
Name: ID#: X500: @umn.edu A

CS 2041: Practice Exam 2 SOLUTION
Fall 2018

University of Minnesota

Exam period: 20 minutes
Points available: 40

Problem 1 (10 pts): Write a function called
strlen_betwen which accepts a min and max length
and a list of strings. A list of strings with length in
the given range is returned. Min/max lengths are in-
clusive. For full credit, make use of a higher-order
function in your definition. Demo uses are given be-
low.

1 # #use "strlen_between.ml";;
2 val strlen_between :
3 int -> int -> string list -> string list = <fun>
4 # let lst = ["aaa";"bbbbb"; "cccc";"dddddd"];;
5 val lst : string list =
6 ["aaa"; "bbbbb"; "cccc"; "dddddd"]
7 # strlen_between 2 4 lst;;
8 - : string list = ["aaa"; "cccc"]
9 # strlen_between 4 7 lst;;

10 - : string list = ["bbbbb"; "cccc"; "dddddd"]
11 # strlen_between 9 12 lst;;
12 - : string list = []

SOLUTION:

1 let strlen_between min max =
2 let filt s =
3 let len = String.length s in
4 min <= len && len <= max
5 in
6 List.filter filt
7 ;;

Problem 2 (10 pts): Write a function called
largest_even which accepts a list of integers. If no
even numbers are in the list, return None. Otherwise,
return Some of the largest integer in the list. For
full credit, use pattern matching and a higher-order
function in your solution. Demo uses are given below.

1 # #use "largest_even.ml";;
2 val largest_even :
3 int list -> int option = <fun>
4 # largest_even [];;
5 - : int option = None
6 # largest_even [1;3;5];;
7 - : int option = None
8 # largest_even [4];;
9 - : int option = Some 4

10 # largest_even [1;3;2;5];;
11 - : int option = Some 2
12 # largest_even [1;4;3;2;5;8;7;6];;
13 - : int option = Some 8

SOLUTION:

1 let largest_even list =
2 let help iopt x =
3 match iopt,x with
4 | None,x when x mod 2=0 ->
5 Some x
6 | (Some e),x when x mod 2 = 0 && x > e ->
7 Some x
8 | _ ->
9 iopt

10 in
11 List.fold_left help None list
12 ;;
13

14 (* Several alternate solutions will be posted
15 on the Piazza including those discussed in
16 lecture.
17 *)

1A



Name:

Background: Shae Lowcopy decided to extend the multimanager application to allow the current list to
be copied using the copyto command. She modifies multimanager.ml to include the following additional
command sequence.

1 let execute_command tokens =
2 let cmd = tokens.(0) in (* 0th element is command *)
3 match cmd with
4 ...
5 | "copyto" ->
6 let new_name = tokens.(1) in
7 let added = Doccol.add global new_name global.curdoc in
8 if added then
9 printf "Copied list to ’%s’\n" new_name

10 else
11 printf "ERROR: list ’%s’ already exists, cannot create copy\n" new_name
12 ...

Unfortunately when she begins testing she sees the below undesirable behavior: the copied list seems to
affect the original list when they should be independent.

Problem 3 (10 pts): Describe in some detail
why Shae’s implementation of copyto does not work
as expected and why the two lists seem to be linked
somehow.
Shae is only making a shallow copy of an existing doc. That

means other functions that mutate the fields of the doc to

add and remove elements will affect the original version.

In the example, the names default.txt and others.txt both

refer to the same document.

Problem 4 (10 pts): Describe how to fix the
problem so that a proper list copy is made for copyto.
Provide at least some code to give a concrete idea of
how your idea would work.
Create a copy of the document record with the same current
list. This can done with a call to Document.make to initial-
ize the copied document state to the current doc. This so-
lution does not include the undo/redo history which would
need to be copied as well if it were to be preserved. If the
documents tracked a mutable kind, not string list, then
a deeper copy would be necessary to avoid sharing.

1 | "copyto" ->
2 begin
3 let new_name = tokens.(1) in
4 let new_doc =
5 Document.make global.curdoc.current in
6 let added =
7 Doccol.add global new_name new_doc in
8 if added then
9 printf "Copied list to ’%s’\n" new_name

10 else
11 printf "ERROR: list ’%s’ already exists"
12 new_name
13 end

1 > multimanager
2 (default.txt)> add Korra
3 (default.txt)> add Mako
4 (default.txt)> add Bolin
5 (default.txt)> show
6 --BEG LIST--
7 Bolin
8 Korra
9 Mako

10 --END LIST--
11

12 (default.txt)> copyto others.txt
13 Copied list to ’others.txt’
14 (default.txt)> lists
15 2 docs
16 - others.txt
17 - default.txt
18

19 (default.txt)> edit others.txt
20

21 (others.txt)> show
22 --BEG LIST--
23 Bolin
24 Korra
25 Mako
26 --END LIST--
27

28 (others.txt)> remove Korra
29 (others.txt)> add Asami
30 (others.txt)> showall
31 --List others.txt--
32 Asami
33 Bolin
34 Mako
35

36 --List default.txt--
37 Asami
38 Bolin
39 Mako

2A


