: Jigglypuff # not found
Jigglypuff: Unknown
Jigglypuff: Unknown
Jigglypuff: Fatal error: exception Not_found # BACKTRACE
Raised at file "list.ml", line 187, characters 16-25 # origin
Called from file "print_kind.ml", line 35, characters 13-28 # active func
Called from file "print_kind_main.ml", line 17, characters 8-23 # active func

11

Exercise: Exceptions Percolate Up
▶ Exceptions work their way up the call stack
▶ On the way up, applicable try/with blocks are consulted to

see if they can handle the exception
▶ Note that the raise location may be very different from the

handle position and may be many function calls away
▶ What else can go wrong in the main loop?

let _ = (* inner_catch.ml *)
let quit_now = ref false in
while not !quit_now do

printf "query: ";
let pok = read_line () in
if pok="quit" then

quit_now := true
else

try (* begin try *)
print_kind3 pok (* may throw *)

with (* exc handling *)
| Not_found -> printf "Oops!\n";

done;
;;

> ocamlc print_kind.ml \
inner_catch.ml

> a.out
query: Bulbasaur
Bulbasaur: Grass
query: Jigglypuff
Jigglypuff: Oops!
query: Pikachu
Pikachu: Oops!
query: Mewtwo
Mewtwo: Oops!
query: quit
>

12

Answers: End of File
> ocamlc print_kind.ml inner_catch.ml

> a.out
query: Squirtle # found
Squirtle: Water

query: Pikachu # not found
Pikachu: Oops!

query: 123 # "123" not found
123: Oops!

query: !@#@!%891 # "!@#@!%891"
!@#@!%891: Oops!

query: # Press Ctrl-d
Fatal error: exception End_of_file
>

▶ Pressing Ctrl-d sends "End of file" character to indicate no
more input. Causes read_line to rais an exception

▶ How can this be "fixed"?
13

Answers: Several Things May Go Wrong
▶ print_kind3 may raise Not_found
▶ read_line may raise End_of_file
▶ May want to catch both of them

let _ = (* separate_catch.ml *)
let quit_now = ref false in
while not !quit_now do

printf "query: ";
let pok =

try (* begin try *)
read_line () (* may throw *)

with (* exc handling *)
| End_of_file -> "Default"

in
if pok="quit" then

quit_now := true
else

try (* begin try *)
print_kind3 pok (* may throw *)

with (* exc handling *)
| Not_found -> printf "Oops!\n";

done;
;;
▶ Starts getting ugly style-wise, like the C-style of immediate

error handling after running a function 14

There are Many Kinds of Exceptions
Exception types are like algebraic variants
▶ Can carry data, match individual types in try/with
▶ No warnings for missing a relevant type of exception

1 let _ =
2 let quit_now = ref false in
3 while not !quit_now do
4 printf "query: ";
5 let pok = read_line () in
6 if pok="quit" then
7 quit_now := true
8 else
9 try

10 print_kind3 pok
11 with (* no handlers apply to Not_found *)
12 | Failure msg -> printf "Error: %s!\n" msg;
13 | Invalid_argument a -> printf "Invalid arg!\n";
14 done;
15
16 ---DEMO---
17 > ocamlc print_kind.ml wrong_exc.ml
18 > a.out
19 query: Pikachu
20 Pikachu: Fatal error: exception Not_found
21 >

15

Handle/Catch Cases are like match/with

▶ Match exception specific kinds to appropriate actions
▶ May include a "catch-all" case with continue or exit actions

1 let _ = (* catch_em_all.ml *)
2 let quit_now = ref false in
3 while not !quit_now do
4 try (* begin try *)
5 printf "query: ";
6 let pok = read_line () in (* may throw End_of_file *)
7 if pok="quit" then
8 quit_now := true
9 else

10 print_kind3 pok; (* may throw Not_found *)
11 with (* exc handling *)
12 | Not_found -> printf "Oops!\n";
13 | End_of_file -> printf "Catch more!\n"
14 | exc -> (* catch any other exception *)
15 printf "\nSomething went wrong somewhere!\n";
16 let excstr = Printexc.to_string exc in
17 printf "Exception: %s\n" excstr;
18 (* keep looping after reporting exception *)
19 done;

16

REPL Session / Wrap-up

Error generation
▶ Calling read_line returns a

string but may raise
End_of_file

▶ Calling print_kind3 may
raise a Not_found

Error-handling policy specific to
this program
▶ Print "Oops" for Not_found
▶ Print "Don’t leave.." for

End_of_file
Other programs can establish
different error-handling policies
like Quit on End_of_file

> ocamlc print_kind.ml catch_em_all.ml
> a.out
query: Bulbasaur
Bulbasaur: Grass
query: Pikachu
Pikachu: Oops!
query: Catch more!
query: Catch more!
query: Squirtle
Squirtle: Water
query: quit

>

Exceptions separate error
generation and error handling
allowing program-specific policies
to handle the same kinds of
errors

17

