CSCI 4061: Inter-Process Communication

Chris Kauffman

Last Updated:
Sun Apr 11 10:29:05 PM CDT 2021

Logistics

Reading Date Event
» Stevens/Rago Ch 15.6-12 Wed 3/31 :EE “E'/thSm
D . Sg
» Wikip: Dining Philosophers Mon 4/5 Spring Break
No Class

Goals Mon 4/12 Review

» Project Plans
File Append Problem Wed 4/14 Exam 2

Semaphore Basics

>
>
» Shared Memory Lab 11
>
>

Message Queues » Email lookup server/client

Dining Philosphers » Use of FIFO to communicate
» Difficult to write tests for it
- sorry for any Gradescope

problems
» How did it go?

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Project Plans

» Don't have time for 3 projects anymore which is Kauffman's

fault
| apologize for this mistake. | have experienced some per-

sonal problems which have interfered with my ability to
adequately prepare a solid Version Control project. | re-
gret that | was not able to provide a project that puts the
topics we have discussed into practical use.

» P2: release after Exam 2

» Focus on Interprocess Communication: a local Chat
Server/Client

» Same size as P1, Worth 20% of grade
» Opportunities for some Makeup Credit

Exercise: Forms of IPC we've seen

» Identify as many forms of inter-process communication
that we have studied as you can
» For each, identify restrictions

» Must processes be related?
» What must processes know about each other to communicate?

» You should be able to name at least 3-4 such mechanisms

Answers: Forms of IPC we've seen

Pipes
FIFOs
Signals
Files

Maybe mmap () 'ed files

vVvYyyvyy

Inter-Process Communication Libraries (IPC)

» Signals/FIFOs allow info transfer between unrelated processes
» Neither provides much

» Communication synchronization between entities
» Structure to data being communicated
» Flexibility over access
» Inter-Process Communication Libraries (IPC) provide
alternatives
1. Semaphores: atomic counter + wait queue for coordination
2. Message queues: direct-ish communication between processes
3. Shared memory: array of bytes accessible to multiple processes

Two broad flavors of IPC that provide semaphores, message
queues, shared memory...

Which Flavor of IPC?
System V IPC (XSI IPC)

» Most of systems have
System V IPC but it's kind
of strange, has its own
namespace to identify
shared things

» Part of Unix standards,
referred to as XSI IPC and
may be listed as optional

» Most textbooks/online
sources discuss some System
V IPC. Example:

> Stevens/Rago 15.8
(semaphores)

> Robbins/Robbins 15.2
(semaphore sets)

» Beej's Guide to IPC

POSIX IPC

» POSIX IPC little more
regular, uses filesystem to
identify IPC objects

» Originated as optional
POSIX/SUS extension, now
required for compliant Unix

» Covered in our textbooks
partially. Example:

> Stevens/Rago 15.10
POSIX Semaphores

» Robbins/Robbins 14.3-5
POSIX Semaphores

» Additional differences on
StackOverflow

We will favor POSIX

http://beej.us/guide/bgipc/output/html/singlepage/bgipc.html
http://stackoverflow.com/questions/4582968/system-v-ipc-vs-posix-ipc
http://stackoverflow.com/questions/4582968/system-v-ipc-vs-posix-ipc

Exercise: Concurrent Appends to a File

C code to append to a file some
number of times.

1 // append_loop.c

2 int main(int argc, char *argv[]){
3 char *filename = argv[1];

4 int count = atoi(argv[2]);

5 int key = atoi(argv([3]);

6 int fd = open(filename,

7 O0_CREAT | O_RDWR ,
8 S_IRUSR | S_IWUSR);
9

10 char 1line[128];

11 sprintf (line, "%04d\n" ,key) ;

12 int len = strlen(line);

13

14 for(int i=0; i<count; i++){
15

16 lseek(fd, 0, SEEK_END);
17 write(fd, line, len);

18

19 }

20 close(fd);

21 return O;

22 }

Shell code demos its use. What's
wrong with the last count?

> ./a.out
usage: ./a.out <filename> <count> <key>
> ./a.out thefile.txt 100 5555
> wc -1 thefile.txt
100 thefile.txt
> ./a.out thefile.txt 100 7777
> wc -1 thefile.txt
200 thefile.txt
> sort thefile.txt | uniq -c
100 5555
100 7777

> rm thefile.txt
> for i in $(seq 10); do
./a.out thefile.txt 100 $i &
done
> wc -1 thefile.txt
732 thefile.txt

Concurrency Principles

Atomic Action

» Cannot be divided; will run completely before any other action
taken. Some system calls are atomic like ..

> nbytes = write(fd, data, len); is atomic: nbytes of
data written in sequence, data from other write () calls
before/after but NOT in the middle

> 1seek() is atomic: modifies file position in kernel data
structure

Race Condition
» Outcome depends on the ordering of unpredictable events
such as the OS scheduler interrupting a process
» Race Conditions are bad: unlucky timing causes unpredictable
behavior, bugs that only occasionally occur

Race Condition in append_loop.c 1 /2

FILE PROC1 key=5555 PROC2 key=7777

5555 lseek(fd, 0, SEEK_END);
aaud // pos = 15
Kmmmmmm write(fd, line, len);

77T lseek(fd, 0, SEEK_END);
5555 // pos = 20
< write(fd, line, len);

All appears well BUT cannot guarantee that 1seek() / write()
happen uninterrupted

» Individually atomic

» Combination is not

10

Race Condition in append_loop.c 1 /2
FILE PROC1 key=5555 PROC2 key=7777

len=25
5555 1seek(fd, 0, SEEK_END);
5555 // pos = 25
7777 lseek(fd, 0, SEEK_END);
7777 // pos = 25
e write(fd, line, len);

len=30

5555

5555

7777

7777 // pos = 25

5555< write(fd, line, len);

len=30

5555

5555

Tt

77T

7777 # Overwritten

Result: 1 line is lost as the 1seek() between process is not
coordinated

11

Exercise: Solve this with Current IPC

Suggest a way to solve this problem with current IPC mechanisms
Start an arbitrary number of processes. Each repeatedly
appends a given key to a given file. All keys must be
present at the end.

» Describe new / old processes
» Describe new / old code and IPC to be used

Hint: where have we recently seen a bunch of entities that all want
access to data? How were these requests coordinated?

12

Answers: Solve this with Current IPC
Use a FIFO to coordinate multiple writers

Manager Process

» Only the manager writes to thefile.txt

» Starting the manager creates a FIFO; manager read()'s from
the FIFO, appends text to the end of the file

Writer Processes
» Writer processes write () into the FIFO (not thefile.txt)

» FIFOs automatically serialize data: no chance for loss as OS
controls the singular read/write positions

Familiar but Unsatisfactory

» Similar to em_server / em_client from Lab/HW
» Works and requires now new IPC mechanisms BUT ...
» Dissatisfying: must split code into manager/writer. Would

like a solution without a central manager. 13

Locking the Critical Region

Critical Region
» Code sequence 1seek(); write() is a Critical Region: not
atomic, unsafe to have multiple entities in it at the same time

» Typically protect these with a coordination mechanism, a lock
for the critical region

OS Locking Mechanisms
» Semaphore: general purpose locking mechanism associated
with multi-process programming
» Mutex: locking mechanism associated with threaded
programming

» File Locks: lock all or portions of a file, alway

14

Semaphore History

Source: Wikipedia Railway Sempahore Signal

Semaphore: noun

A system of sending messages by
holding the arms or two flags or
poles in certain positions...

— Oxford Dictionary

Semaphore: (computing)

In computer science, a semaphore is
a variable or abstract data type used
to control access to a common
resource by multiple processes and
avoid critical section problems in a
concurrent system such as a
multitasking operating system.

The semaphore concept was
invented by Dutch computer
scientist Edsger Dijkstra...

— Wikipedia

15

https://en.wikipedia.org/wiki/Railway_semaphore_signal
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Semaphore Basics: 3 Parts

Counter Variable variable
Semaphores have an integer value indicating how much of a
resource is available

» S=0: none left
» S>0: some available

Most common case is S=1 (available) or S=0 (in-use)

Atomic Operations

» Acquire: If S>0, decrement; Else, enter wait-queue and block

» Release: Increment S, notify wait-queue of avialability

Wait Queue

Modern semaphores include a wait-queue. If S==0, Acquire will
cause an entity (process) to enter the wait-queue and block.

16

Posix Implementation of Semaphores

sem_t *sem =
sem_open("/the_sem", O_CREAT, S_IRUSR | S_IWUSR);
// abstract type sem_t representing semaphores
// file-like semantics with open, semaphore name, flags, permissions

// Note: "the_sem" may or may not appear in the file system somewhere
// Under Linux, will be at /dev/shm/the_sem

sem_init(sem, 1, 1); // Initialize the semaphore value
// | - > Initial counter value = 1
// o > Share among Processes (1: Processes, 0: Threads)

sem_wait(sem);
// ACQUIRE the semaphore; block and queue up if not available

// CRITICAL REGION

sem_post (sem) ;
// RELEASE the semaphore; notifies any queued processes of availability

sem_close(sem);
// file-like semantics: close when process is finished using it

sem_unlink("/the_sem");
// POSIX named semaphores have kernel persistence: if not removed by

// sem_unlink(), a semaphore will exist until the system is shut down.
17

Examine: append file sem.c

> gcc -g append_loop_sem.c -lpthread
> ./a.out -init 1 1
initializing
Examine and experiment with
. . > for i in $(seq 10); do
append_file_sem.c which ./a.out thegile.txt 100 $i &
solves coordinates appends using done

a POSIX semaphore. > we -1 thefile. txt
1000 thefile.txt # ALL THERE!

Look for use of Semaphore > sort thefile.txt |uniq -c

functions like 100 0001 # ALL KEYS
100 0002 # FROM ALL
» Opening 100 0003 # PROCESSES
L 100 0004
» Unlinking, initializing 100 0005
. . 100 0006
» Acquiring / Releasing 100 0007
. L 100 0008
» How the critical region is 100 0009
protected 100 0010

> ./a.out -unlink 1 1
unlinking

File Append Alternatives

Semaphores give general purpose coordination but the special case of
coordinating file appends have several other simpler solutions.

POSIX File Locks

>

>

See append_loop_lockf.c

lockf (): apply, test or remove
a POSIX lock on an open file

Protect critical region via

lockf (fd,
lseek(fd,
write(£fd,
lockf (fd,

F_LOCK, 0);
0, SEEK_END);
line, len);
F_ULOCK, 0);

Major Plus: no Init/Unlink
funny business

Drawback: Lock is tied to a
file, Semaphores are
independent

0_APPEND Flag

>

|

See append_loop_oappend.c

open(..., O_APPEND, ...)
opens a file in append mode:

“The file offset shall be set to
the end of the file prior to each
write()." —man open(3)

Major Plus: no locks,
semaphores, or other funny
business

Major Drawback: only works
for appending to the end of
files; Not Applicable to
coordinating any other activity

19

Shared Memory Segments

» An memory area that can be shared by multiple processes
» POSIX shared memory outlives a process like a file BUT with
no permanent storage
> Must clean up / unlink Shared Mem manually
» Shared Mem Contents unreliable across power off/on
» Examine shmdemo_posix.c to see how that works much like
a memory mapped file

stack stack
4)
heap heap
data data
shared memory shared memory shared memory

(mapped) - . (mapped)

text text
Process P1 Process P2

Shared Memory

Source: SoftPrayog System V IPC 20

https://www.softprayog.in/programming/interprocess-communication-using-system-v-shared-memory-in-linux

Exercise: Shared Memory Coordination

» Creating shared memory is relatively easy
> Like files, Coordinating shared memory is not automatic

» Consider shared_flip.c

» Shared memory of all “00000" or “1111"
» shared_flip -flip flips all characters (0 — 1, 1 — 0)

» What happens if multiple programs simultaneously try to flip
bits?

» How does one prevent “corruption” of that data?

» Experiment noting that a command like
for i in $(seq 100); do ./shared_flip -flip & done

will start 100 identical processes as background jobs

21

Answers: Shared Memory Coordination

» No file to lock so flock() wouldn't work
» Not appending so 0_APPEND won't cut it

> A semaphore allows coordination of bit flipping through
sem_wait() / sem_post() to protect the critical region

1 // No Coordination: Errors 1 // Coordinate via Semaphore
2 2 sem_t *sem =
3 3 sem_open(sem_name,0_CREAT,S_IRUSR|S_IWUSR) ;
4 4 sem_wait(sem); // lock semaphore
6 printf("flipping bits\n"); 65 printf("flipping bits\n");
6 for(int i=0; i<SHM_SIZE-1; i++){ 6 for(int i=0; i<SHM_SIZE-1; i++){
7 if (shared_bytes[i] == '0'){ 7 if (shared_bytes[i] == '0'){
8 shared_bytes[i] = '1'; 8 shared_bytes[i] = '1';
9 } 9 X
10 else if(shared_bytes[i] == '1'){ 10 else if(shared_bytes[i] == '1'){
11 shared_bytes[i] = '0'; 11 shared_bytes[i] = '0';
12 } 12 }
13} 13 }
14 14 sem_post(sem); // unlock sem
15 15 sem_close(sem);

22

Shared Memory vs mmap'd Files

| 2

>

>

Recall Memory Mapped files give direct access of OS buffer
for disk files

Changes to file are done in RAM and occasionally sync()'d
to disk (permanent storage)

POSIX Shared Memory segment cut out the disk entirely: an
OS buffer that looks like a file but has no permanent backing
storage
Which to pick?

» Shared Memory when data does not need to be saved

permanently and/or syncing would costly

» Memory Mapped File when data should be saved permanently
Related concept: RAM Disk, a main memory file system, high
performance with no permanence

23

https://en.wikipedia.org/wiki/RAM_drive

Practice Problem: A Semaphore Application
» Process a “jobs” file with a list of shell commands to run

- seq 100000

- gcc --version
- du . -h

- 1ls

- 1s -1

- date

» Start multiple 'runners’ which execute lines from the jobs file
> runner jobs.txt & runner jobs.txt &
starts 2 runners to work on jobs.txt

» Runners read file lines, execute jobs, mark as done
D seq 100000

D gcc --version
Rdu . -h

D 1s

R 1s -1

- date

» Will provide initial version of this
» To prevent duplication of job running, add coordination to
prevent duplicate jobs

24

Posix Message Queues

» Implements basic send/receive functionality through shared
memory

> Message Queues share much with FIFOs

» mqg_send() is similar to write() to a FIFO

> mqg_receive() is similar to read() from a FIFO

» Known global name of a message queue ~ name of FIFO file
» Differences from FIFOs

» FIFOs/Pipes have a fixed total size (64K)

» FIFOs allow read () /write() of arbitrary # of bytes

» Message Queues limit #messages and max size of messages on

queue
> Message Queues send/receive individual messages

25

Kirk and Spock: Talking Across Interprocess Space

» Demo the following pair of
simple communication codes
which use Posix Message
Queues.

» Examine source code to
figure out how they work.

See msg_kirk_posix.c and msg_spock_posix.c

26

Email Lookup with Message Queues

» Recent HWs build an email lookup server using FIFOs
» Another HW compare it to an approach that uses Message
Queues

> Worth of study to see the many similarities between
FIFOs/Message Queues and a few of the differences between
them

» Such contrast between IPC mechanisms make for good Exam
questions

27

Linux shows Posix IPC objects under /dev/shm

> gcc -o philosophers philosophers_posix.c -lpthread
> ./philosophers

Swanson O: wants utensils O and 1

Swanson 2: wants utensils 2 and 3

Swanson 1: wants utensils 1 and 2

Swanson 3 (egg 10/10): leaving the diner
pausing prior to cleanup/exit (press enter to continue)
while you're waiting, have a look in /dev/shm
C-z
[11+ Stopped ./philosophers

> 1s -1 /dev/shm

total 20K

“rw------- 1 kauffman kauffman 32 Apr 1 21:36 sem.utensil_O
—rw------- 1 kauffman kauffman 32 Apr 1 21:36 sem.utensil_1
-rw------- 1 kauffman kauffman 32 Apr 1 21:36 sem.utensil_2
-rw-- -- 1 kauffman kauffman 32 Apr 1 21:36 sem.utensil_3
“ry------- 1 kauffman kauffman 32 Apr 1 21:36 sem.utensil_4
> fg

./philosophers

> 1s -1 /dev/shm
total 0

/dev/shm is a Linux convention, shard memory under as well,
message queues under /dev/mqueue

More Resources IPC

System V IPC
> http://beej.us/guide/bgipc/
» http://www.tldp.org/LDP/tlk/ipc/ipc.html

General Overview

» http://man7.org/conf/1ca2013/IPC_
Overview-LCA-2013-printable.pdf

29

http://beej.us/guide/bgipc/
http://www.tldp.org/LDP/tlk/ipc/ipc.html
http://man7.org/conf/lca2013/IPC_Overview-LCA-2013-printable.pdf
http://man7.org/conf/lca2013/IPC_Overview-LCA-2013-printable.pdf

Model Problem: Dining Philosophers

» N Philosophers with N
Chopsticks between them
» Philosophers “Algorithm”
» Think for a while
» Get adjacent chopsticks
» Eat for a while
» Replace Chopsticks
»> Repeat
» Models concurrent
processes/thread acquiring
multiple resources

Eating!

4 ﬁ
3

Thi‘nk\ng

Source: Introduction to RTOS Part 10 - Deadlock and
Starvation | Digi-Key Electronics 30

https://www.youtube.com/watch?v=hRsWi4HIENc&ab_channel=Digi-Key
https://www.youtube.com/watch?v=hRsWi4HIENc&ab_channel=Digi-Key

Exercise: Coding Dining Philosophers

Central philosopher algorithm is
» Think for a while
» Get adjacent chopsticks
» Eat for a while
» Replace Chopsticks
» Repeat
Questions:

1. What can be used to model
“chopsticks"?

2. How does one avoid
deadlock?

Deadlocked Table

31

Answers: Coding Dining Philosophers
1. Model chopsticks with semaphores: only one process can

acquire them at a time; the other blocks.
2. All philosophers get right chopstick (lower number) first
EXCEPT last philosopher: go left first
» Breaks the cycle that would create deadlock

See philosphers_posix.c for demonstration code

Onein
Hand

32

