
CSCI 4061: Input/Output with Files, Pipes

Chris Kauffman

Last Updated:
Mon Feb 15 05:02:57 PM CST 2021

1

Logistics

Reading
Stevens/Rago Ch 3, 4, 5, 6

Goals
▶ Standard IO library
▶ File Descriptors
▶ open()/close()
▶ read()/write()
▶ dup2() / dup()
▶ Pipes

Assignments
▶ Lab03: Expand buffer with

realloc()
▶ HW03: Ditto + read() +

child control
▶ All have important

techniques necessary for P1
▶ P1 Commando Ongoing:

finish techniques required by
Mon 2/15 lecture

2

Exercise: C Standard I/O Functions

Recall basic I/O functions from the C Standard Library header
stdio.h

1. Printing things to the screen?
2. Opening a file?
3. Closing a file?
4. Printing to a file?
5. Scanning from terminal or file?
6. Get whole lines of text?
7. Names for standard input, output, error

Give samples of function calls
Write your answers in a text file so a team member can share
screens

3

Answers: C Standard I/O Functions
Recall basic I/O functions from the C Standard Library header stdio.h

1 printf("%d is a number",5); Printing things to the screen?
2 FILE *file = fopen("myfile.txt","r"); Opening a file?
3 fclose(file); Close a file?
4 fprintf(file,"%d is a number",5); Printing to a file?
5 scanf("%d %f",&myint,&mydouble); Scanning from terminal

fscanf(file2,"%d %f",&myint,&mydouble); or file?
6 result = fgets(charbuf, 1024, file); Get whole lines of text?
7 FILE *stdin, *stdout, *stderr; Names for standard input, etc

The standard I/O library was written by Dennis Ritchie around 1975.
–Stevens and Rago

▶ Assuming you are familiar with these and could look up others like fgetc()
(single char) and fread() (read binary)

▶ Library Functions: available with any compliant C compiler
▶ On Unix systems, fscanf(), FILE*, and the like are backed by lower level

System Calls and Kernel Data Structures
4

The Process Table

Source: SO What is the Linux Process Table?

▶ OS maintains data on all processes in a Process Table
▶ Process Table Entry ≈ Process Control Block
▶ Contains info like PID, instruction that process is executing*,

Virtual Memory Address Space and Files in Use
5

https://stackoverflow.com/questions/4880555/what-is-the-linux-process-table-what-does-it-consist-of

File Descriptors

▶ Each Process Table entry contains a table of open files
▶ A use program refers to these via File Descriptors
▶ File Descriptor is an integer index into Kernel’s table

int fd = open("some_file.txt", O_RDONLY);
▶ FD Table entry refers to other Kernel/OS data structures

6

File Descriptors are Multi-Purpose
▶ Unix tries to provide most things via files/file descriptor
▶ Many Unix system actions are handled via read()-from or

write()-to file descriptors
▶ File descriptors allow interaction with standard like

myfile.txt or commando.c to read/change them
▶ FD’s also allow interaction with many other things

▶ Pipes for interprocess communication
▶ Sockets for network communication
▶ Special files to manipulate terminal, audio, graphics, etc.
▶ Raw blocks of memory for Shared Memory communication
▶ Even processes themselves have special files in the file system:

ProcFS in /proc/PID#, provide info on running process
▶ We will focus on standard File I/O using FDs Now and touch

on some broader uses Later
▶ Also must discuss interactions between previous and new

System Calls like
What happens with open() files when calling fork()?

7

https://en.wikipedia.org/wiki/Procfs

Open and Close: File Descriptors for Files
#include <sys/stat.h>
#include <fcntl.h>

int fd1 = open("firstfile", O_RDONLY); // read only
if(fd1 == -1){ // check for errors on open

perror("Failed to open 'firstfile'");
}

int fd2 = open("secndfile", O_WRONLY); // write only, fails if not found
int fd3 = open("thirdfile", O_WRONLY | O_CREAT); // write only, create if needed
int fd4 = open("forthfile", O_WRONLY | O_CREAT | O_APPEND); // append if existing

// 'man 3 open' will list all the O_xxx options when opening.
// Other common options: O_RDONLY, O_RDWR, O_EXEC

...; // Do stuff with open files

int result = close(fd1); // close the file associated with fd1
if(result == -1){ // check for an error

perror("Couldn't close 'firstfile'");
}

open() / close() show common features of many system calls
▶ Returns -1 on errors
▶ Show errors using the perror() function
▶ Use of vertical pipe (|) to bitwise-OR several options

8

read() from File Descriptors
1 // read_some.c: Basic demonstration of reading data from
2 // a file using open(), read(), close() system calls.
3
4 #define SIZE 128
5
6 {
7 int in_fd = open(in_name, O_RDONLY);
8 char buffer[SIZE];
9 int bytes_read = read(in_fd, buffer, SIZE);

10 }

▶ Read up to SIZE from an open file descriptor
▶ Bytes stored in buffer, overwrite it
▶ Return value is number of bytes read, -1 for error
▶ SIZE commonly defined but can be variable, constant, etc
▶ Examine read_some.c: explain what’s happening

Warnings
▶ Bad things happen if buffer is actually smaller than SIZE
▶ read() does NOT null terminate, add \0 manually if needed

9

Exercise: Behavior of read()

8 // count_bytes.c
9 #define BUFSIZE 4
10
11 int main(int argc, char *argv[]){
12 char *infile = argv[1];
13 int in_fd = open(infile,O_RDONLY);
14 char buf[BUFSIZE];
15 int nread, total=0;
16 while(1){
17 nread = read(in_fd,buf,BUFSIZE-1);
18 if(nread == 0){
19 break;
20 }
21 buf[nread] = '\0';
22 total += nread;
23 printf("read: '%s'\n",buf);
24 }
25 printf("%d bytes total\n",total);
26 close(in_fd);
27 return 0;
28 }

Run count_bytes.c on
file data.txt

> cat data.txt
ABCDEFGHIJ
> gcc count_bytes.c
> ./a.out data.txt
???

1. Explain control flow
within program

2. Predict output of
program

10

Answers: Behavior of read()
==INITIAL STATE==
data.txt: ABCDEFGHIJ\n
position: ^
buf: |? ? ? ? |

0 1 2 3
nread: 0
total: 0

==ITERATION 1==
nread = read(in_fd,buf,3);
buf[nread] = '\0'
total+= nread;
printf("read: '%s'\n",buf);

data.txt: ABCDEFGHIJ\n
position: ^
buf: |A B C \0|

0 1 2 3
nread: 3
total: 3
output: 'ABC'

==ITERATION 2==
nread = read(in_fd,buf,3);
buf[nread] = '\0'
total+= nread;
printf("read: '%s'\n",buf);

data.txt: ABCDEFGHIJ\n
position: ^
buf: |D E F \0|

0 1 2 3
nread: 3
total: 6
output: 'DEF'

==ITERATION 3==
nread = read(in_fd,buf,3);
buf[nread] = '\0'
total+= nread;
printf("read: '%s'\n",buf);

data.txt: ABCDEFGHIJ\n
position: ^
buf: |G H I \0|

0 1 2 3
nread: 3
total: 9
output: 'GHI'

==ITERATION 4==
nread = read(in_fd,buf,3);
buf[nread] = '\0'
total+= nread;
printf("read: '%s'\n",buf);

data.txt: ABCDEFGHIJ\n
position: ^
buf: |J \n\0\0|

0 1 2 3
nread: 2
total: 11
output: 'J\n'

==ITERATION 5==
nread = read(in_fd,buf,3);
if(nread == 0){

break;
}

data.txt: ABCDEFGHIJ\n
position: ^
buf: |J \n\0\0|

0 1 2 3
nread: 0
total: 11
output: 11 bytes total

11

Answers: Behavior of read()

Take-Aways from count_bytes.c include
▶ OS maintains file positions for each open File Descriptor
▶ I/O functions like read() use/change position in a file
▶ read()’ing into program arrays overwrites data there
▶ OS does not update positions in user arrays: programmer

must do this in their program logic
▶ read() returns # of bytes read, may be less than requested
▶ read() returns 0 when at end of a file

12

Exercise: write() to File Descriptors

1 #define SIZE 128
2
3 {
4 int out_fd = open(out_name, O_WRONLY);
5 char buffer[SIZE];
6 int bytes_written = write(out_fd, buffer, SIZE);
7 }

▶ Write up to SIZE bytes to open file descriptor
▶ Bytes taken from buffer, leave it intact
▶ Return value is number of bytes written, -1 for error

Questions on write_then_read.c
▶ Download, Compile, Run:

https://z.umn.edu/write_then_read
▶ Explain Output, differences between write() / printf()

13

https://z.umn.edu/write_then_read

Answers: write() to File Descriptors

> gcc write_then_read.c
> ./a.out
0. Recreating empty existing.txt
1. Opening file existing.txt for writing
2. Writing to file existing.txt
3. Wrote 128 bytes to existing.txt
4. Opening existing.txt for reading
5. Reading up to 128 bytes from existing.txt
6. Read 127 chars, printf()'ing:
here is some text to write
7. printf()'ing 127 characters individually
here is some text to write\0\0\0hello\0
8. write()'ing 127 characters to screen
here is some text to write^@^@^@hello^@

14

read()/write() work with bytes
▶ In C, general correspondence between byte and the char type
▶ Not so for other types: int is often 4 bytes
▶ Requires care with non-char types
▶ All calls read/write actual bytes

#define COUNT 16
int out_ints[COUNT]; // array of 16 integers
int bufsize = sizeof(int)*COUNT; // size in bytes of array
...;
write(out_fd, out_ints, bufsize); // write whole buffer

int in_ints[COUNT];
...;
read(in_fd, in_ints, bufsize); // read to capacity of in_ints

Questions
▶ Examine write_read_ints.c, compile/run
▶ Examine contents of integers.dat
▶ Explain what you see

15

Standard File Descriptors
▶ When a process is born, comes with 3 open file descriptors
▶ Related to FILE* streams in Standard C I/O library
▶ Traditionally have FD values given but use the Symbolic name

to be safe

Symbol # FILE* FD for…
STDIN_FILENO 0 stdin standard input (keyboard)
STDOUT_FILENO 1 stdout standard output (screen)
STDERR_FILENO 2 stderr standard error (screen)

// Low level printing to the screen
char message[] = "Wubba lubba dub dub!\n";
int length = strlen(message);
write(STDOUT_FILENO, message, length);

See low_level_interactions.c to gain an appreciation for what
printf() and its kin can do for you.

16

File Descriptors refer to Kernel Structures

17

Shell I/O Redirection

▶ Shells can direct input / output for programs using < and >
▶ Most common conventions are as follows

$> some_program > output.txt
output redirection to output.txt

$> interactive_prog < input.txt
read from input.txt rather than typing

$> some_program &> everthing.txt
both stdout and stderr to file

$> some_program 2> /dev/null
stderr silenced, stdout normal

▶ Long output can be saved easily
▶ Can save typing input over and over
▶ Gets even better with pipes (soon)

18

Processes Inherit Open FDs

▶ Shells start child processes
with fork()

▶ Child processes share all
open file descriptors with
parents

▶ By default, Child prints to
screen / reads from
keyboard input

▶ Redirection requires
manipulation prior to
fork()

▶ See: open_fork.c
▶ Experiment with order

1. open() then fork()
2. fork() then open()

Source: Eddie Kohler Lecture Notes

Examine: fork-open-file.pdf for
picture explaining effects of
open() vs fork() order
differences

19

http://www.read.cs.ucla.edu/111/2006spring/notes/lec4
https://www-users.cs.umn.edu/~kauffman/4061/fork-open-file.pdf

Processes Inherit Open FDs: Diagram

Typical sequence:
▶ Parent creates an output_fd and/or input_fd
▶ Call fork()
▶ Child changes standard output to output_fd and/or input_fd
▶ Changing means calls to dup2()

20

Manipulating the File Descriptor Table
▶ System calls dup() and dup2() manipulate the FD table
▶ int backup_fd = dup(fd); : copy a file descriptor
▶ dup2(src_fd, dest_fd); : src_fd copied to dest_fd

21

Exercise: Redirecting Output with dup() / dup2()
▶ dup(), dup2(), and fork() can be combined in

interesting ways
▶ Diagram fork-dup.pdf shows how to redirect standard out

to a file like a shell does in: ls -l > output.txt

Write a program which
1. Prints PID to screen
2. Opens a file named write.txt
3. Forks a Child process
4. Child: redirect standard output

into write.txt
Parent: does no redirection

5. Both: printf() their PID
6. Child: restore standard output to

screen
Parent: makes no changes

7. Both: printf() “All done”

> gcc duped_child.c

> ./a.out
BEGIN: Process 1913588
MIDDLE: Process 1913588
END: Process 1913588 All done
END: Process 1913590 All done

> cat write.txt
MIDDLE: Process 1913590

22

http://www-users.cs.umn.edu/~kauffman/4061/fork-dup.pdf

Answers: Redirecting Output with dup() / dup2()

1 // duped_chld.c: solution to in-class activity on redirecting output
2 // in child process.
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <unistd.h>
6 #include <errno.h>
7 #include <sys/stat.h>
8 #include <fcntl.h>
9 #include <string.h>

10
11 int main(int argc, char *argv[]){
12 system("echo '' > write.txt"); // ensure file exists, is empty
13 printf("BEGIN: Process %d\n",getpid());
14 int fd = open("write.txt",O_WRONLY); // open a file
15 int backup;
16 pid_t child = fork(); // fork a child, inherits open file
17 if(child == 0){ // child only redirects stdout
18 backup = dup(STDOUT_FILENO); // make backup of stdout
19 dup2(fd,STDOUT_FILENO); // dup2() alters stdout so child printf() goes into file
20 }
21 printf("MIDDLE: Process %d\n",getpid());
22 if(child == 0){
23 dup2(backup,STDOUT_FILENO); // restore stdout
24 }
25 printf("END: Process %d All done\n",getpid());
26 close(fd);
27 return 0;
28 }

23

Pipes

▶ A mechanism for one process to communicate with another
▶ Uses internal OS memory rather than temporary files
▶ A great Unix innovation which allows small programs to be

strung together to produce big functionality
▶ Leads to smaller programs that cooperate
▶ Preceding OS’s lacked communication between programs

meaning programs grew to unmanageable size

24

Pipes on the Command Line
Super slick for those familiar with many Unix utilities: string
together programs with |, output from first becomes input for
second

> ls | grep pdf
00-course-mechanics.pdf
01-introduction.pdf
02-unix-basics.pdf
03-process-basics.pdf
04-making-processes.pdf
05-io-files-pipes.pdf
99-p1-commando.pdf
header.pdf
> ls | grep pdf | sed 's/pdf/PDF/'
00-course-mechanics.PDF
01-introduction.PDF
02-unix-basics.PDF
03-process-basics.PDF
04-making-processes.PDF
05-io-files-pipes.PDF
99-p1-commando.PDF
header.PDF

cat file.txt | # Feed input \
tr -sc 'A-Za-z' '\n' | # Translate non-alpha to newline \
tr 'A-Z' 'a-z' | # Upper to lower case \
sort | # Duh \
uniq -c | # Merge repeated, add counts \
sort -rn | # Sort in reverse numerical order \
head -n 10 # Print only top 10 lines

25

Pipe System Calls
▶ Use the pipe() system call
▶ Argument is an array of 2 integers
▶ Filled by OS with file descriptors of opened pipe
▶ 0th entry is for reading
▶ 1th entry is for writing

int my_pipe[2]; // array of 2 file descriptors
int result = pipe(my_pipe); // now filled with 2 fds by system

char msg[128] = "hello world";
int nwritten = write(my_pipe[1], msg, strlen(msg)+1);

char buffer[128];
int nread = read(my_pipe[0], buffer, 128);

close(my_pipe[0]);
close(my_pipe[1]);

pipe-dup.pdf diagram to shows how to redirect standard output
to a pipe so printf() would go into the pipe for later reading

26

http://www-users.cs.umn.edu/~kauffman/4061/pipe-dup.pdf

C Standard I/O Implementation

Typical Unix implementation of standard I/O library FILE is
▶ A file descriptor
▶ Some buffers with positions
▶ Some options controlling buffering

From /usr/lib/libio.h
From /usr/include/bits/types/struct_FILE.h
struct _IO_FILE {

int _flags; // options
char* _IO_read_ptr; // buffers for read/write and
char* _IO_read_end; // positions within them
char* _IO_read_base;
char* _IO_write_base;
...;
int _fileno; // unix file descriptor
...;
_IO_lock_t *_lock; // locking

};

27

Exercise: Subtleties of Mixing Standard and Low-Level I/O
3K.txt:
1 2 3 4 5 6 7 8 9 10 11 12 13 14...
37 38 39 40 41 42 43 44 45 46 47 ...
70 71 72 73 74 75 76 77 78 79 80 ...
102 103 104 105 106 107 108 109 1...
...

1 // mixed_std_low.c: mix C Standard
2 // and Unix I/O calls. pain++;
3 #include <stdio.h>
4 #include <unistd.h>
5
6 int main(int argc, char *argv[]){
7 FILE *input = fopen("3K.txt","r");
8 int first;
9 fscanf(input, "%d", &first);
10 printf("FIRST: %d\n",first);
11
12 int fd = fileno(input);
13 char buf[64];
14 read(fd, buf, 63);
15 buf[63] = '\0';
16 printf("NEXT: %s\n",buf);
17
18 return 0;
19 }

Sample compile/run:
> gcc mixed_std_low.c
> ./a.out
FIRST: 1
NEXT: 41 1042 1043 1044 1045...

▶ Explain output of program
given input file

▶ Use knowledge that
buffering occurs internally
for standard I/O library

28

Answers: Subtleties of Mixing Standard and Low-Level I/O
▶ C standard I/O calls like printf / fprintf() and scanf()

/ fscanf() use internal buffering
▶ A call to fscanf(file, "%d", &x) will read a large chunk

from a file but only process part of it
▶ From OS perspective, associated file descriptor has advanced

forwards / read a bunch
▶ The data is in a hidden “buffer” associated with a FILE

*file, used by fscanf()

Output Also buffered, Always fclose()
▶ Output is also buffered: output_buffering.c
▶ Output may be lost if FILE* are not fclose()’d: closing will

flush remaining output into a file
▶ See fail_to_write.c
▶ File descriptors always get flushed out by OS when a program

ends BUT FILE* requires user action
29

Controlling FILE Buffering
#include <stdio.h>
void setbuf(FILE *stream, char *buf);
void setbuffer(FILE *stream, char *buf, size_t size);
void setlinebuf(FILE *stream);
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

Above functions change buffering behavior of standard C I/O
Examples:

// 1. Set full "block" buffering for stdout, use outbuf
#define BUFSIZE 64
char outbuf[BUFSIZE] = {};
setvbuf(stdout, outbuf, _IOFBF, BUFSIZE);

// 2. Turn off buffering of stdout, output immediately printed
setvbuf(stdout, NULL, _IONBF, 0);

ALL of you will write the 2nd example in a program soon. What
program?

30

