
CSCI 4061: Virtual Memory

Chris Kauffman

Last Updated:
Mon Mar 8 04:00:06 PM CST 2021

1

Logistics
Reading
▶ Stevens/Rago: Ch 14.8 on

mmap()
▶ Virtual Memory Reference:

Bryant/O’Hallaron,
Computer Systems. Ch 9
(CSCI 2021)

▶ Stevens/Rago Ch 10 on
Signals (next)

Goals
⊠ Finish up File Ops
⊟ Virtual Memory System
⊟ Memory Mapped Files
□ Begin Signals

Assignments
▶ Lab07: nftw() tree walk
▶ HW07: nftw() and pmap

Feedback from Lab07?

P2 is Coming

2

The View of Memory Addresses so Far
▶ Consider 2 running programs about to execute the following

instructions
Address 1024 holds long x=75;
PROGRAM 1 PROGRAM 2
load global from 1024 ## add to global at #1024
movq 1024, %rax addl %esi, 1024
... ... # ^ esi = 5

▶ Both Programs accessing physical address 1024 leads to a
concurrency problem
▶ PROGRAM 1 first: loads 75
▶ PROGRAM 2 first: adds on 5, Program 1 loads 85

▶ OS is usually tasked with preventing such problems
▶ Various Hardware/Software techniques have been used over

the history of computing but the most popular and important
at the moment is
Virtual Memory: Neither of Program 1/2 directly access
Physical Address #1024

3

Addresses are a Fiction

▶ Operating system
uses tables and
hardware to translate
every memory address
reference on the fly

▶ Processes know
virtual addresses
which are translated
via the memory
subsystem to physical
addresses in RAM
and on disk

▶ Hunks of addresses
are translated
together as pages

Source: Wikipdia “Page Table”

4

https://en.wikipedia.org/wiki/Page_table

Paged Memory
▶ Physical memory is divided into hunks called pages
▶ Common page size supported by many OS’s (Linux) and

hardware is 4KB = 4096 bytes
▶ Memory is usually byte addressable so need offset into page
▶ 12 bits for offset into page
▶ A − 12 bits for page number where A is the address size in

bits
▶ Usually A is NOT 64-bits

> cat /proc/cpuinfo
vendor_id : GenuineIntel
cpu family : 6
model : 79
model name : Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz
...
address sizes : 46 bits physical, 48 bits virtual

▶ Leaves one with something like 48 − 12 = 36 bits for page #s
▶ Means a page table may have up to 236 entries (!)

5

Translation happens at the Page Level
▶ Within a page, addresses are sequential
▶ Between pages, may be non-sequential

Page Table for Process #1234:
|------------------+------+-----------------------|
| Virtual Page | Size | Physical Page |
|------------------+------+-----------------------|
00007ffa0997a000	4K	RAM: 0000564955aa1000
00007ffa0997b000	4K	RAM: 0000321e46937000
...		...
------------------+------+-----------------------		

Address Space From Page Table for Process #1234:
|------------------+-------------+------------------|
| Virtual Address | Page Offset | Physical Address |
|------------------+-------------+------------------|
00007ffa0997a000	0	0000564955aa1000
00007ffa0997a001	1	0000564955aa1001
00007ffa0997a002	2	0000564955aa1002
...		...
00007ffa0997afff	4095	0000564955aa1fff
------------------+-------------+------------------		
00007ffa0997b000	0	0000321e46937000
00007ffa0997b001	1	0000321e46937001
...		...
------------------+-------------+------------------		

6

Addresses Translation Hardware

▶ Translation must be
FAST so usually
involves hardware

▶ MMU (Memory
Manager Unit) is a
hardware element
specifically designed
for address translation

▶ Usually contains a
special cache, TLB
(Translation
Lookaside Buffer),
which stores recently
translated addresses

▶ OS Kernel interacts with MMU
▶ Provides location of the Page

Table, data structure relating
Virtual/Physical Addresses

▶ Page Fault : MMU couldn’t map
Virtual to Physical page, runs a
Kernel routine to handle the fault

7

Translating Virtual Addresses 1/2

▶ On using a Virtual Memory
address, hardware attempts to
resolve in MMU via TLB cache of
pages

▶ If valid (hit), address is already in
DRAM, translates to physical
DRAM address

▶ Miss = Page fault, OS decides..
1. Page is swapped out, move disk

data to DRAM, potentially
evicting another page

2. Not mapped = Segmentation
Fault

8

Translating Virtual Addresses 2/2

▶ Each process has its own page
table, OS maintains mapping of
Virtual to Physical addresses

▶ Processes “compete” for RAM
▶ OS gives each process impression it

owns all of RAM
▶ OS may not have enough memory

to back up all or even 1 process
▶ Disk used to supplement ram as

Swap Space
▶ Thrashing may occur when too

many processes want too much
RAM, “constantly swapping”

9

Virtual Memory Caches Physical Memory

▶ Virtual Memory allows
illusion of 248 bytes
(hundreds of TBs) of
memory when physical
memory might only be 230

to 236 (few to hundreds of
GBs)

▶ Disk space is used for space
beyond main memory

▶ Pages that are frequently
used stay in DRAM
(swapped in)

▶ Pages that haven’t been
used for a while end up on
disk (swapped out)

▶ DRAM (physical memory) is then
thought of as a cache for Virtual
Memory which can be as big as
disk space allows

Like when I was writing my composition paper but
then got distracted and opened 41 Youtube tabs
and when I wanted to write again it took like 5
minutes for Word to load back up because it was
swapped out.

10

The Many Other Advantages of Virtual Memory
▶ Caching: Seen that VirtMem can treat main memory as a

cache for larger memory
▶ Security: Translation allows OS to check memory addresses

for validity
▶ Debugging: Similar to above, Valgrind checks addresses for

validity
▶ Sharing Data: Processes can share data with one another by

requesting OS to map virtual addresses to same physical
addresses

▶ Sharing Libraries: Can share same program text between
programs by mapping address space to same shared library

▶ Convenient I/O: Map internal OS data structures for files to
virtual addresses to make working with files free of
read()/write()

But first…
11

Exercise: Page Table Size
▶ Page tables map a virtual page to

physical location
▶ 1 Page Table per Process,

Maintained by OS in Kernel
Memory

▶ A direct page table has one entry
per virtual page

▶ Each page is 4K = 212 bytes, so 12
bits for offset of address into a
page

▶ Virtual Address Space is 248

▶ How many pages of virtual
memory are there?
▶ How many bits specify a virtual

page number?
▶ How big is the page table? Is this

a problem?

How big does the page table
mapping virtual to physical
pages need to be?

12

Answers: Page Table Size

Page Number

Table

Page Table Entry

36 bits 12 bits

236 entries

“What Every Programmer Should Know
About Memory” by Ulrich Drepper, Red

Hat, Inc.

48 bits for virtual address
- 12 bits for offset

36 bits for virtual page number

So, 236 virtual pages…
▶ Every page table entry needs

at least 8 bytes for a
physical address

▶ Plus maybe 8 bytes for other
stuff (on disk, permissions)

▶ 16 bytes per PTE = 24

bytes × 236 PTEs =
▶ 240 = 1 Terabyte of space

for the Page Table (!!!)
You’ve been lying again, haven’t
you professor…

13

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

Page Tables Usually Have Multiple Levels

“What Every Programmer Should Know About Memory” by Ulrich Drepper, Red Hat, Inc.

▶ Fix this absurdity with multi-level page tables: a sparse tree
▶ Virtual address divided into sections which indicate which

PTE to access at different table levels
▶ 3-4 level page table is common in modern architectures
▶ Many entries in different levels are NULL (not mapped) most

of the 236 virtual pages are not mapped to a physical page
(see next diagram)

14

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

Direct Page Table vs Sparse Tree Page Table

15

Textbook Example: Two-level Page Table
Space savings gained via NULL portions of the page table/tree

Source: Bryant/O’Hallaron, CSAPP 3rd Ed
16

Exercise: Printing Contents of file

1. Write a simple program to print all characters in a file using
read() / write() system calls. What are key features of
this program?

2. Examine mmap_print_file.c: does it contain all of these
key features? Which ones are missing?

17

Answers: Printing Contents of file

1. Write a simple program to print all characters in a file. What
are key features of this program? From my_cat.c:
▶ Open file
▶ Read characters into memory buf using read()
▶ Write characters to screen with write()
▶ Repeat this until end of file is reached
▶ Close file

2. Examine mmap_print_file.c: does it contain all of these
key features? Which ones are missing?
▶ Missing the read()/fscanf() portion
▶ Uses mmap() to get direct access to the bytes of the file
▶ Treat bytes as an array of characters and print them directly

18

mmap(): Mapping Addresses is Ammazing

▶ ptr = mmap(NULL, size,...,fd,0) arranges backing
entity of fd to be mapped to be mapped to ptr

▶ fd often a file opened with open() system call
int fd = open("gettysburg.txt", O_RDONLY);
// open file to get file descriptor

char *file_chars = mmap(NULL, size, PROT_READ, MAP_SHARED,
fd, 0);

// call mmap to get a direct pointer to the bytes in file associated
// with fd; NULL indicates don't care what address is returned;
// specify file size, read only, allow sharing, offset 0

printf("%c",file_chars[0]); // print 0th char
printf("%c",file_chars[5]); // print 5th char

19

mmap() allows file reads/writes without read()/write()

▶ Memory mapped files are not just for reading
▶ With appropriate options, writing is also possible

char *file_chars =
mmap(NULL, size, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);
▶ Assign new value to memory, OS writes changes into the file
▶ Example: mmap_tr.c to transform one character to another

20

Mapping things that aren’t characters
mmap() just gives a pointer: can assert type of what it points at
▶ Example int *: treat file as array of binary ints
▶ Notice changing array will write to file

// mmap_increment.c

int fd = open("binary_nums.dat", O_RDWR);
// open file descriptor, like a FILE *

int *file_ints = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
// get pointer to file bytes through mmap,
// treat as array of binary ints

int len = size / sizeof(int);
// how many ints in file

for(int i=0; i<len; i++){
printf("%d\n",file_ints[i]); // print all ints

}

for(int i=0; i<len; i++){
file_ints[i] += 1; // increment each file int, writes back to disk

}

21

OS usually Caches Files in RAM

▶ For efficiency, part of files are stored in RAM by the OS
▶ OS manages internal data structures to track which parts of a

file are in RAM, whether they need to be written to disk
▶ mmap() alters a process Page Table to translate addresses to

the cached file page
▶ OS tracks whether page is changed, either by file write or

mmap() manipulation
▶ Automatically writes back to disk when needed
▶ Changes by one process to cached file page will be seen by

other processes
▶ See diagram on next slide

22

Diagram of Kernel Structures for mmap()

23

Exercise: mmap_tr.c
Speculate on how to use mmap() to write the following program.
> gcc -o mmap_tr mmap_tr.c
> mmap_tr gettysburg.txt f p
Transforming 'f' to 'p' in gettysburg.txt
Transformation complete

> mmap_tr gettysburg.txt F P
Transforming 'F' to 'P' in gettysburg.txt
Transformation complete

> head gettysburg.txt
Pour score and seven years ago our pathers brought porth on this continent, a
new nation, conceived in Liberty, and dedicated to the proposition that all men
are created equal.

Now we are engaged in a great civil war, testing whether that nation, or any
nation so conceived and so dedicated, can long endure. We are met on a great
battle-pield op that war. We have come to dedicate a portion op that pield, as a
pinal resting place por those who here gave their lives that that nation might
live. It is altogether pitting and proper that we should do this.

>

Answers in mmap_tr.c
24

mmap() Compared to Traditional read()/write() I/O
Advantages of mmap()
▶ Avoid following cycle

▶ read()/fread()/fscanf() file contents into memory
▶ Analyze/Change data
▶ write()/fwrite()/fscanf() write memory back into file

▶ Saves memory and time
▶ Many Linux mechanisms backed by mmap() like processes

sharing memory

Drawbacks of mmap()
▶ Always maps pages of memory: multiple of 4096b (4K)
▶ For small maps, lots of wasted space
▶ Memory Map is fixed size while write() and ftruncate()

can change the size of a file (though can mremap() once a file
changes in size)

▶ No bounds checking, just like everything else in C
25

Malloc Uses mmap()
▶ mmap() system call manipulates the process Page Table
▶ malloc() is a request for memory from the “Heap” but for

large requests, may invoke mmap() to map in space directly
▶ Demo: strace to trace system calls on the max_memory.c

...
"small" malloc() - no system calls
write(1, " 65536 bytes: Success\n", 28) = 28

"small" malloc() - no system calls
write(1, " 131072 bytes: Success\n", 28) = 28

"big" malloc() - use mmap()
mmap(NULL, 266240, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)

= 0x7f52f2ed5000
write(1, " 262144 bytes: Success\n", 28) = 28
munmap(0x7f52f2ed5000, 266240) = 0

"big" malloc() - use mmap()
mmap(NULL, 528384, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)

= 0x7f52f2e95000
write(1, " 524288 bytes: Success\n", 28) = 28
munmap(0x7f52f2e95000, 528384) = 0
...

26

One Page Table Per Process
▶ OS maintains a page table for each running process
▶ Each process believes its address space ranges from 0x00 to

0xBIG (0 to 248), its virtual address space
▶ Virtual addresses are mapped to physical locations in DRAM

or on Disk via page tables

Source: OSDev.org

Two processes with their own page tables. Notice how contiguous virtual
addresses are mapped to non-contiguous spots in physical memory.

Notice also the sharing of a page.
27

https://wiki.osdev.org/Paging

Shared Memory Calls: Modern Posix
▶ Using OS system calls, can usually create shared memory
▶ Modern POSIX systems favor mmap()/fork() for this
▶ Will cover more interprocess communication (IPC) later

char *shared_name = "/something_shared";
int SHM_SIZE = 1024
// global params for shared memory segment

int shared_fd =
shm_open(shared_name, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);

// retrieve a file descriptor for shared memory

ftruncate(shared_fd, SHM_SIZE);
// set the size of the shared memory area

char *shared_bytes =
mmap(NULL, SHM_SIZE, PROT_READ | PROT_WRITE,

MAP_SHARED, shared_fd, 0);
// map into process address space

int child_pid = fork();
// child/parent share array shared_bytes

28

Shared Memory Calls: Historical System V

▶ Using OS system calls, can usually create shared memory
▶ Unix System V (five) IPC includes the following

key_t key = ftok("crap", 'R');
// make the SysV IPC key

int shmid = shmget(key, 1024, 0644 | IPC_CREAT);
// connect to (and possibly create) the segment:

char *data = shmat(shmid, (void *)0, 0);
// attach to the segment to get a pointer to it:

▶ Multiple processes can all “see” the same unit of memory
▶ This is an old style but still useful
▶ Will cover more interprocess communication (IPC) later
▶ Modern incarnations favor mmap() followed by fork()

29

Exercise: What can be shared safely?

Traditional Unix Processes didn’t share anything in user memory
with each other to preserve security: processes are isolated.

1. Why is this wasteful of Memory?
2. What items in user memory could be shared safely?
3. What is shared between processes outside of user space?

30

Answers: What can be shared safely?

Traditional Unix Processes didn’t share anything in user memory
with each other to preserve security: processes are isolated.

1. Why is this wasteful of Memory?
Every program has its own identical copies of printf(),
malloc(), etc. Lots of copies of the same stuff sitting in
MANY processes.

2. What items in user memory could be shared safely?
The Text (Code) and other Read-only data for libraries can be
shared: every program executes them, no program changes
them.

3. What is shared between processes outside of user space?
Kernel data is shared by all processes; some parent/child
processes directly share file table entries, all access same
kernel structures

31

Process Memory Image and Libraries
Most programs on
the system need to
use malloc() and
printf(): shared
library versions of
these reduce
memory footprint
w/o being
dangerous

Right: A detailed
picture of the
virtual memory
image, by Wolf
Holzman

main.o

file.o

crt0.o (startup routine)

"...%d..."

global variables

Heap
(malloc arena)

System

argv
argc

auto variables for
main()

auto variables for
func()

func(72,73)

ST
A

C
K

SH
A

R
E

D

M
E

M
O

R
Y

D
A

T
A

T
E

X
T

co
m

pi
le

d
co

de
 (

a.
ou

t)

uninitialized data (bss)

initialized data

stack pointer

mfp − frame pointer (for main)

Low memory

High memory
func(72,73) called from main(),
assuming func defined by:
 func(int x, int y) {
 int a;

(grows downward if func()
 calls another function)

 int b[3];
 /* no other auto variables */

size 4 and assumes stack at high

ra
mfp
garbage
garbage
garbage
garbage

main()
auto
variables

Offset from current
frame pointer (for
func())

+12
 +8
 +4
 0
 −4
 −8
−12
−16

frame pointer
points here

stack pointer
(top of stack)
points here

y
x

a

b[1]

Contents

Stack illustrated after the call

library functions if
dynamically linked
(usual case)

brk point

ra (return address)

b[2]

b[0]

Expanded view of the stack

address and descending down.

All auto variables and parameters
are referenced via offsets from the
frame pointer.

The frame pointer and stack pointer
are in registers (for fast access).

When funct returns, the return value
is stored in a register. The stack pointer
is move to the y location, the code
is jumped to the return address (ra),
and the frame pointer is set to mfp
(the stored value of the caller’s frame
pointer). The caller moves the return
value to the right place.

Stack

caller’s frame pointer

Assumes int = long = char * of

env

library functions if
statically linked
(not usual case)

malloc.o (lib*.so)

malloc.o (lib*.a)

printf.o (lib*.a)

printf.o (lib*.so)

available for
heap growth

available for
stack growth

Memory Layout (Virtual address space of a C process)

return address

73
72

Source: Wolf Holzman

32

http://www.cs.uleth.ca/~holzmann/C/system/
http://www.cs.uleth.ca/~holzmann/C/system/
http://www.cs.uleth.ca/~holzmann/
http://www.cs.uleth.ca/~holzmann/
http://www.cs.uleth.ca/~holzmann/

Shared Libraries: *.so Files

▶ Code for
libraries can be
shared

▶ libc.so:
shared library
with
malloc(),
printf() etc
in it

▶ OS puts into
one page,
maps all linked
procs to it

Source: John T. Bell Operating Systems Course Notes

33

https://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

pmap: show virtual address space of running process
> ./memory_parts
0x5579a4cbe0c0 : global_arr
0x7fff96aff6f0 : local_arr
0x5579a53aa260 : malloc_arr
0x7f441f8bb000 : mmap'd file
my pid is 7986
press any key to continue
▶ While a program is

running, determine its
process id

▶ Call pmap to see how
its virtual address
space maps

▶ For more details of
pmap output, refer to
this diagram from a
now defunct article by
Andreas Fester

> pmap 7986
7986: ./memory_parts
00005579a4abd000 4K r-x-- memory-parts
00005579a4cbd000 4K r---- memory-parts
00005579a4cbe000 4K rw--- memory-parts
00005579a4cbf000 4K rw--- [anon]
00005579a53aa000 132K rw--- [heap]
00007f441f2e1000 1720K r-x-- libc-2.26.so
00007f441f48f000 2044K ----- libc-2.26.so
00007f441f68e000 16K r---- libc-2.26.so
00007f441f692000 8K rw--- libc-2.26.so
00007f441f694000 16K rw--- [anon]
00007f441f698000 148K r-x-- ld-2.26.so
00007f441f88f000 8K rw--- [anon]
00007f441f8bb000 4K r--s- gettysburg.txt
00007f441f8bc000 4K r---- ld-2.26.so
00007f441f8bd000 4K rw--- ld-2.26.so
00007f441f8be000 4K rw--- [anon]
00007fff96ae1000 132K rw--- [stack]
00007fff96b48000 12K r---- [anon]
00007fff96b4b000 8K r-x-- [anon]
total 4276K

34

https://www-users.cs.umn.edu/~kauffman/4061/pmap.png

Memory Protection

▶ Output of pmap indicates another feature of virtual memory:
protection

▶ OS marks pages of memory with Read/Write/Execute/Share
permissions

▶ Attempt to violate these and get segmentation violations
(segfault)

▶ Ex: Executable page (instructions) usually marked as r-x: no
write permission.

▶ Ensures program don’t accidentally write over their
instructions and change them

▶ Ex: By default, pages are not shared (no s permission) but
can make it so with the right calls

35

Fork and Shared Pages
▶ fork()’ing a process creates a nearly identical copy of a

process
▶ Might need to copy all memory form parent to child pages
▶ Can save a lot of time if memory pages of child process are

shared with parent - no copying needed (initially)
▶ What’s the major danger here?

Source: John T. Bell Operating Systems Course Notes

36

https://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

Fork, Shared Pages, Copy on Write (COW Pages)
▶ If neither process writes to the page, sharing doesn’t matter
▶ If either process writes, OS will make a copy and remap

addresses to copy so it is exclusive
▶ Fast if hardware Memory Management Unit and OS know

what they are doing (Linux + Parallel Python/R + Big Data)

Source: John T. Bell Operating Systems Course Notes

37

https://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

Summary
A computer using a Virtual Memory system sees the OS and
hardware cooperate to translate every program address from a
virtual address to a physical RAM address.
▶ Consequence 1: All programs see a linear address space but each

has its own #1024 which does not conflict
▶ Consequence 2: The OS must maintain Page Table data structures

that map each process’s virtual addresses to physical locations
▶ Consequence 3: Computers with small amounts of RAM can

“fake” larger amounts by using disk space; RAM serves as a cache
for this larger virtual memory

▶ Consequence 4: Every address deference is translated so the OS
can catch out of bounds references or direct the dereference to
special RAM areas like memory mapped files

▶ Consequence 5: Memory can shared and manipulated for efficiency
such as fork() using Copy on Write

38

Exercise: Quick Review

1. While running a program, memory address #1024 always
refers to a physical location in DRAM (True/False: why?)

2. Two programs which both use the address #1024 cannot be
simultaneously run (True/False: why?)

3. What do MMU and TLB stand for and what do they do?
4. What is a memory page? How big is it usually?
5. What is a Page Table and what is it good for?

39

Answers: Quick Review
1. While running a program, memory address #1024 always refers to a physical

location in DRAM (True/False: why?)
▶ False: #1024 is usually a virtual address which is translated

by the OS/Hardware to a physical location which may be in
DRAM but may instead be paged on onto disk

2. Two programs which both use the address #1024 cannot be simultaneously run
(True/False: why?)
▶ False: The OS/Hardware will likely translate these identical

virtual addresses to different physical locations so that the
programs doe not clobber each other’s data

3. What do MMU and TLB stand for and what do they do?
▶ Memory Management Unit: a piece of hardware involved in

translating Virtual Addresses to Physical Addresses/Locations
▶ Translation Lookaside Buffer: a special cache used by the

MMU to make address translation fast
4. What is a memory page? How big is it usually?

▶ A discrete hunk of memory usually 4Kb (4096 bytes) big
5. What is a Page Table and what is it good for?

▶ A table maintained by the operating system that is used to
map Virtual Addresses to Physical addresses for each page

40

