
Name: ID#: X500: @umn.edu A

CS 2041: Practice Exam 1 SOLUTION
Fall 2018

University of Minnesota

Quiz period: 20 minutes
Points available: 40

Problem 1 (10 pts): Write a function called
even_indices which takes any type of list and re-
turns a list of elements at even indices 0,2,4,etc. Ex-
ample uses from a REPL are shown. Hint: a recursive
solution which “skips” element is effective. My if/else
solution is 13 lines long while pattern matching makes
this considerably shorter.

1 # #use "even_indices.ml";;
2 val even_indices : ’a list -> ’a list = <fun>
3 # even_indices [];;
4 - : ’a list = []
5 # even_indices [0];;
6 - : int list = [0]
7 # even_indices [0; 1];;
8 - : int list = [0]
9 # even_indices [0; 1; 2; 3; 4; 5];;

10 - : int list = [0; 2; 4]
11 # even_indices [0; 1; 2; 3; 4; 5; 6; 7; 8];;
12 - : int list = [0; 2; 4; 6; 8]
13 # even_indices ["a"; "b"; "c"; "d";];;
14 - : string list = ["a"; "c"]

SOLUTION:

1 (* if/else only *)
2 let rec even_indices list =
3 if list=[] then
4 []
5 else
6 let head = List.hd list in
7 let tail = List.tl list in
8 if tail=[] then
9 [head]

10 else
11 let rest = even_indices (List.tl tail) in
12 head::rest
13 ;;
14

15 (* pattern matching *)
16 let rec even_indices list =
17 match list with
18 | [] -> []
19 | head :: [] -> [head]
20 | even :: odd :: tail -> even :: (even_indices tail)
21 ;;

Problem 2 (10 pts): Source code for the
array_fill function is provided along with a short
session which attempts to demonstrate the function.
A warning is given on loading the code and an unex-
pected result occurs. Describe the following.
(A) Why is the warning given?
SOLUTION: Line 3 of the function is not doing array
assignment but an equality check instead. The warn-
ing is indicating that a boolean results rather than a
unit which is expected for assignment.

(B) Why is the array apparently unchanged?
SOLUTION: Since elem is not actually assigned to
any array elements, the array remains unchanged.

(C) How can the function be corrected to remove the
warning and carry out its intended purpose?
SOLUTION: Simply replace the = sign on line 3 with
the array assignment operator <- : this has return
type unit and will actually change elements of the ar-
ray.

> cat -n fill.ml
1 (* fill array with given element *)
2 let fill_array arr elem =
3 for i=0 to (Array.length arr)-1 do
4 arr.(i) = elem;
5 done;
6 ;;

> ocaml
#use "fill.ml";;
File "fill.ml", line 3, characters 4-18:
Warning 10: this expression should have type unit.
val fill_array : ’a array -> ’a -> unit = <fun>

let a = [|9;5;2|];;
val a : int array = [|9; 5; 2|]

fill_array a 7;;
- : unit = ()

a;;
- : int array = [|9; 5; 2|]

1A

Name:

Problem 3 (10 pts): Complete the pointer diagram to shown to reflect how the OCaml code will use
existing cons boxes and create new ones.
SOLUTION:

Problem 4 (10 pts): Write a function called
firstlast which returns a list of the first and last
elements of a parameter list. For empty lists, the
empty list is returned. For single element lists, only
that element is returned. For full credit, make use of
a tail-recursive helper function to complete the
function.

Many solutions are possible, 2 are shown below that
use tail recursive helper functions.
SOLUTION 1:

1 let firstlast list =
2 if list=[] then
3 []
4 else
5 let first = List.hd list in
6 let rest = List.tl list in
7 if rest=[] then
8 [first]
9 else

10 let rec helper lst =
11 let head = List.hd lst in
12 let tail = List.tl lst in
13 if tail=[] then
14 [first; head]
15 else
16 helper tail
17 in
18 helper rest
19 ;;

1 (* REPL demo for firstlast *)
2 # firstlast [];;
3 - : ’a list = []
4 # firstlast ["a"];;
5 - : string list = ["a"]
6 # firstlast ["a";"b"];;
7 - : string list = ["a"; "b"]
8 # firstlast ["a";"b";"c";"d"];;
9 - : string list = ["a"; "d"]

10 # firstlast ["a";"b";"c";"d";"e";"f"];;
11 - : string list = ["a"; "f"]
12 # firstlast [1;2;3;4;5;6];;
13 - : int list = [1; 6]

SOLUTION 2:

1 (* pattern matching version *)
2 let firstlast list =
3 match list with
4 | [] -> []
5 | first :: [] -> [first]
6 | first :: rest ->
7 let rec helper lst =
8 match lst with
9 | last :: [] -> [first; last]

10 | head :: tail -> helper tail
11 | _ -> failwith "Something’s wrong"
12 (* last case avoids compile warning *)
13 in
14 helper rest
15 ;;

2A

