
CSCI 2041: Lazy Evaluation

Chris Kauffman

Last Updated:
Wed Dec 5 12:32:32 CST 2018

1

Logistics

Reading
▶ Module Lazy on lazy

evaluation
▶ Module Stream on streams

Lambdas/Closures
Briefly discuss these as they
pertain Calculon

Goals
▶ Eager Evaluation
▶ Lazy Evaluation
▶ Streams

Lab13: Lazy/Streams
Covers basics of delayed
computation

A5: Calculon
▶ Arithmetic language

interpreter
▶ 2X credit for assignment
▶ 5 Required Problems 100pts
▶ 5 Option Problems 50pts
▶ Milestone due Wed 12/5
▶ Final submit Tue 12/11

2

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Lazy.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Stream.html

Evaluation Strategies
Eager Evaluation
▶ Most languages employ

eager evaluation
▶ Execute instructions as

control reaches associated
code

▶ Corresponds closely to
actual machine execution

Lazy Evaluation
▶ An alternative is lazy

evaluation
▶ Execute instructions only as

expression results are needed
(call by need)

▶ Higher-level idea with
advantages and
disadvantages

▶ In pure computations, evaluation strategy doesn’t matter:
will produce the same results

▶ With side-effects, when code is run matter, particular for I/O
which may see different printing orders

3

Exercise: Side-Effects and Evaluation Strategy
Most common place to see differences between Eager/Lazy eval is
when functions are called
▶ Eager eval: eval argument expressions, call functions with

results
▶ Lazy eval: call function with un-evaluated expressions, eval as

results are needed
Consider the following expression
let print_it expr =

printf "Printing it\n";
printf "%d\n" expr;

;;

print_it (begin
printf "Evaluating\n";
5;

end);;

Predict results and output for both Eager and Lazy Eval strategies

4

Answers: Side-Effects and Evaluation Strategy
let print_it expr =

printf "Printing it\n";
printf "%d\n" expr;

;;

print_it (begin
printf "Evaluating\n";
5;

end);;

Evaluation

> ocamlc eager_v_lazy.ml
> ./a.out
Eager Eval # ocaml’s default
Evaluating
Printing it
5

Lazy Eval
Printing it
Evaluating
5 5

OCaml and explicit lazy Computations

▶ OCaml’s default model is eager evaluation BUT. . .
▶ Can introduce lazy portions via the lazy keyword which

produces a ’a lazy_t type
▶ The ’a is the type that will be produced on evaluation of the

expression
▶ Lazy.force expr is used to evaluate an lazy_t expression

to obtain its result

lazy (printf "hello\n");;
- : unit lazy_t = <lazy>

let result = lazy (printf "hello\n"; 5);;
val result : int lazy_t = <lazy>

Lazy.force result;;
hello
- : int = 5

6

Code Example: eager_v_lazy.ml
1 open Printf;;
2
3 printf "Eager Eval\n";;
4
5 let print_it expr =
6 printf "Printing it\n";
7 printf "%d\n" expr; (* already evaluated *)
8 ;;
9

10 print_it (begin (* pass a normal expression *)
11 printf "Evaluating\n"; (* which will be eval’d *)
12 5; (* before the call *)
13 end);;
14
15 printf "Lazy Eval\n";;
16
17 let print_it_lazy expr =
18 printf "Printing it\n";
19 printf "%d\n" (Lazy.force expr); (* force required to eval *)
20 ;;
21
22 print_it_lazy (lazy (begin (* pass a lazy expression *)
23 printf "Evaluating\n";
24 5;
25 end));;

7

Exercise: Predict Output

▶ Consider the following REPL session using lazy/force
▶ Identify the type and value of each expression
▶ Indicate where output will result

lazy (printf "hello\n"; 5);; (*1 *)

Lazy.force (lazy (printf "hello\n"; 5));; (*2 *)

Lazy.force (lazy (printf "hello\n"; 5));; (*3 *)

let result = lazy (printf "hello\n"; 5);; (*4 *)

Lazy.force result;; (*5 *)

Lazy.force result;; (*6 *)

Lazy.force result;; (*7 *)

8

Answers: Predict Output
lazy (printf "hello\n"; 5);; (*1 lazy: no printing *)
- : int lazy_t = <lazy>

Lazy.force (lazy (printf "hello\n"; 5));; (*2 force: printing *)
hello
- : int = 5

Lazy.force (lazy (printf "hello\n"; 5));; (*3 force: printing *)
hello
- : int = 5

let result = lazy (printf "hello\n"; 5);; (*4 named lazy expr *)
val result : int lazy_t = <lazy>

Lazy.force result;; (*5 first evaluation: need result *)
hello (* side-effects produced during eval *)
- : int = 5 (* answer saved for later use *)

Lazy.force result;; (*6 second evaluation *)
- : int = 5 (* just return saved answer *)

Lazy.force result;; (*7 third eval *)
- : int = 5 (* return saved answer *)

9

Exercise: Principle of Efficient Lazy Eval

▶ A lazy expression is not immediately evaluated
▶ When force is used, evaluate the expression saving the

result
▶ If force is called again on the same expression, don’t

evaluate again, just return the saved result
▶ This opens up some efficiencies in lazy evaluation

Questions

1. Saving the results of evaluation for later should remind you of
something we covered in a lab a while back. . .

2. To save the results of expression, what quality of must
lazy_t data possess?

10

Answers: Principle of Efficient Lazy Eval

1. Saving the results of evaluation for later should remind you of
something we covered in a lab a while back. . .
Memoization used the same trick: evaluate once and save the
results for later.

2. To save the results of expression, what quality of must
lazy_t data possess?
Using force must change lazy_t data so it must be
mutable. A simple implementation would likely look like:
type ’a lazy_expr = { (* type for lazy expressions *)

expr : unit -> ’a; (* expression to evaluate *)
mutable result : ’a option; (* saved results, None if uneval’d *)

};;

11

Haskell and Laziness
▶ OCaml allows some laziness via lazy/force, defaults to eager
▶ Haskell is the most well-known language with default lazy eval
▶ Enforces pure computations only: side-effects are prevented

except in tightly controlled circumstances via monads
▶ A monad is just a monoid in the category of endofunctors,

what’s the problem?1

▶ DO NOT ask me about monads, monoids, or endofunctors
▶ Advantage: Enforcing pure computations with lazy evaluation

potentially enables more efficiency if the
programmer/compiler is sufficiently smart

▶ Disadvantage: I/O is difficult, iterative algorithms awkward,
efficient mutable data structures are discouraged

▶ Haskell is interesting and fairly extreme for these reasons,
likely attributing to its single implementation and lack of
widespread use

1A Brief, Incomplete, and Mostly Wrong History of Programming
Languages by James Iry

12

https://www.haskell.org/
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

Lazy Relatives: Futures/Promises

▶ Concurrent programming performing instructions in an
unpredictable order

▶ A standard model employs threads of instructions which are
separately executed, may pause at any point, interleave
instructions between threads, execute in simultaneously in
parallel

▶ A promise or future is like a lazy expression that may
execute in a different thread; execute code concurrently/later

▶ CSCI 4061: Intro to Operating Systems studies concurrency
issues (in C)

13

Exercise Lazy Relatives: Streams / Generators
▶ Streams or generators abstract the idea of a data source
▶ Usually allow "give me the next thing" and or "anything left?"
▶ Internally, many details for efficiency specific to the source can

be hidden including state, buffers, delayed computations
▶ Streams may not explicitly store all their data in memory,

delaying storage until actually needed (like lazy expressions)
▶ Most file I/O is implemented as streams

▶ Calls to read chan yield data and move ahead in the stream
▶ Internally, chunks of input are usually cached/buffered but the

whole file is not read into memory until needed
Questions

1. OCaml uses channels for input from files; how does reading
from channels signal "no more input"?

2. Where else have we seen this idea before: a data source that
provides only a way to get the "next" thing?

3. From lab, demonstrate a useful module for creation of
streams; show different sources for the streams

14

Answers: Lazy Relatives: Streams
1. OCaml uses channels for input from files; how does reading

from channels signal to "no more input"?
An End_of_file exception is usually raised on reading from a
channel that is out of input.

2. Where else have we seen this idea before: a data source only
provides only a way to get the "next" thing?
Aside from file input, saw it associated with Lexing Buffers
which only provided a next-like function to produce a token.

3. From lab, demonstrate a useful module for creation of
streams; show different sources for the streams
let crew_list = ["Mal"; "Zoe"; "Wash";] in
let crew_stream = Stream.of_list crew_list in (* from list *)
let captainy = Stream.next crew_stream in
let badass = Stream.next crew_stream in
let leafonthewind = Stream.next crew_stream in
...
let always_one _ = 1 in
let one_stream = Stream.from always_one in (* from func *)
let one = Stream.next one_stream in
let uno = Stream.next one_stream in
let hana = Stream.next one_stream in
... 15

Streams from Functions

▶ As seen, can build a stream
from a function

▶ This allows the stream to be
generated on the fly

▶ Stream could represent an
extremely large or even
infinite amount of data

▶ Clever function definition
represents this in constant
memory space rather than
create an array/list which
would take O(N) memory

1 (* range.ml :create a stream of
2 numbers with a function from 0
3 to stop-1; O(1) memory usage *)
4 let range stop =
5 let i = ref 0 in
6 let advance _ =
7 if !i < stop then
8 let ret = !i in
9 i := !i + 1;

10 Some ret
11 else
12 None
13 in
14 Stream.from advance
15 ;;
16
17 let _ =
18 printf "0 to 9\n";
19 let r10 = range 10 in
20 while Stream.peek r10 <> None do
21 printf "%d\n" (Stream.next r10);
22 done;
23 ...

16

Streams/Generators in other Languages
▶ Python’s generators are streams, appear everywhere

associated with for syntax
▶ range() is a generator for a stream of numbers

1 print("0 to 9")
2 for i in range(1,10): # standard for loop with a range
3 print(i)
4
5 r100 = range(1,100) # range’s are objects
6 print(r100) # which prints as
7 # "range(1, 100)"
8 for i in r100: # and can be iterated over
9 print(i)

▶ Java’s Iterator interface is similar providing an iter.next()
function to move ahead and produce data

▶ for(x : thing) syntax creates and advances an iterator
▶ Most often associated with iterating over a data structure
▶ Clojure’s lazy sequences are . . . well, that one is obvious

17

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://clojure.org/reference/sequences

Summary

▶ All programming languages choose an evaluation strategy
which dictates the order in which instructions are executed

▶ Eager eval is used by most PLs and feels fairly natural but is
not the only game in town

▶ Lazy eval can lead to some interesting possibilities and
potential efficiencies if implemented "smartly"

▶ OCaml uses eager eval but can introduce lazy expressions via
lazy with the Lazy module providing other ops like force

▶ Generally, delaying computation until needed is useful as
demonstrated in streams which appear in many programming
languages under different names (generators, iterators, etc.)

18

