
Name: ID#: X500: @umn.edu A

CS 2041: Practice Exam 3 SOLUTION
Fall 2018

University of Minnesota

Exam period: 20 minutes
Points available: 40

Problem 1 (10 pts): Write a function called
tree_aslist which will convert a binary search of
strings to a list of strings in order. Examples of its
use are below.

1 # type tree =
2 | Empty
3 | Node of {data: string; left: tree; right: tree}
4

5 # let tree_aslist tree = ... ;;
6 val tree_aslist : tree -> string list = <fun>
7

8 # tree_aslist Empty (* list for empty *)
9 - : int list = []

10

11 # let t1 = ... ;; (* 3-node tree *)
12 # printf "%s\n" (tree_string t1);;
13 1: E
14 0: C
15 1: A
16 # tree_aslist t1;; (* list for 3-node tree *)
17 - : string list = ["A"; "C"; "E"]
18

19 # let t2 = ...;; (* larger tree *)
20 # printf "%s\n" (tree_string t2);;
21 1: H
22 0: E
23 2: D
24 1: C
25 3: B
26 2: A
27 # tree_aslist t2;; (* list for larger tree *)
28 - : int list = ["A"; "B"; "C"; "D"; "E"; "H"]

SOLUTION:

1 type tree =
2 | Empty
3 | Node of { data : string;
4 left : tree;
5 right: tree; }
6 ;;
7

8 let tree_aslist tree =
9 let rec helper tree curlist =

10 match tree with
11 | Empty -> curlist
12 | Node(n) ->
13 let rlist = helper n.right curlist in
14 let clist = n.data :: rlist in
15 helper n.left clist
16 in
17 helper tree []
18 ;;

Problem 2 (5 pts): Show the results of parsing
given arithmetic expression. Use the symbolic names
for from lecture and lab in the resulting data struc-
ture. Indent the results to show the structure of the
answer.

parse_expr (lex_string "5-4*9/2+7");;

SOLUTION:

CORRECT:
Add(Sub (IConst(5),

Mul(IConst(4),
Div(IConst(9),

IConst(2)))),
IConst(7));;

ALMOST CORRECT: Sub should be higher prec than Add.
Sub (IConst 5,

Add (Mul (IConst 4,
Div (IConst 9,

IConst 2)),
IConst 7));;

1A

Name:

Problem 3 (10 pts): Write code that utilizes A4’s
Treeset.Make functor to create a module for sets of
unique pairs of bool and string elements. Define an
interface module called BoolstrEL with the required
bindings. Remember that element comparison func-
tions should check all parts to determine differences.
Use a format as indicated below for the element string
function. Call the resulting module BoolstrSet.

1 # #mod_use "treemap.ml";;
2 # #mod_use "treeset.ml";;
3 # #use "setmods.ml";;
4 module BoolstrEL :
5 ...
6 module BoolstrSet :
7 ...
8 end
9 # let set =

10 BoolstrSet.add BoolstrSet.empty (true,"Crime");;
11 val set : ...
12 # BoolstrSet.to_string set;;
13 - : string = "[(true,Crime)]"

SOLUTION:

1 open Printf;;
2

3 module BoolstrEL = struct
4 type element = bool * string;;
5 let compare (bx,sx) (by,sy) =
6 match bx,by with
7 | false,true -> -1
8 | true,false -> +1
9 | false,false | true,true ->

10 String.compare sx sy
11 ;;
12 let elem_string (b,s) =
13 sprintf "(%b,%s)" b s
14 ;;
15 end;;
16

17 module BoolstrSet = Treeset.Make(BoolstrEL);;
18

19 open BoolstrSet;;
20 open Printf;;
21

22 let _ =
23 let set = empty in
24 let set = add set (true,"Crime") in
25 let set = add set (false,"Crime") in
26 let set = add set (true,"Tales") in
27 let set = add set (false,"Stories") in
28 printf "%s\n" (to_string set);
29 ;;
30

2A

Name:

Background: Perseus Tentree is attempting to write
a remove_items function which operates on OCaml’s
standard Sets. His code is below in a REPL session
but does not seem to actually remove items from the
set.

1 # module StrSet = Set.Make(String);;
2 # let set = ...;;
3 # to_string set;;
4 - : string = "[B, C, N, R, T, V]"
5

6 # let remove_items set items =
7 let rec help list =
8 match list with
9 | [] -> set

10 | item::rest ->
11 StrSet.remove item set;
12 help rest
13 in
14 help items
15 ;;
16 Warning 10: this expression should have
17 type unit: StrSet.remove item set;
18 ^^^^^^^^^^^^^^^^^^^^^^
19 val remove_items :
20 StrSet.t -> string list -> StrSet.t = <fun>
21

22 # remove_items set ["B";"T";"N";"C"];;
23

24 # to_string set;;
25 - : string = "[B, C, N, R, T, V]"

Problem 4 (5 pts): Explain the central problem
with the code that Perseus has written and why the
compiler is issuing a warning about it.

SOLUTION: Perseus appears to be treating the sets as
mutable when they are instead immutable/persistent.
Calls to remove will return new sets with the item
removed. This returned set is not captured and used
so the compiler issues a warning.

Problem 5 (10 pts): Write a working version
of remove_items below. You may make the function
directly recursive if this proves useful.

SOLUTION:

1 let rec remove_items set items =

2 match items with

3 | [] -> set

4 | item::rest ->

5 let newset = StrSet.remove item set in

6 remove_items newset rest

7 ;;

3A

