
CSCI 2041: Object Systems

Chris Kauffman

Last Updated:
Fri Dec 7 09:00:45 CST 2018

1

Logistics

Reading
▶ Module Lazy on lazy

evaluation
▶ Module Stream on streams
▶ OSM: Ch 3: Objects in

OCaml

Goals
▶ Finish Lazy/Streams
▶ Define OO
▶ Objects and Classes in

OCaml
▶ Dynamic Dispatch

Endgame

Date Event
Wed 12/05 Lazy, Objects

A5 Milestone
Fri 12/07 Object Systems
Mon 12/10 Optimization / Evals
Tue 12/11 Lab14: Review

A5 Due
Wed 12/12 Last Lec: Review
Thu 12/13 Study Day
Mon 12/17 Final Exam
9:05am Sec 001 10:30am-12:30pm
1:25am Sec 010 1:30pm-3:30pm

2

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Lazy.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Stream.html
http://caml.inria.fr/pub/docs/manual-ocaml/objectexamples.html
http://caml.inria.fr/pub/docs/manual-ocaml/objectexamples.html

Exercise: A Challenging Definition

▶ All of you should have previously taken a class on
object-oriented programming (OOP) in some language

▶ We are now 95% through a course on functional
programming (FP) in OCaml

▶ What’s the difference?
▶ Particularly, how would you distinguish what OOP has that

FP does not?
▶ Draw from your experience in and be rigorous: ask questions

like "Java has X, does OCaml have that?"
▶ Ultimately, define object-oriented programming to distinguish

it from functional programming

3

Answers: A Challenging Definition

▶ Disclaimer: this is a philosophical question so there isn’t a
strictly correct answer

▶ Important to recognize things that are not unique to OOP
that sensible FP languages have such as
▶ Coupled functions and data (module with type and associated

operations)
▶ Strong data typing discipline
▶ Rich data types (records, variants, tuples, arrays, lists)
▶ Information hiding (signatures, lexical scope)
▶ Interfaces (modules, functors, signatures)
▶ "Constructors" (functions that create data)
▶ Type neutral algorithms/data structs (polymorphism, functors)
▶ State and Mutation (refs, mutable fields)

▶ What remains in OOP that we haven’t seen in OCaml?
▶ Objects/Classes - not particularly useful on their own but. . .

4

Qualities of OOP

▶ An object/class system usually allows inheritance, sharing of
code and structure which allows variation and specialization

▶ Allows a codebase to be extended with new classes later and
remain compatible with previous code

▶ Also implies dynamic dispatch on method invocation:
select the appropriate function to run based on the type of
data passed to the function

▶ So far we have not seen this capability in OCaml
▶ Possible to arrange code/structure sharing with Functors but

not easy to vary individual pieces like a single module function
▶ Functions have static input types, can’t change behavior based

on input type
▶ For this, it is time to put the O in OCaml

5

Classes and Objects in OCaml

▶ OCaml was originally Caml, then had a Class/Object System
added to it to make it Objective Caml, shortened to OCaml

▶ Examine animals.ml for syntax around classes and objects
▶ Reminiscent of object systems in other languages though

OCaml does not require objects to belong to a class1

▶ Like Java’s abstract classes, can declare virtual classes
leaving some methods unspecified
▶ Cannot make new instances of virtual classes

▶ Subclasses inherit methods and fields from from a base
class but can override methods to behave differently
▶ Subclass must implement virtual methods to be concrete or

remain virtual

1Examples of declaring objects without a classes are in OSM Ch 3.2:
Immediate Objects. Java can do this in some circumstances as well.

6

http://caml.inria.fr/pub/docs/manual-ocaml/objectexamples.html#sec26
http://caml.inria.fr/pub/docs/manual-ocaml/objectexamples.html#sec26

Sample File animal.ml
1 class virtual animal = (* virtual: some methods un-implementd *)
2 object(this) (* refer to object via ’this’ *)
3 method virtual id : unit -> string (* method not implemented *)
4 method say () = (* implmented method *)
5 printf "I’m a %s\n" (this#id ())
6 end;;
7
8 class fish = (* another class *)
9 object(me) (* refer to object via "me" *)

10 inherit animal (* subclass of animal *)
11 method id () = "fish" (* id method specified *)
12 end;; (* say method inherited *)
13
14 class duck = object (* another class *)
15 inherit animal (* subclass of animal *)
16 method id () = "duck" (* override both methods *)
17 method say () =
18 printf "quack\n"
19 end;;
20
21 class mascot = object (* subclass of duck *)
22 inherit duck (* inherits id method *)
23 method say () = (* overrides say method *)
24 printf "Aflack!\n"
25 end;;

7

Exercise: Single Dynamic Dispatch
let _ = (* main function *)

let animals = [| (* array of animals *)
((new fish) :> animal); (* "upcast" required to satisfy *)
((new duck) :> animal); (* type checker: all array elems *)
((new mascot) :> animal); (* elements of list are thus same *)
((new fox) :> animal); (* type through inheritance *)

|]
in
let len = Array.length animals in
for i=0 to len-1 do (* iterate over animals *)

let a = animals.(i) in
printf "The %s says: " (a#id ()); (* invoke id() method *)
a#say (); (* invoke say() method *)

done;
;;

▶ Output is shown to the right
▶ Why different for each animal?
▶ How does this work at runtime?

OUTPUT:
> ocamlc animals.ml
> a.out
The fish says: I’m a fish
The duck says: quack
The duck says: Aflack!
The fox says:
Ring-ding-ding-ding-dingeringeding!
Gering-ding-ding-ding-dingeringeding!
Gering-ding-ding-ding-dingeringeding!

8

Answers: Single Dynamic Dispatch
▶ The output is different for each animal as each implements

different versions of the id () and say () methods.
▶ At runtime, these methods dispatch to the most specific

function most relevant to the class associated with the object
▶ Dispatch involves a search process

▶ Determine type of object associated
▶ Look for a function with method name in object’s class
▶ If not found, look in parent class
▶ If not found, look in parent’s parent class
▶ etc.

▶ This search is handled at a low level by the runtime system
which usually tries to optimize the process by
remembering/caching what function to call for repeated
invocations

▶ Important trade-offs for function calls
Call Type Quality Flexibility Speed
Non-object Func Calls Static Less flexible Constant Time
Method Dispatch Dynamic More flexible Search Required

9

Single Dispatch Limits

▶ Most OOP languages perform Single Dynamic Dispatch on
method invocations

▶ They do not perform dynamic dispatch in any other case
▶ In particular, don’t dispatch on function argument types which

are determined at compile time, not runtime
public static void identify(Animal x) { // No dispatch

System.out.println("I’m an animal");
}
public static void identify(Mouse x) { // No dispatch

System.out.println("I’m a mouse");
}
...
Animal a = new Mouse();
identify(a); // I’m an animal

▶ Further examples in SingleDispatch.java and
DoubleDispatch.java

10

OOP Defined . . . right?
▶ Methods define a family of functions
▶ An object that implements a method will have a function of

that name specific to its implementation which is used at
runtime

▶ Early OOP languages like Smalltalk treated function calls as
"messages" to object which would perform appropriate actions
or respond "don’t know how to do that"

"Actually I made up the term "object-oriented", and I can
tell you I did not have C++ in mind." – Alan Kay2

▶ OOP has a long history of such dynamic behavior and
dynamic dispatch is at the center of it: pick the function
appropriate to the object type

▶ So OOP must mean dynamic dispatch. Right. Right?
Actually. . .

2Co-author of the Smalltalk programming language (an early OOPL),
Co-inventor of the Graphical User Interface

11

Dispatch as a Language Feature
▶ Java, Python, C++, OCaml feature Single Dynamic Dispatch:

select a specific function based on the object type
▶ Multiple Dynamic Dispatch selects an appropriate function

based on types of all arguments at runtime.
▶ MDD is an extremely useful feature for solving interactions

between types of data such as below.
Julia programming language uses multiple dispatch on types of all
argumnets to functions. New versions of collide for new types can be
added later.

collide(x::Asteroid, y::Asteroid) = # asteroid hits asteroid
...

collide(x::Asteroid, y::Spaceship) = # asteroid hits spaceship
...

collide(x::Spaceship, y::Asteroid) = # spaceship hits asteroid
...

collide(x::Spaceship, y::Spaceship) = # spaceship hits spaceship
...

▶ Look for MDD/Multimethods in Clojure, Julia, Racket,
Common Lisp, and others that are mostly not object-oriented

12

https://en.wikipedia.org/wiki/Multiple_dispatch
https://clojure.org/reference/multimethods
https://docs.julialang.org/en/v1/manual/methods/
https://docs.racket-lang.org/multimethod/index.html
https://lispcookbook.github.io/cl-cookbook/clos.html#multimethods

So what distinguishes OOP from FP?
▶ OOP is best understood as a mindset: model problem as

classes of related, interacting objects
▶ In contrast, FP focuses on data types and the functions that

operate on them
▶ Select a style that suits the problem at hand acknowledging

the basic trade-offs of each
▶ OOP : class-centric

▶ Each class implements its own methods
▶ Adding a class is easy: define all its methods
▶ Adding a method may require editing all classes to include the

new method
▶ FP : function-centric

▶ Each function defines behavior for all types
▶ Adding a function is easy: define behavior for all types
▶ Adding a type may require editing all functions to include the

new type

13

The Connoisseur and the Carpenter
If all you have is a hammer, everything looks like a nail.
–Abraham Maslow

▶ A connoisseur will turn their nose up at one language or
another for their off-putting qualities

▶ In contrast, carpenters use saws to cut, hammers to pound,
drills to make holes, never viewing one tool as universally
better, just better suited to different tasks

▶ Good programmers are like carpenters who can select an
appropriate tool to get a job done easier, faster, and more
robustly (leaving more time for Youtube)

▶ Programming Languages and Features are tools to address
problems that arise in writing code

▶ Hopefully this course has given you an appreciation of FP as a
valid and useful tool, worthy of inclusion in your box

14

