
CSCI 4061: Introduction

Chris Kauffman

Last Updated:
Wed Jan 20 03:58:53 PM CST 2021

1

CSCI 4061 Lec 001 - Logistics

Goals Today
▶ Motivation
▶ Unix Systems Programming
▶ C programs
▶ Course Mechanics

In and Out of Class
▶ Common Misconception:

Everything you need to
know happens in lecture

▶ Truth: Much of what you’ll
learn will be when you’re
reading and doing things on
your own

Reading
REQUIRED:
Stevens and Rago, Advanced
Programming in the UNIX
Environment

▶ Required textbook
▶ Will go somewhat out of order
▶ Read: Ch 1

OPTIONALLY:
▶ Robbins and Robbins, Unix

Systems Programming
▶ Silberschatz, OS Concepts

Won’t deal with either of these in much
detail

2

Logistics Issues
Course Materials
https://www.cs.umn.edu/~kauffman/4061/schedule
▶ Will usually post slides prior to meetings
▶ Open today’s slides so you can see the following questions
▶ As students go into Breakout rooms, won’t be able to see MY

video feed: examine the slides yourself

Breakout Rooms
▶ During meetings, will use Zoom breakout rooms for

discussions
▶ Breakout Rooms will be semi-permanent: folks you meet

today are your discussion teammates, get to know them
▶ During discussions, write down your answers so you can

share your screen later
▶ Designate a team member that has this capability (e.g.

computer with video sharing)
3

https://www.cs.umn.edu/~kauffman/4061/schedule

Exercise: OS Ice Breaker

Write your answers in a text file
so 1-2 teams can screen-share
their answers

1. Who is writing answers
down so they can share?

2. What Operating System(s)
do you use frequently?

3. One thing you like and one
that you dislike about this
OS?

4. Something you should know
about me

Answer the following questions
for each team member
An example is show to the right

Korra
- I use OS K most of the time
- I like that it has a fancy GUI but

HATE updates are always installing
- I can bend anything

Mako
- FireOS on my tablet!
- It’s runs fast but also hot, literally
- Sometimes I think I brood too much

Bolin
- DirtLinux
- It’s super stable but bit dusty
- Mako is my brother!

Asami
- I use OS K for fun but FutureOS for

work/school
- OS K has a slick GUI but FutureOS

makes it easier to write code
- I’m working while in school

4

Exercise: Plethora of Operating Systems

1. What is the job of the operating systems?
2. Why do we even need them?
3. Why do you have a required class about them?

Write your answers down so 1-2 teams can screen-share their
answers

1. An OS basically does
2. OSs make computing easier by . . .
3. ???

▶ Team consensus answers, don’t need separate answers for
each member

▶ Including differing ideas if there is no consensus

5

Answers: Responsibilities of the OS?
▶ Interact with hardware like CPU, hard drives, mice, monitors,

DRAM, network interface card etc. is tedious / difficult
▶ Electrical signals / voltage changes / timing / protocols
▶ Some hardware follows standard protocols, others are special

tiny Source: Wikip "Motherboard"
6

https://en.wikipedia.org/wiki/Motherboard

Answers: Responsibilities of the OS?
OSs play many parts but primarily they glue Hardware and
Software together

Create a "virtual machine" on top of hardware
▶ OS creates an abstraction layer over hardware
▶ Similar programming interface regardless of underlying

hardware environment:
▶ Phones, Laptops, Cars, Planes, Nuclear Reactors
▶ all see Processes, Memory, Files, Network

Enforce Discipline / Referee Software
▶ Limit damage done by one party to another
▶ Processes communicate along fixed lines
▶ Multiple users must explicitly share info
▶ Shared resources are managed

7

Why Unix?

▶ All OSs on this page owe some influence to Unix
▶ Except maybe MS-DOS 8

Unix is Old, Tested, and often Open

▶ Developed from the 70s, honed under pressure from academia
and industry for widely varying uses

▶ Among the first projects to benefit from shared source code
▶ Philosophy: Simple, Sharp tools that Combine Flexibly
▶ Keep the Kernel functionality small but useful
▶ Abstractions provided in Unix are well-studied, nearly universal

9

The Unix "Virtual" Machine
Unix Kernel provides basic facilities to manage its high level
abstractions of hardware, translate to actual hardware
▶ Link: Interactive Map of the Linux Kernel
▶ Examples Below

Processes: Executing Code
▶ Create new processes
▶ Status of other processes
▶ Pause until events occur
▶ Create/Manage threads

within process
Process Communication
▶ Messages between processes
▶ Share memory / resources
▶ Coordinate resource use

File System: Storage / Devices
▶ Create / Destroy Files
▶ read() / write()
▶ Special files for

communication, system
manipulation

Networking
▶ Open sockets which connect

to other machines
▶ send()/recv() data over

connections
10

http://www.makelinux.net/kernel_map/

Outsides vs Insides of the OS
▶ Operating Systems are

layered like everything else
in computer science

▶ 4061: outer layer
▶ 5103: inner layers
▶ EE Degree: bottom layer

CSCI 4061
▶ Systems Programming
▶ Use functionality provided

by kernel
▶ Gain some knowledge of

internals but focus on
external practicalities

CSCI 5103
▶ Creation of a kernel / OS

internals
▶ Theory and practice of

writing / improving
operating systems

▶ Implement system calls
11

System Calls : The OS’s Privilege

▶ User programs will never actually read data from a file
▶ Instead, will make a request to the OS to read data from a file
▶ Usually done with a C function like in

int nbytes_read = read(file_des, in_buf, max_bytes);
▶ After a little setup, OS takes over
▶ Elevates the CPU’s privilege level to allow access to resources

not normally accessible using assembly instructions
▶ Modern CPUs have security models with normal / super status
▶ Like sudo make me a sandwhich for hardware

▶ At completion of read() CPU drops back to normal level
▶ User program now has stuff in in_buf or an error to deal with
▶ Same framework for process creation, communication, I/O,

memory management, etc.: make a system call to request an
OS service

12

https://xkcd.com/149/

Details of System Calls
1 ## 32-bit write linux system call in assembly (hello32.s)
2 _start:
3 movl $4, %eax # system call number for write: 4,
4 movl $1, %ebx # first arg: file descriptor, stdout = 1
5 movl $msg,%ecx # second arg: address of message to write
6 movl $13, %edx # third arg: message length, 13 bytes
7 int $0x80 # interrupt to call kernel
8 # write(1, message, 13) // equivalent C call in hello.c
9

10 ## 64-bit write linux system call in assembly (hello64.s)
11 _start:
12 movq $1, %rax # system call number for write: 1
13 movq $1, %rdi # first arg: file descriptor, stdout = 1
14 movq $msg,%rsi # second arg: address of message to write
15 movq $13, %rdx # third arg: message length, 13 bytes
16 syscall # make a system call, x86-64 convention
17 # write(1, message, 13) // equivalent C call in hello.c

Call x86_64 i386
read rax = 0 eax = 3
write 1 4
open 2 5
close 3 6
stat 4 106
fork 57 2

▶ Linux has ~300+ system
calls provided by the kernel

▶ C/Assembly calls for each

Why system calls like this?
Write down answers with team 13

Answers: Why System Calls like this? 1 / 2
Broad Reason 1: Control + Safety
▶ System call allows OS to control access to shared/sensitive

resources
▶ If user programs could directly access/modify such resources,

bad stuff can happen such as. . .
▶ Read other users’ files and process memory (security)
▶ Steal CPU / memory / disk space from other users (resource

management)
▶ Mess up hardware like printers or network by sending them bad

data, screw up OS by clobbering critical files/memory (safety /
stability)

▶ Shut down a machine terminating other user programs
(fairness)

▶ The OS layer enforces discipline for the above
▶ Notice some properties pertain to any system while others are

relevant to shared computer systems

14

Answers: Why System Calls like this? 2 / 2

Broad Reason 2: Portability + Universality
▶ A portable OS runs on many different kinds of hardware

(processor, memory, disks, etc.)
▶ Allows many different devices to be supported (laptop,

desktop, watch, phone, dog, etc.)
▶ OS should provide system calls that are

▶ Not too hard to implement efficiently
▶ Relevant to many hardware devices
▶ Useful to application programmers

▶ Port OS to new hardware → applications don’t need to
change as they use system calls

15

https://www.geekwire.com/2018/boston-dynamics-atlas-robot-learns-run-jump-robot-dog-gets-even-smarter/

Distinction of Application vs Systems Programming

The primary distinguishing characteristic of systems programming
when compared to application programming is that application pro-
gramming aims to produce software which provides services to the
user directly (e.g. word processor), whereas systems programming
aims to produce software and software platforms which provide ser-
vices to other software, are performance constrained, or both.
System programming requires a great degree of hardware awareness.
Its goal is to achieve efficient use of available resources, either because
the software itself is performance critical (AAA video games) or be-
cause even small efficiency improvements directly transform into sig-
nificant monetary savings for the service provider (cloud based word
processors).
– Wikipedia: Systems Programming

In short: systems programmers write the code between the OS and
everything else. But, systems vs application is more of a
continuum than a hard boundary.

16

https://en.wikipedia.org/wiki/System_programming

General Topics Associated with Systems Programming
Concurrency Multiple things can happen, order is unpredictable
Asynchrony An event can happen at any point

Coordination Multiple parties must avoid deadlock / starvation
Communication Between close entities (threads/processes) or

distant entities (network connection)
Security Access to info is restricted

File Storage Layout of data on permanent devices, algorithms for
efficient read/write, buffering

Memory Maintain illusion of a massive hunk of RAM for each
process (pages, virtual memory)

Robustness Handle unexpected events gracefully
Efficiency Use CPU, Memory, Disk to their fullest potential as

other programs are built from here
In our projects, we’ll hit on most of these.

17

Assumption: You know some C
▶ CSCI 2021 is a prereq, covers some hardware, basic C

programming and interaction with hardware
▶ Assume that you know C syntax, basic semantics
▶ Why C vs other languages?

Computers are well-represented in C
You just have to know C. Why? Because for all practical purposes,
every computer in the world you’ll ever use is a von Neumann ma-
chine, and C is a lightweight, expressive syntax for the von Neumann
machine’s capabilities.
– Steve Yegge, Tour de Babel

C and Unix Go Way Back
Aside from the modular design, Unix also distinguishes itself from
its predecessors as the first portable operating system: almost the
entire operating system is written in the C programming language
that allowed Unix to reach numerous [hardware] platforms.
– Wikipedia: Unix

18

https://sites.google.com/site/steveyegge2/tour-de-babel
https://en.wikipedia.org/wiki/Unix

Exercise: Recall these C things

Odd Teams
▶ Two different syntaxes to

loop (repeat code)
▶ The meaning of void
▶ struct: aggregate,

heterogeneous data
▶ Pointers to and Address of

variables
▶ malloc() and free()
▶ Dynamically allocated arrays

and structs
▶ Stack versus heap allocation

Even Teams
▶ #define : Pound define

constants
▶ Local scope, global scope
▶ Pass value vs pass reference
▶ printf() / fprintf()

and format strings
▶ scanf() / fscanf() and

format strings
▶ Commands to compile, link,

execute

19

Answers: Recall these C things

▶ A good C reference will introduce preceding aspects of C
▶ Kernighan and Ritchie’s The C Programming Language

does so, may be worth picking up a copy
▶ The remaining demos cover some of these things to refresh
▶ Make sure you get comfortable with all of them quickly

as C programming is a prerequisite for 4061
▶ HW01 has some additional C programs to inspect
▶ Lab01 will review some C programming techniques

20

Exercise: Actual C Code
#include <stdio.h>
#include <stdlib.h>
int main(){

long n = 1;
void *mem = NULL;
while((mem = malloc(n)) != NULL){

printf("%12ld bytes: Success\n",n);
free(mem);
n *= 2;

}
printf("%12ld bytes: Fail\n",n);
n /= 2;

long kb = n / 1024;
long mb = kb / 1024;
long gb = mb / 1024;

printf("\n");
printf("%12ld b limit\n",n);
printf("%12ld KB limit\n",kb);
printf("%12ld MB limit\n",mb);
printf("%12ld GB limit\n",gb);
return 0;

}

1. Describe at a high level what
this C program does

2. Explain the line
while((mem = malloc(n)) != NULL){

in some detail
3. What kind of output would you

expect on your own computer?

21

Answers: Actual C Code
1 // max_memory.c: test the total memory available in a single malloc by
2 // repeatedly increasing the limit of the request
3
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 int main(){
8 long n = 1; // int cannot hold large enough numbes
9 void *mem = NULL; // Pointer to memory

10 while((mem = malloc(n)) != NULL){ // allocate and check result
11 printf("%12ld bytes: Success\n",n); // %ld to print a long, %d for int
12 free(mem); // free last allocation
13 n *= 2; // double size of next request
14 } //
15 printf("%12ld bytes: Fail\n",n); // failed last allocation, no need to free
16 n /= 2; // back up one step for max success
17
18 long kb = n / 1024; // sizes of allocations
19 long mb = kb / 1024;
20 long gb = mb / 1024;
21
22 printf("\n");
23 printf("%12ld b limit\n",n); // Output human readable sizes
24 printf("%12ld KB limit\n",kb);
25 printf("%12ld MB limit\n",mb);
26 printf("%12ld GB limit\n",gb);
27 return 0; // return 0 to indicate succesful completion
28 }

22

Exercise: C Program with Input
typedef struct int_node_struct {

int data;
struct int_node_struct *next;

} int_node;
int_node* head = NULL;

int main(int argc, char **argv){
int x;
FILE *input = fopen(argv[1], "r");
while(fscanf(input,"%d",&x) != EOF){

int_node *new = malloc(sizeof(int_node));
new->data = x;
new->next = head;
head = new;

}
int_node *ptr = head;
int i=0;
printf("\nEntire list\n");
while(ptr != NULL){

printf("list(%d) = %d\n",i,ptr->data);
ptr = ptr->next;
i++;

}
fclose(input);
return 0;

}

▶ What data structure
is being used?

▶ Are there any global
variables?

▶ What’s going on here:
new->data = x;
new->next = head;

▶ Where do input
numbers come from?

▶ In what order will
input numbers be
printed back?

▶ Does the program
have a memory leak?
(What is a memory
leak?)

23

Answers: C Program with Input
1 // read_all_numbers_file.c: simple demonstration of reading input from
2 // a file using a linked list with dynamic memory allocation.
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 typedef struct int_node_struct { // Definition of a node
7 int data; // integer data
8 struct int_node_struct *next; // link to another node
9 } int_node;

10
11 int_node* head = NULL; // global variable, front of list
12
13 int main(int argc, char **argv){
14 int x;
15 FILE *input = fopen(argv[1], "r"); // open input file named on command line
16 while(fscanf(input,"%d",&x) != EOF){ // read a number, check for end of input
17 int_node *new = malloc(sizeof(int_node)); // allocate space for a node
18 new->data = x; // set data, -> derefernces and sets
19 new->next = head; // point at previous front of list
20 head = new; // make this node the new front
21 }
22 int_node *ptr = head; // prepare to iterate through list
23 int i=0;
24 printf("\nEntire list\n");
25 while(ptr != NULL){ // iterate until out of nodes
26 printf("list(%d) = %d\n",i,ptr->data); // print data for one node
27 ptr = ptr->next; // move pointer forward one node
28 i++;
29 }
30 fclose(input); // close the input file
31 return 0; // Should free list but program is ending
32 } // so memory will automatically return to system

24

Slides, Code, Videos On the Course Site

▶ Canvas has links to course materials
▶ Lecture slides will be available before lecture, may be updated

after with corrections / additions
▶ Code we use in class will also be available
▶ Take your own notes but know that resources are available
▶ Will be recording all Lecture meetings and posting to Youtube

for later viewing

25

Course Mechanics

See separate slides for specific course mechanics

26

