CSCI 2041: Object Systems

Chris Kauffman

Last Updated:
Fri Dec 7 09:00:45 CST 2018

Logistics

Reading
» Module Lazy on lazy
evaluation

» Module Stream on streams

» OSM: Ch 3: Objects in
OCaml

Goals
» Finish Lazy/Streams

» Define OO

» Objects and Classes in
OCaml

» Dynamic Dispatch

Endgame
Date Event
Wed 12/05 Lazy, Objects
A5 Milestone
Fri 12/07 Object Systems
Mon 12/10 Optimization / Evals
Tue 12/11 Labl4: Review
A5 Due
Wed 12/12 Last Lec: Review
Thu 12/13 Study Day
Mon 12/17 Final Exam

9:05am Sec 001
1:25am Sec 010

10:30am-12:30pm
1:30pm-3:30pm

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Lazy.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Stream.html
http://caml.inria.fr/pub/docs/manual-ocaml/objectexamples.html
http://caml.inria.fr/pub/docs/manual-ocaml/objectexamples.html

Exercise: A Challenging Definition

» All of you should have previously taken a class on
object-oriented programming (OOP) in some language

> We are now 95% through a course on functional
programming (FP) in OCaml
» What's the difference?

» Particularly, how would you distinguish what OOP has that
FP does not?

» Draw from your experience in and be rigorous: ask questions
like "Java has X, does OCaml have that?"

» Ultimately, define object-oriented programming to distinguish
it from functional programming

Answers:

A Challenging Definition

» Disclaimer: this is a philosophical question so there isn’t a
strictly correct answer

» Important to recognize things that are not unique to OOP
that sensible FP languages have such as

>

VVYyVVYYVYYVYY

Coupled functions and data (module with type and associated
operations)

Strong data typing discipline

Rich data types (records, variants, tuples, arrays, lists)
Information hiding (signatures, lexical scope)

Interfaces (modules, functors, signatures)

"Constructors" (functions that create data)

Type neutral algorithms/data structs (polymorphism, functors)
State and Mutation (refs, mutable fields)

» What remains in OOP that we haven't seen in OCaml?

>

Objects/Classes - not particularly useful on their own but. ..

Qualities of OOP

» An object/class system usually allows inheritance, sharing of
code and structure which allows variation and specialization

> Allows a codebase to be extended with new classes later and
remain compatible with previous code

P Also implies dynamic dispatch on method invocation:
select the appropriate function to run based on the type of
data passed to the function

» So far we have not seen this capability in OCaml

> Possible to arrange code/structure sharing with Functors but
not easy to vary individual pieces like a single module function

» Functions have static input types, can't change behavior based
on input type

» For this, it is time to put the O in OCaml

Classes and Objects in OCaml

» OCaml was originally Caml, then had a Class/Object System
added to it to make it Objective Caml, shortened to OCaml

» Examine animals.ml for syntax around classes and objects
» Reminiscent of object systems in other languages though
OCaml does not require objects to belong to a class?

> Like Java's abstract classes, can declare virtual classes
leaving some methods unspecified

» Cannot make new instances of virtual classes

» Subclasses inherit methods and fields from from a base
class but can override methods to behave differently
» Subclass must implement virtual methods to be concrete or
remain virtual

1Examples of declaring objects without a classes are in OSM Ch 3.2:
Immediate Objects. Java can do this in some circumstances as well.

http://caml.inria.fr/pub/docs/manual-ocaml/objectexamples.html#sec26
http://caml.inria.fr/pub/docs/manual-ocaml/objectexamples.html#sec26

Sample File animal.ml

00 ~N O U WN -

NNNNNDNDERE BB PR
AP WNFEFOOWWONOUPDd WNRFR OO

class virtual animal =
object (this)
method virtual id
method say () =
printf "I’m a %s\n" (this#id ()
end;;

: unit -> string

class fish =
object (me)
inherit animal
method id () = "fish"
end;;

class duck = object
inherit animal
method id () = "duck"
method say () =
printf "quack\n"
end;;

class mascot = object
inherit duck
method say () =
printf "Aflack!\n"
end;;

(*
(%
(*
(*

(*
(*
(*
(*
(*

(*
(*
(%

(*
(*
(*

virtual: some methods un-implem
refer to object via ’this’ *)
method not implemented *)
implmented method *)

another class *)

refer to object via "me" *)
subclass of animal *)

id method specified *)

say method inherited *)

another class *)
subclass of animal *)
override both methods *)

subclass of duck *)
inherits id method *)
overrides say method *)

Exercise: Single Dynamic Dispatch

let _ =
let animals = [|

((new fish) :> animal);
((new duck) :> animal);
((new mascot) :> animal);
((new fox) :> animal);

1]
in
let len = Array.length animals in
for i=0 to len-1 do
let a = animals. (i) in
printf "The %s says: " (a#id ());
a#tsay () ;
done;

3

» Output is shown to the right
» Why different for each animal?

» How does this work at runtime?

(* main function *)

(* array of animals *)

(* "upcast" required to satisfy *)
(* type checker: all array elems *)
(* elements of list are thus same *)
(* type through inheritance *)

(* iterate over animals *)

(* invoke id() method *)
(* invoke say() method *)

OUTPUT:

> ocamlc animals.ml

> a.out

The fish says: I’m a fish

The duck says: quack

The duck says: Aflack!

The fox says:
Ring-ding-ding-ding-dingeringeding!
Gering-ding-ding-ding-dingeringeding!
Gering-ding-ding-ding-dingeringeding!

Answers: Single Dynamic Dispatch

>

| 2

The output is different for each animal as each implements
different versions of the id () and say () methods.
At runtime, these methods dispatch to the most specific
function most relevant to the class associated with the object
Dispatch involves a search process

» Determine type of object associated

» Look for a function with method name in object’s class

» If not found, look in parent class

» If not found, look in parent’s parent class

> etc.
This search is handled at a low level by the runtime system
which usually tries to optimize the process by
remembering/caching what function to call for repeated
invocations
Important trade-offs for function calls

Call Type Quality Flexibility Speed

Non-object Func Calls Static Less flexible Constant Time

Method Dispatch Dynamic More flexible Search Required

Single Dispatch Limits

>

Most OOP languages perform Single Dynamic Dispatch on
method invocations

They do not perform dynamic dispatch in any other case

In particular, don't dispatch on function argument types which
are determined at compile time, not runtime

public static void identify(Animal x) { // No dispatch
System.out.println("I’m an animal");

}
public static void identify(Mouse x) { // No dispatch

System.out.println("I’m a mouse");

}

Animal a = new Mouse();
identify(a); // I’m an animal

Further examples in SingleDispatch. java and
DoubleDispatch. java

10

OOP Defined ... right?

>
| 2

>

Methods define a family of functions
An object that implements a method will have a function of
that name specific to its implementation which is used at
runtime
Early OOP languages like Smalltalk treated function calls as
"messages" to object which would perform appropriate actions
or respond "don't know how to do that"
"Actually | made up the term "object-oriented”, and I can
tell you | did not have C++ in mind." — Alan Kay?

OOP has a long history of such dynamic behavior and
dynamic dispatch is at the center of it: pick the function
appropriate to the object type

So OOP must mean dynamic dispatch. Right. Right?
Actually. . .

2Co-author of the Smalltalk programming language (an early OOPL),
Co-inventor of the Graphical User Interface

11

Dispatch as a Language Feature

>

>

Java, Python, C4++, OCaml feature Single Dynamic Dispatch:
select a specific function based on the object type

Multiple Dynamic Dispatch selects an appropriate function
based on types of all arguments at runtime.

MDD is an extremely useful feature for solving interactions

between types of data such as below.

Julia programming language uses multiple dispatch on types of all
argumnets to functions. New versions of collide for new types can be
added later.

collide(x::Asteroid, y::Asteroid) = # asteroid hits asteroid

[
**

collide(x::Asteroid, y::Spaceship) asteroid hits spaceship

]
H*

collide(x::Spaceship, y::Asteroid) spaceship hits asteroid

]
**

collide(x::Spaceship, y::Spaceship) spaceship hits spaceship

Look for MDD /Multimethods in Clojure, Julia, Racket,
Common Lisp, and others that are mostly not object-oriented

12

https://en.wikipedia.org/wiki/Multiple_dispatch
https://clojure.org/reference/multimethods
https://docs.julialang.org/en/v1/manual/methods/
https://docs.racket-lang.org/multimethod/index.html
https://lispcookbook.github.io/cl-cookbook/clos.html#multimethods

So what distinguishes OOP from FP?

» OOP is best understood as a mindset: model problem as
classes of related, interacting objects

» In contrast, FP focuses on data types and the functions that
operate on them

> Select a style that suits the problem at hand acknowledging
the basic trade-offs of each
» OOP : class-centric
» Each class implements its own methods
» Adding a class is easy: define all its methods
» Adding a method may require editing all classes to include the
new method
» FP : function-centric
» Each function defines behavior for all types
» Adding a function is easy: define behavior for all types
» Adding a type may require editing all functions to include the
new type

13

The Connoisseur and the Carpenter

If all you have is a hammer, everything looks like a nail.
—Abraham Maslow

P A connoisseur will turn their nose up at one language or
another for their off-putting qualities

» In contrast, carpenters use saws to cut, hammers to pound,
drills to make holes, never viewing one tool as universally
better, just better suited to different tasks

» Good programmers are like carpenters who can select an
appropriate tool to get a job done easier, faster, and more
robustly (leaving more time for Youtube)

» Programming Languages and Features are tools to address
problems that arise in writing code

» Hopefully this course has given you an appreciation of FP as a
valid and useful tool, worthy of inclusion in your box

14

