
CSCI 4061: Pipes and FIFOs

Chris Kauffman

Last Updated:
Wed Mar 24 03:35:23 PM CDT 2021

1

Logistics

Reading: Stevens/Rago
▶ Ch 15.1-5 Pipes/FIFOs
▶ man pipe(7)

documentation
▶ Ch 15.6-12
▶ Wikip: Dining Philosophers

Goals
▶ Finish Signals
▶ Pipes (Unnamed)
▶ Pipelines
▶ FIFOs (Named pipe)

Assignments
▶ Lab09: Pipelines
▶ HW09: FIFOs

Project 2
Delayed because I suck

2

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Exercise: Warm-up

Recall: Pipes
1. What’s a pipe? How permanent is a pipe?
2. How does one set up a pipe in C?
3. How does one set up a pipe on the command line shell?

3

Answers: Warm-up

Recall: Pipes
1. What’s a pipe?

Communication buffer to allow programs to talk to one
another, typically output of one program becomes input to
another. OS automatically de-allocates a pipe when no
processes are using it.

2. How does one set up a pipe in C?
int pipe_fds[2];
pipe(pipe_fds); // 2 fds for read/write now in array

3. How does one set up a pipe on the command line shell?
$> cmd1 | cmd2

4

Pipes and Pipelines
▶ Have discussed pipes previously (commando)
▶ Unix pipelines allow simple programs to combine to solve new

problems: program output becomes input for another program

History
McIlroy noticed that much of the time
command shells passed the output file
from one program as input to another.
His ideas were implemented in 1973
when (“in one feverish night”, wrote
McIlroy) Ken Thompson added the
pipe() system call and pipes to the shell
and several utilities in Version 3 Unix.
“The next day”, McIlroy continued,
“saw an unforgettable orgy of one-liners
as everybody joined in the excitement
of plumbing.”
– Wikipedia: Unix Pipes

▶ Pipe solutions alleviate need for
temporary files

Count the files in a directory
▶ Solution 1: write a C

program using readdir() in
a counting loop

▶ Solution 2: ls, then count
by hand

▶ Solution 3: ls > tmp.txt,
count lines in file

▶ Pipe Solution
> ls | wc -l
wc -l file counts lines
from file / stdin

5

https://en.wikipedia.org/wiki/Pipeline_(Unix)

A historical note
“Programming Pearls” by Jon Bentley, CACM 1986 with special guests
▶ Donald Knuth, godfather of CS
▶ Doug McIlroy, inventor of Unix pipes

Problem statement: Top-K words
Given a text file and an integer K, print the K most common words in the
file (and the number of their occurrences) in decreasing frequency.

Knuth’s Solution:
▶ ~8 pages of text and pseudo-code / Pascal
▶ Demonstration of “literate programming” 1 so may be a bit more

verbose than needed

McIlroy’s Solution?
1Literate Programming is a Knuth invention involving writing code

interspersed with detailed, formatted comments describing it. Humans read the
combination while a program is then used to extract and compile the code.

6

http://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/pearls-2.pdf

Pipeline for Top-K Words
McIlroy’s Solution (Roughly)

#!/bin/bash
#
usage: topk.sh <K> <file>
K=$1 # arg1 is K value
file=$2 # arg2 is file to search

cat $file | # Feed input \
tr -sc 'A-Za-z' '\n' | # Translate non-alpha to newline \
tr 'A-Z' 'a-z' | # Upper to lower case \
sort | # Duh \
uniq -c | # Merge repeated, add counts \
sort -rn | # Sort in reverse numerical order \
head -n $K # Print only top 10 lines

▶ 9 lines of shell script / piped Unix commands
▶ Original was not a script so was only 6 lines long

7

Lab09: Pipelines

▶ Have several stock files in CSV (comma separated value)
format

▶ Wanted top 5 dates with the biggest increase in stock price;
e.g. Change = Close - Open; top 5 changes

▶ Construct a pipeline to calculate this
▶ Create a shell script for the pipeline

lab09-code> ls stock*
stocks-apple.csv stocks-gamestop.csv stocks-uber.csv

lab09-code> head stocks-gamestop.csv
Date,Open,High,Low,Close,Volume
03/19/2021,"195.73","227.00","182.66","200.27","24,677,301"
03/18/2021,"214.00","218.88","195.65","201.75","11,799,910"
03/17/2021,"217.84","231.47","204.00","209.81","16,481,590"
03/16/2021,"203.16","220.70","172.35","208.17","35,422,871"
...

8

Exercise: Tool Familiarity
▶ It is not possible to write complex pipelines unless you are

somewhat familiar with each component
▶ Getting basic familiarity with available Unix tools can save

you TONs of work
▶ Note: solutions don’t necessarily involve pipelines

Diff between DirA and DirB
▶ Have two directories DirA and

DirB with about 250 of mostly
identical files

▶ Some files exist in only one
directory, some files differ
between them

▶ Want the difference between the
directories

Find Phone Numbers
We have 50,000 HTML files in a Unix
directory tree, under a directory called
/website. We have 2 days to get a list
of file paths to the editorial staff. You
need to give me a list of the .html files
in this directory tree that appear to
contain phone numbers in the following
two formats: (xxx) xxx-xxxx and
xxx-xxx-xxxx.
From: The Five Essential Phone-Screen
Questions, by Steve Yegge

9

https://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions
https://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions

Answers: Tool Familiarity
Diff between DirA and DirB
> find lectures/ | wc -l # 247 files in lectures/

247 247 9149
> find lectures-copy/ | wc -l # 246 files in lectures-copy

246 246 15001
> diff -rq lectures/ ~/tmp/lectures-copy
Files lectures/09-pipes-fifos.org and lectures-copy/09-pipes-fifos.org differ
Files lectures/09-pipes-fifos.pdf and lectures-copy/09-pipes-fifos.pdf differ
Files lectures/09-pipes-fifos.tex and lectures-copy/09-pipes-fifos.tex differ
Only in lectures/: new-file.txt

Find Phone Numbers
Here’s one of many possible solutions to the problem:

grep -l -R \
--perl-regexp "\b(\(\d{3}\)\s*|\d{3}-)\d{3}-\d{4}\b" * \
> output.txt

But I don’t even expect candidates to get that far, really. If they say,
after hearing the question, “Um… grep?” then they’re probably OK.
– Steve Yegge

Check out Tool Time Session 3 for more info 10

https://www-users.cs.umn.edu/~kauffman/tooltime/03-text-tools.html

Exercise: Pipes have a limited size

A pipe has a limited capacity…

Since Linux 2.6.11, the pipe capacity is 16 pages (i.e.,
65,536 bytes in a system with a page size of 4096 bytes).

Applications should not rely on a particular capacity: an
application should be designed so that a reading process
consumes data as soon as it is available, so that a writing
process does not remain blocked.
– man pipe(7) Manual documentation

▶ Examine the program fill_pipe.c
▶ Observe the behavior of programs as pipes fill up
▶ Relate this to a major flaw in Project 1 commando

Hint: when did cmd_fetch_output() get called…

11

Answer: Pipes have a limited size

▶ commando set up child processes to write into pipes for their
standard output

▶ commando used calls to waitpid() to wait until a child was
finished, THEN read all child output from the pipe

▶ Children would call write() to generate output going into
pipes

▶ If the pipe filled up, the child’s write() would block
▶ commando would be waiting on blocked child but never empty

the pipe to allow it to proceed
▶ End result: child never finishes

This is an example of deadlock: protocol used by cooperating
entities ends with both getting stuck waiting for the other
▶ Resolutions for commando?

12

Convenience Functions for Pipes
C standard library gives some convenience functions for use with
FILE* for pipes. Demoed in pager_demo.c / popen_demo.c
#include <stdio.h>

FILE *popen(const char *cmdstring, const char *type);
// Does a fork() / exec() with `cmdstring` to create a child process
// which is connected to the parent via the FILE * that is returned.
// If type is "r", the parent reads child output so the file pointer,
// is connected to the standard output of `cmdstring`.
// If type is "w", the parent write to child input so the file pointer,
// is connected to the standard input of `cmdstring`.
// Returns: file pointer if OK, NULL on error

int pclose(FILE *fp);
// The pclose function closes the standard I/O stream, waits for the
// command to terminate, and returns the termination status of the
// shell.

Figures below from Stevens/Rago

13

Pipe I/O and Signals

Behavior of I/O operations based on state of pipe is as follows

Has Has Read Write
Bytes Space End End Effect

read() Yes - Open - read() return #bytes
read() No - Open Open process blocks
read() No - Open Closed read() returns 0 / EOF
write() - Yes Open Open write() returns #bytes
write() - No Open Open process blocks
write() - - Closed Open SIGPIPE sent to proc

Note last line: write() to a pipe with no readers results in
SIGPIPE

14

Exercise: Signals and Pipes

1 // broken_pipe_signalling.c
2 void bp_handler(int sig_num) {
3 fprintf(stderr,"Received SIGPIPE!\n");
4 fflush(stderr);
5 if(getenv("EXIT_ON_BROKEN_PIPE")){
6 fprintf(stderr,"exit(1)\n");
7 exit(1);
8 }
9 }
10
11 int main () {
12 if(getenv("HANDLE_BROKEN_PIPE")){
13 struct sigaction my_sa = {};
14 my_sa.sa_handler = bp_handler;
15 my_sa.sa_flags = SA_RESTART;
16 sigaction(SIGPIPE, &my_sa, NULL);
17 }
18 for(int i=0; 1; i++){
19 printf("%d\n",i);
20 }
21 return 0;
22 }

What gets printed in each
of the following cases and
why?
> gcc broken_pipe_signaling.c
> ./a.out | head # 1
...
> export HANDLE_BROKEN_PIPE=1
> ./a.out | head # 2
...
> export EXIT_ON_BROKEN_PIPE=1
> ./a.out | head # 3
...

Relate your answer to
signal delivery and signal
handlers

15

Answers: Signals and Pipes
1
> gcc broken_pipe_signaling.c
> ./a.out | head
0
1
2
3
4
5
6
7
8
9
>

Default disposition for
SIGPIPE is TERM:
process dies when
read end closes

2
> export HANDLE_BROKEN_PIPE=1
> ./a.out | head
0
1
2
3
4
5
6
7
8
9
Received SIGPIPE!
Received SIGPIPE!
Received SIGPIPE!
Received SIGPIPE!
...

Catching SIGPIPE
but restarting
write() to broken
pipe, receive another
signal, cycles infinitely

3
> export EXIT_ON_BROKEN_PIPE=1
> ./a.out | head
0
1
2
3
4
5
6
7
8
9
Received SIGPIPE!
exit(1)
>

Catching SIGPIPE
and exiting in handler

16

FIFO: Named Pipe

▶ Major limitation of pipes is that they must be created by a
parent and shared with a child

▶ No way for two unrelated processes to share a pipe…
Or is there?

First In First Out
▶ A Unix FIFO or named pipe is a pipe which has a place in

the file system
▶ Can be created with either a shell command or via C calls

| Command/Call | Effect |
|--------------------------------------+------------------------------------|
| mkfifo filename | Create a FIFO on the command shell |
| int mkfifo(char *path, mode_t perms) | System call to create a FIFO |

17

Working with Fifos
A FIFO looks like a normal file but it is not
> mkfifo my.fifo # Create a FIFO
> ls -l my.fifo

prw-rw---- 1 kauffman kauffman 0 Oct 24 12:05 my.fifo
^ it's a 'p' for Pipe ^ 0 size on disk

> echo 'Hello there!' > my.fifo # write to pipe
hung C-c

> echo 'Hello there!' > my.fifo & # write to pipe in background job
[1] 1797
> cat my.fifo # read from pipe
Hello there! # got what was written in
[1]+ Done echo 'Hello there!' > my.fifo # writer finished

> cat my.fifo # read from pipe (nothing there)
hung C-c

> cat my.fifo & # read from pipe in background job
[1] 1933
> echo 'Hello there!' > my.fifo # write to pipe
Hello there!
>
[1]+ Done cat my.fifo # reader finished

18

A Few Oddities for FIFOs
In the normal case (without O_NONBLOCK), an open() for
read-only blocks until some other process opens the FIFO
for writing. Similarly, an open() for write-only blocks until
some other process opens the FIFO for reading.
– Stevens/Rago pg 553 (15.5 on FIFOs)

▶ Explains why following hangs
> echo 'Hello there!' > my.fifo # write only to pipe

▶ No other process is reading from the FIFO yet
▶ Much harder to set up non-blocking I/O in terminals and

likely not worth it
▶ Also requires care to make sure processes writing to FIFOs

don’t hang because no reader exists
▶ Standard trick is to open FIFO in Read/Write mode: avoids

blocking at expense of some other problems, demoed next HW

19

FIFOs are Pipes

▶ BOTH Pipes / FIFOs use the same mechanics
▶ Have limited capacity, 65K by default
▶ Use a RAM buffer for fast communication, so no permanent

storage, 0 size on disk
▶ Same behavior for read() / write() concerning blocking,

end of file, signals
▶ EXCEPT that creating/opening them has minor differences

▶ Standard/Unnamed pipes created AND opened via pipe():
always a read + write end

▶ FIFOs created via mkfifo(), opened via open(), will block
process if opening for only read OR write - always two partners

20

Differences Between Pipes and Files
▶ Recall: OS manages position for read/write in both Files and

FIFOs but in subtly different ways
▶ multiple_writes.c forks a child, both parent and child

write different messages into a File or FIFO
▶ Can invoke this program with command line options which

dictate the order and type of where stuff is written
Study multiple_writes.c

1. Process opens normal file, forks, Parent / Child write.
> multiple_writes prefork file tmp.txt 20

2. Process forks, opens file, Parent / Child write.
> multiple_writes postfork file tmp.txt 20

3. Process opens a FIFO, forks, Parent / Child write.
> multiple_writes prefork fifo tmp.fifo 20

4. Proccess forks, opens FIFO, Parent / Child write.
> multiple_writes postfork fifo tmp.fifo 20

21

Exercise: Predict Output that Appears
#1 PREFORK OPEN FILE #2 POSTFORK OPEN FILE
int fd = open("tmp.file",..); int ch = fork();
int ch = fork(); int fd = open("tmp.file",..);
for(i=0; i<iters; i++){ for(i=0; i<iters; i++){

if(ch==0){ if(ch==0){
write(fd,"child",..); write(fd,"child",..);

} }
else{ else{
write(fd,"parent",..); write(fd,"parent",..);

} }
} }
close(fd); close(fd);

#3 PREFORK OPEN FIFO #4 POSTFORK OPEN FIFO
int fd = open("tmp.fifo",..); int ch = fork();
int ch = fork(); int fd = open("tmp.fifo",..);
for(i=0; i<iters; i++){ for(i=0; i<iters; i++){

if(ch==0){ if(ch==0){
write(fd,"child",..); write(fd,"child",..);

} }
else{ else{
write(fd,"parent",..); write(fd,"parent",..);

} }
} }
close(fd); close(fd);

22

Answers: Differences Between Pipes/FIFOs and Files

1. Process opens normal file, forks, Parent / Child write.
> multiple_writes prefork file tmp.txt 20
Both parent and child output appear, OS manages a shared write position
between parent and child

2. Process forks, opens file, Parent / Child write. File position is NOT shared so
will overwrite each other in file.
> multiple_writes postfork file tmp.txt 20
Parent and child each have independent write positions, loss of data from file

3. Process opens a FIFO, forks, Parent / Child write.
> multiple_writes prefork fifo tmp.fifo 20
Pipes always have a shared write position, all data from parent and child appear

4. Proccess forks, opens FIFO, Parent / Child write.
> multiple_writes postfork fifo tmp.fifo 20
Pipes always have a shared write position, all data from parent and child appear

Draw some pictures of the internal FD table, Open file table, and INodes to support
these.

23

24

25

Lessons on OS Treatment of Files/Pipes

File Descriptor Table
▶ One per process but stored

in kernel space
▶ Each numbered entry refers

to system wide File Table

INodes
Contains actual file and contents,
corresponds to physical storage

Buffers for Pipes / Fifos
Internal kernel storage,
Read/Write positions managed
by kernel

System File Table
▶ Shared by entire system,

managed by the OS
▶ Each entry corresponds to

open “thing” in use by a
proc

▶ May have multiple file table
entries per “real” file

▶ Each File Table Entry has its
own Read/Write positions

▶ Connects File Descriptor
Table to INodes, Buffers

26

Servers/Clients with FIFOs
▶ Create simple

communication protocols
▶ Server which has

names/email addresses
▶ Clients which have names,

want email addresses
▶ Server are Daemon always

running
▶ Client uses FIFOs to make

requests to server and
coordinate

▶ Basics of message passing
between processes

Upcoming HW will discuss this,
will be used for a project later in
the semester

Source: Stevens and Rago Ch 15.5

27

http://proquestcombo.safaribooksonline.com/book/programming/unix/9780321638014/15dot-interprocess-communication/ch15lev1sec5_html

