
Name: ID#: X500: @umn.edu A

CS 2041: Practice Final SOLUTION
Fall 2018

University of Minnesota

Exam period: 20 minutes
Points available: 40

Background: OCaml’s standard library has muta-
ble, polymorphic hash table implementation which
maps keys to values in the Hashtbl module which
is demonstrated in a REPL nearby. Like the tree
maps we created, Hashtbl provides higher-order func-
tions for operating on the key/value associations in
the map.

Problem 1 (5 pts): Write a function print_all

which prints out all key/value bindings in a hash ta-
ble of string/integers. Use the higher-order function
Hashtbl.iter func tbl where func is passed keys
and values from the hash table and returns unit. It
is demonstrated in the REPL session.

SOLUTION
1 let print_all table =
2 let print k v =
3 printf "%s -> %d\n" k v
4 in
5 Hashtbl.iter print table;
6 ;;

1 # let table = Hashtbl.create 20;;
2 # Hashtbl.add table "Goku" 8001;;
3 # Hashtbl.add table "Krillin" 1770;;
4 # Hashtbl.add table "Piccolo" 3500;;
5 # Hashtbl.add table "Vegeta" 18000;;
6

7 # let kpower = Hashtbl.find_opt table "Krillin";;
8 val kpower : int option = Some 1770
9 # let gpower = Hashtbl.find_opt table "Gohan";;

10 val gpower : int option = None
11

12 # #use "hash_funcs.ml";;
13 val print_all : (string, int) Hashtbl.t -> unit = <fun>
14 val total_power : (’a, int) Hashtbl.t -> int = <fun>
15

16 # print_all table;; (* demo print_all *)
17 Krillin -> 1770
18 Vegeta -> 18000
19 Piccolo -> 3500
20 Goku -> 8001
21 - : unit = ()
22

23 # total_power table;; (* demo total_power *)
24 - : int = 31271

Problem 2 (5 pts): Write a function
total_power which totals the values stored in a hash
table with integer values. Use the higher-order func-
tion Hashtbl.fold func tbl initial where func

is passed keys, values, and a running total. It is
demonstrated in the REPL session.

SOLUTION
1 let total_power table =
2 let total k v sum =
3 sum+v
4 in
5 Hashtbl.fold total table 0
6 ;;

Problem 3 (5 pts): A5’s Calculon drew a distinction between a lambda expression and a closure.
Describe the similarities and differences between these two things.

SOLUTION: The parser produces lambda expressions which are part of the parse tree. They have a pa-
rameter and a body of code to execute. The evaluator produces a Closure which is a variant of data_t

like IntDat and BoolDat. Closure’s also have a parameter and code to evaluate when applied but add a
variable map which tracks all variables that were defined at the time the Closure was created.

1A

Name:

Problem 4 (10 pts): To the right is a program
which makes use of lazy evaluation. Show what you
expect the output for the program to be below. Jus-
tify your answer by describing when and how many
times various outputs are printed.

SOLUTION
1 > ocamlc lazy_eval.ml
2 > a.out
3 eval exprB
4 eval exprA
5 AB: 15
6 eval exprC
7 AC: 20
8 BC: 25

1 open Printf;;
2

3 let _ =
4 let exprA = lazy (printf "eval exprA\n"; 5) in
5 let exprB = (printf "eval exprB\n"; 10) in
6 let exprC = lazy (printf "eval exprC\n"; 15) in
7

8 printf "AB: %d\n"
9 ((Lazy.force exprA) + exprB);

10 printf "AC: %d\n"
11 ((Lazy.force exprA) + (Lazy.force exprC));
12 printf "BC: %d\n"
13 (exprB + (Lazy.force exprC));
14 ;;

exprB is not lazy so it will print immediately on reaching line 5. To print AB, exprA must be forced which
executes its printing on line 9. The output for AB: 15 is then seen. Once forced, exprA will not print
again so at line 11, only exprC is printed, then AC: 20. Finally, line 13 will not print exprC again as it
has already been printed so only BC: 25 is seen.

Problem 5 (5 pts): Write a function
constantly x which creates an infinite stream which
always returns the given value x. The function is
demonstrated in the REPL session below.

SOLUTION
1 let constantly n =
2 let help i = Some n in
3 Stream.from help
4 ;;

1 # #use "constantly.ml";;
2 val constantly : ’a -> ’a Stream.t = <fun>
3 # let ones = constantly 1;;
4 val ones : int Stream.t = <abstr>
5 # Stream.next ones;;
6 - : int = 1
7 # Stream.next ones;;
8 - : int = 1
9 # let mines = constantly "mine";;

10 val mines : string Stream.t = <abstr>
11 # Stream.next mines;;
12 - : string = "mine"
13 # Stream.next mines;;
14 - : string = "mine"

Problem 6 (10 pts): Describe how string data may be added to A5’s Calculon language interpreter.
Included in this addition would be string concatenation via the ~ operator shown below. Make sure to
describe which parts of Calculon would need to be altered.

1 calculon> parsetree "hello";
2 Parse tree:
3 StrExp("hello")
4

5 calculon> def str = "hello";
6 str : StrDat("hello")
7

8 calculon> def hw = str ~ " world";
9 hw : StrDat("hello world")

SOLUTION: The lexer in calclex.ml would need to be
modified to recognize the " character as the start of a string
then scan ahead to find another ". The characters be-
tween would become the string. The parse_ident func-
tion in calcparse.ml needs a string expression kind and
calceval.ml needs to add StrDat to its data_t type. To
support concatenation add the ~ to the parser as a token
and then add in a StringOp kind in the parser similar to
the IntOp kind. Evaluation would simply concatenate the
two strings together to produce a new, larger StrDat.

2A

