
CSCI 2041: OCaml Optimization Techniques

Chris Kauffman

Last Updated:
Mon Dec 10 09:04:27 CST 2018

1



Logistics

P5 Calculon
▶ Optional tests later today
▶ Due tomorrow

Lab 14
Review and Exit Survey

Goals
Examine optimizing using type
annotations

Endgame

Date Event
Wed 12/05 Lazy, Objects

A5 Milestone
Fri 12/07 Object Systems
Mon 12/10 Optimization / Evals
Tue 12/11 Lab14: Review

A5 Due
Wed 12/12 Last Lec: Review
Thu 12/13 Study Day
Mon 12/17 Final Exam
9:05am Sec 001 10:30am-12:30pm
1:25am Sec 010 1:30pm-3:30pm

2



Exercise: Consider the following Function

let cmp a b =
a < b

;;

1. State the inferred type of the cmp function
2. Is it a polymorphic function? Why?
3. Speculate on whether there are any disadvantages to using

this function

3



Answers: Consider the following Function

(* compare any two things, polymorphic ’<’ *)
let cmp_poly a b =

a < b
;;

1. Type: ’a -> ’a -> bool
2. Yes, it is polymorphic, any two types in
3. Being polymorphic it is very flexible, can be used with any

type, but this requires runtime type analysis
The less-than operator must analyze values to determine what type
they are to do comparison.
▶ This is not possible to do in normal OCaml
▶ Happens at the C level in the OCaml runtime system, the

compare_val C function
▶ Cannot be optimized unless types are locked in early

4



Compare Comparisons

(* compare any two things, polymorphic ’<’ *)
let cmp_poly a b = a < b;;

(* compare only ints *)
let cmp_int (a:int) (b:int) = a < b;;

(* compare only strings *)
let cmp_str (a:string) (b:string) = a < b;;

▶ File all_compare.ml creates a main loop of random integer
and string arrays

▶ Times runs of all pairwise comparisons using these three
functions

▶ Examine source code for this file briefly

5



Exercise: Time Differences

> ocamlopt all_compare.ml

> ./a.out 5000
cmp_poly on ints
count: 12496306, time: 0.3119 secs
cmp_int on ints
count: 12496306, time: 0.1103 secs
cmp_poly on strings
count: 12496306, time: 0.8095 secs
cmp_str on strings
count: 12496306, time: 0.4314 secs

Speculate: why such a big difference in times?

6



Answers: Time Differences

▶ cmp_poly must perform an algorithm to determine types
before beginning comparison

if is_int(a) then do_int_compare(a,b);
elif is_float(a) then do_float_compare(a,b);
elif is_string(a) then do_string_compare(a,b);
etc.

▶ In contrast cmp_int and cmp_string know exactly which
comparison instruction/function to use

▶ Opens up inlining opportunities for the compiler as well: call
directly to the comparison functions

▶ Relevant to module functors as well: polymorphic comparison
vs specific comparison functions

7



Example Functor Comparison
1 type strpair = {
2 first : string;
3 second : string;
4 };;
5
6 module PolyCmp = struct
7 type t = strpair;;
8 let compare = Pervasives.compare;; (* polymorphic comparison *)
9 end;;

10
11 module StringCmp = struct
12 type t = strpair;;
13 let compare a b = (* specific comparison *)
14 let diff = String.compare a.first b.first in
15 if diff=0 then
16 String.compare a.second b.second
17 else
18 diff
19 ;;
20 end;;
21
22 module PolySet = Set.Make(PolyCmp);;
23 module StringSet = Set.Make(StringCmp);;

8



Pervasives.compare vs Custom Comparison
▶ Using Module Functors like Set.Make must provide a

comparison function
▶ Can always use Pervasives.compare but is usually more

efficient to use a comparison function associated with a
specific type

> ocamlopt set_test.ml

> a.out 200000
polyset search
count: 412, time: 0.4179 secs
stringset search
count: 412, time: 0.3144 secs

There are plenty of other opportunities to optimize bits and pieces
of OCaml, but before you optimize, ask the question. . .

9



Caution: Should I Optimize?

▶ Optimizing program
execution time usually costs
human time

▶ Human time is valuable,
don’t waste it

▶ Determine if there is a
NEED to optimize

▶ Benchmark your code - if it
is fast enough, move on

▶ If not fast enough, use a
profiler to determine where
your efforts are best spent

▶ Never sacrifice
correctness for speed

10



What to Optimize First
In order of impact

1. Algorithms and Data
Structure Selection

2. Elimination of unneeded
work/hidden costs

3. Memory Utilization
4. Micro-optimizations

Programmers waste enormous
amounts of time thinking about,
or worrying about, the speed of
noncritical parts of their
programs, and these attempts at
efficiency actually have a strong
negative impact when debugging
and maintenance are considered.
We should forget about small
efficiencies, say about 97% of the
time: premature optimization is
the root of all evil. Yet we
should not pass up our
opportunities in that critical
3%.
– Donald Knuth

11


