
CSCI 4061: Inter-Process Communication

Chris Kauffman

Last Updated:
Sun Apr 11 10:29:05 PM CDT 2021

1

Logistics
Reading
▶ Stevens/Rago Ch 15.6-12
▶ Wikip: Dining Philosophers

Goals
▶ Project Plans
▶ File Append Problem
▶ Semaphore Basics
▶ Shared Memory
▶ Message Queues
▶ Dining Philosphers

Date Event
Wed 3/31 IPC ShMem

IPC MsgQ
Mon 4/5 Spring Break

No Class
Mon 4/12 Review

Wed 4/14 Exam 2

Lab 11
▶ Email lookup server/client
▶ Use of FIFO to communicate
▶ Difficult to write tests for it

- sorry for any Gradescope
problems

▶ How did it go?
2

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Project Plans

▶ Don’t have time for 3 projects anymore which is Kauffman’s
fault

I apologize for this mistake. I have experienced some per-
sonal problems which have interfered with my ability to
adequately prepare a solid Version Control project. I re-
gret that I was not able to provide a project that puts the
topics we have discussed into practical use.

▶ P2: release after Exam 2
▶ Focus on Interprocess Communication: a local Chat

Server/Client
▶ Same size as P1, Worth 20% of grade
▶ Opportunities for some Makeup Credit

3

Exercise: Forms of IPC we’ve seen

▶ Identify as many forms of inter-process communication
that we have studied as you can

▶ For each, identify restrictions
▶ Must processes be related?
▶ What must processes know about each other to communicate?

▶ You should be able to name at least 3-4 such mechanisms

4

Answers: Forms of IPC we’ve seen

▶ Pipes
▶ FIFOs
▶ Signals
▶ Files
▶ Maybe mmap()’ed files

5

Inter-Process Communication Libraries (IPC)

▶ Signals/FIFOs allow info transfer between unrelated processes
▶ Neither provides much

▶ Communication synchronization between entities
▶ Structure to data being communicated
▶ Flexibility over access

▶ Inter-Process Communication Libraries (IPC) provide
alternatives

1. Semaphores: atomic counter + wait queue for coordination
2. Message queues: direct-ish communication between processes
3. Shared memory: array of bytes accessible to multiple processes

Two broad flavors of IPC that provide semaphores, message
queues, shared memory…

6

Which Flavor of IPC?
System V IPC (XSI IPC)
▶ Most of systems have

System V IPC but it’s kind
of strange, has its own
namespace to identify
shared things

▶ Part of Unix standards,
referred to as XSI IPC and
may be listed as optional

▶ Most textbooks/online
sources discuss some System
V IPC. Example:
▶ Stevens/Rago 15.8

(semaphores)
▶ Robbins/Robbins 15.2

(semaphore sets)
▶ Beej’s Guide to IPC

POSIX IPC
▶ POSIX IPC little more

regular, uses filesystem to
identify IPC objects

▶ Originated as optional
POSIX/SUS extension, now
required for compliant Unix

▶ Covered in our textbooks
partially. Example:
▶ Stevens/Rago 15.10

POSIX Semaphores
▶ Robbins/Robbins 14.3-5

POSIX Semaphores
▶ Additional differences on

StackOverflow
We will favor POSIX

7

http://beej.us/guide/bgipc/output/html/singlepage/bgipc.html
http://stackoverflow.com/questions/4582968/system-v-ipc-vs-posix-ipc
http://stackoverflow.com/questions/4582968/system-v-ipc-vs-posix-ipc

Exercise: Concurrent Appends to a File
C code to append to a file some
number of times.
1 // append_loop.c
2 int main(int argc, char *argv[]){
3 char *filename = argv[1];
4 int count = atoi(argv[2]);
5 int key = atoi(argv[3]);
6 int fd = open(filename,
7 O_CREAT | O_RDWR ,
8 S_IRUSR | S_IWUSR);
9
10 char line[128];
11 sprintf(line,"%04d\n",key);
12 int len = strlen(line);
13
14 for(int i=0; i<count; i++){
15
16 lseek(fd, 0, SEEK_END);
17 write(fd, line, len);
18
19 }
20 close(fd);
21 return 0;
22 }

Shell code demos its use. What’s
wrong with the last count?
> ./a.out
usage: ./a.out <filename> <count> <key>
> ./a.out thefile.txt 100 5555
> wc -l thefile.txt
100 thefile.txt
> ./a.out thefile.txt 100 7777
> wc -l thefile.txt
200 thefile.txt
> sort thefile.txt | uniq -c

100 5555
100 7777

> rm thefile.txt
> for i in $(seq 10); do

./a.out thefile.txt 100 $i &
done

> wc -l thefile.txt
732 thefile.txt

8

Concurrency Principles

Atomic Action
▶ Cannot be divided; will run completely before any other action

taken. Some system calls are atomic like …
▶ nbytes = write(fd, data, len); is atomic: nbytes of

data written in sequence, data from other write() calls
before/after but NOT in the middle

▶ lseek() is atomic: modifies file position in kernel data
structure

Race Condition
▶ Outcome depends on the ordering of unpredictable events

such as the OS scheduler interrupting a process
▶ Race Conditions are bad: unlucky timing causes unpredictable

behavior, bugs that only occasionally occur

9

Race Condition in append_loop.c 1 / 2

FILE PROC1 key=5555 PROC2 key=7777

len=15
5555
5555 lseek(fd, 0, SEEK_END);
7777 // pos = 15

<---------write(fd, line, len);

len=20
5555
5555
7777 lseek(fd, 0, SEEK_END);
5555 // pos = 20

<------------------------------------write(fd, line, len);

All appears well BUT cannot guarantee that lseek() / write()
happen uninterrupted
▶ Individually atomic
▶ Combination is not

10

Race Condition in append_loop.c 1 / 2
FILE PROC1 key=5555 PROC2 key=7777

len=25
5555 lseek(fd, 0, SEEK_END);
5555 // pos = 25
7777 lseek(fd, 0, SEEK_END);
7777 // pos = 25

<---------write(fd, line, len);

len=30
5555
5555
7777
7777 // pos = 25
5555<------------------------------------write(fd, line, len);

len=30
5555
5555
7777
7777
7777 # Overwritten

Result: 1 line is lost as the lseek() between process is not
coordinated

11

Exercise: Solve this with Current IPC

Suggest a way to solve this problem with current IPC mechanisms
Start an arbitrary number of processes. Each repeatedly
appends a given key to a given file. All keys must be
present at the end.

▶ Describe new / old processes
▶ Describe new / old code and IPC to be used

Hint: where have we recently seen a bunch of entities that all want
access to data? How were these requests coordinated?

12

Answers: Solve this with Current IPC
Use a FIFO to coordinate multiple writers
Manager Process
▶ Only the manager writes to thefile.txt
▶ Starting the manager creates a FIFO; manager read()’s from

the FIFO, appends text to the end of the file

Writer Processes
▶ Writer processes write() into the FIFO (not thefile.txt)
▶ FIFOs automatically serialize data: no chance for loss as OS

controls the singular read/write positions

Familiar but Unsatisfactory
▶ Similar to em_server / em_client from Lab/HW
▶ Works and requires now new IPC mechanisms BUT…
▶ Dissatisfying: must split code into manager/writer. Would

like a solution without a central manager. 13

Locking the Critical Region

Critical Region
▶ Code sequence lseek(); write() is a Critical Region: not

atomic, unsafe to have multiple entities in it at the same time
▶ Typically protect these with a coordination mechanism, a lock

for the critical region

OS Locking Mechanisms
▶ Semaphore: general purpose locking mechanism associated

with multi-process programming
▶ Mutex: locking mechanism associated with threaded

programming
▶ File Locks: lock all or portions of a file, alway

14

Semaphore History

Source: Wikipedia Railway Sempahore Signal

Semaphore: noun
A system of sending messages by
holding the arms or two flags or
poles in certain positions…
– Oxford Dictionary

Semaphore: (computing)
In computer science, a semaphore is
a variable or abstract data type used
to control access to a common
resource by multiple processes and
avoid critical section problems in a
concurrent system such as a
multitasking operating system.

The semaphore concept was
invented by Dutch computer
scientist Edsger Dijkstra…
– Wikipedia

15

https://en.wikipedia.org/wiki/Railway_semaphore_signal
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Semaphore Basics: 3 Parts

Counter Variable variable
Semaphores have an integer value indicating how much of a
resource is available
▶ S=0: none left
▶ S>0: some available

Most common case is S=1 (available) or S=0 (in-use)

Atomic Operations
▶ Acquire: If S>0, decrement; Else, enter wait-queue and block
▶ Release: Increment S, notify wait-queue of avialability

Wait Queue
Modern semaphores include a wait-queue. If S==0, Acquire will
cause an entity (process) to enter the wait-queue and block.

16

Posix Implementation of Semaphores
sem_t *sem =

sem_open("/the_sem", O_CREAT, S_IRUSR | S_IWUSR);
// abstract type sem_t representing semaphores
// file-like semantics with open, semaphore name, flags, permissions

// Note: "the_sem" may or may not appear in the file system somewhere
// Under Linux, will be at /dev/shm/the_sem

sem_init(sem, 1, 1); // Initialize the semaphore value
// | +------> Initial counter value = 1
// +---------> Share among Processes (1: Processes, 0: Threads)

sem_wait(sem);
// ACQUIRE the semaphore; block and queue up if not available

// CRITICAL REGION

sem_post(sem);
// RELEASE the semaphore; notifies any queued processes of availability

sem_close(sem);
// file-like semantics: close when process is finished using it

sem_unlink("/the_sem");
// POSIX named semaphores have kernel persistence: if not removed by
// sem_unlink(), a semaphore will exist until the system is shut down.

17

Examine: append_file_sem.c

Examine and experiment with
append_file_sem.c which
solves coordinates appends using
a POSIX semaphore.

Look for use of semaphore
functions like
▶ Opening
▶ Unlinking, initializing
▶ Acquiring / Releasing
▶ How the critical region is

protected

> gcc -g append_loop_sem.c -lpthread
> ./a.out -init 1 1
initializing

> for i in $(seq 10); do
./a.out thefile.txt 100 $i &

done

> wc -l thefile.txt
1000 thefile.txt # ALL THERE!

> sort thefile.txt |uniq -c
100 0001 # ALL KEYS
100 0002 # FROM ALL
100 0003 # PROCESSES
100 0004
100 0005
100 0006
100 0007
100 0008
100 0009
100 0010

> ./a.out -unlink 1 1
unlinking

18

File Append Alternatives
Semaphores give general purpose coordination but the special case of
coordinating file appends have several other simpler solutions.

POSIX File Locks
▶ See append_loop_lockf.c

▶ lockf(): apply, test or remove
a POSIX lock on an open file

▶ Protect critical region via

lockf(fd, F_LOCK, 0);
lseek(fd, 0, SEEK_END);
write(fd, line, len);
lockf(fd, F_ULOCK, 0);

▶ Major Plus: no Init/Unlink
funny business

▶ Drawback: Lock is tied to a
file, Semaphores are
independent

O_APPEND Flag
▶ See append_loop_oappend.c

▶ open(..., O_APPEND, ...)
opens a file in append mode:

▶ “The file offset shall be set to
the end of the file prior to each
write().” – man open(3)

▶ Major Plus: no locks,
semaphores, or other funny
business

▶ Major Drawback: only works
for appending to the end of
files; Not Applicable to
coordinating any other activity

19

Shared Memory Segments
▶ An memory area that can be shared by multiple processes
▶ POSIX shared memory outlives a process like a file BUT with

no permanent storage
▶ Must clean up / unlink Shared Mem manually
▶ Shared Mem Contents unreliable across power off/on

▶ Examine shmdemo_posix.c to see how that works much like
a memory mapped file

Source: SoftPrayog System V IPC 20

https://www.softprayog.in/programming/interprocess-communication-using-system-v-shared-memory-in-linux

Exercise: Shared Memory Coordination

▶ Creating shared memory is relatively easy
▶ Like files, Coordinating shared memory is not automatic
▶ Consider shared_flip.c

▶ Shared memory of all “00000” or “1111”
▶ shared_flip -flip flips all characters (0 → 1, 1 → 0)

▶ What happens if multiple programs simultaneously try to flip
bits?

▶ How does one prevent “corruption” of that data?
▶ Experiment noting that a command like

for i in $(seq 100); do ./shared_flip -flip & done
will start 100 identical processes as background jobs

21

Answers: Shared Memory Coordination
▶ No file to lock so flock() wouldn’t work
▶ Not appending so O_APPEND won’t cut it
▶ A semaphore allows coordination of bit flipping through

sem_wait() / sem_post() to protect the critical region

1 // No Coordination: Errors
2
3
4
5 printf("flipping bits\n");
6 for(int i=0; i<SHM_SIZE-1; i++){
7 if(shared_bytes[i] == '0'){
8 shared_bytes[i] = '1';
9 }
10 else if(shared_bytes[i] == '1'){
11 shared_bytes[i] = '0';
12 }
13 }
14
15

1 // Coordinate via Semaphore
2 sem_t *sem =
3 sem_open(sem_name,O_CREAT,S_IRUSR|S_IWUSR);
4 sem_wait(sem); // lock semaphore
5 printf("flipping bits\n");
6 for(int i=0; i<SHM_SIZE-1; i++){
7 if(shared_bytes[i] == '0'){
8 shared_bytes[i] = '1';
9 }

10 else if(shared_bytes[i] == '1'){
11 shared_bytes[i] = '0';
12 }
13 }
14 sem_post(sem); // unlock sem
15 sem_close(sem);

22

Shared Memory vs mmap’d Files

▶ Recall Memory Mapped files give direct access of OS buffer
for disk files

▶ Changes to file are done in RAM and occasionally sync()’d
to disk (permanent storage)

▶ POSIX Shared Memory segment cut out the disk entirely: an
OS buffer that looks like a file but has no permanent backing
storage

▶ Which to pick?
▶ Shared Memory when data does not need to be saved

permanently and/or syncing would costly
▶ Memory Mapped File when data should be saved permanently

▶ Related concept: RAM Disk, a main memory file system, high
performance with no permanence

23

https://en.wikipedia.org/wiki/RAM_drive

Practice Problem: A Semaphore Application
▶ Process a “jobs” file with a list of shell commands to run

- seq 100000
- gcc --version
- du . -h
- ls
- ls -l
- date
...

▶ Start multiple ’runners’ which execute lines from the jobs file
> runner jobs.txt & runner jobs.txt &
starts 2 runners to work on jobs.txt

▶ Runners read file lines, execute jobs, mark as done
D seq 100000
D gcc --version
R du . -h
D ls
R ls -l
- date
...

▶ Will provide initial version of this
▶ To prevent duplication of job running, add coordination to

prevent duplicate jobs
24

Posix Message Queues

▶ Implements basic send/receive functionality through shared
memory

▶ Message Queues share much with FIFOs
▶ mq_send() is similar to write() to a FIFO
▶ mq_receive() is similar to read() from a FIFO
▶ Known global name of a message queue ~ name of FIFO file

▶ Differences from FIFOs
▶ FIFOs/Pipes have a fixed total size (64K)
▶ FIFOs allow read()/write() of arbitrary # of bytes
▶ Message Queues limit #messages and max size of messages on

queue
▶ Message Queues send/receive individual messages

25

Kirk and Spock: Talking Across Interprocess Space

▶ Demo the following pair of
simple communication codes
which use Posix Message
Queues.

▶ Examine source code to
figure out how they work.

See msg_kirk_posix.c and msg_spock_posix.c

26

Email Lookup with Message Queues

▶ Recent HWs build an email lookup server using FIFOs
▶ Another HW compare it to an approach that uses Message

Queues
▶ Worth of study to see the many similarities between

FIFOs/Message Queues and a few of the differences between
them

▶ Such contrast between IPC mechanisms make for good Exam
questions

27

Linux shows Posix IPC objects under /dev/shm
> gcc -o philosophers philosophers_posix.c -lpthread
> ./philosophers
Swanson 0: wants utensils 0 and 1
Swanson 2: wants utensils 2 and 3
Swanson 1: wants utensils 1 and 2
...
Swanson 3 (egg 10/10): leaving the diner
pausing prior to cleanup/exit (press enter to continue)
while you're waiting, have a look in /dev/shm

C-z
[1]+ Stopped ./philosophers

> ls -l /dev/shm
total 20K
-rw------- 1 kauffman kauffman 32 Apr 1 21:36 sem.utensil_0
-rw------- 1 kauffman kauffman 32 Apr 1 21:36 sem.utensil_1
-rw------- 1 kauffman kauffman 32 Apr 1 21:36 sem.utensil_2
-rw------- 1 kauffman kauffman 32 Apr 1 21:36 sem.utensil_3
-rw------- 1 kauffman kauffman 32 Apr 1 21:36 sem.utensil_4

> fg
./philosophers

> ls -l /dev/shm
total 0

/dev/shm is a Linux convention, shard memory under as well,
message queues under /dev/mqueue

28

More Resources IPC

System V IPC
▶ http://beej.us/guide/bgipc/
▶ http://www.tldp.org/LDP/tlk/ipc/ipc.html

General Overview
▶ http://man7.org/conf/lca2013/IPC_

Overview-LCA-2013-printable.pdf

29

http://beej.us/guide/bgipc/
http://www.tldp.org/LDP/tlk/ipc/ipc.html
http://man7.org/conf/lca2013/IPC_Overview-LCA-2013-printable.pdf
http://man7.org/conf/lca2013/IPC_Overview-LCA-2013-printable.pdf

Model Problem: Dining Philosophers

▶ N Philosophers with N
Chopsticks between them

▶ Philosophers “Algorithm”
▶ Think for a while
▶ Get adjacent chopsticks
▶ Eat for a while
▶ Replace Chopsticks
▶ Repeat

▶ Models concurrent
processes/thread acquiring
multiple resources

Thinking

ThinkingThinking

Thinking Thinking

Eating

ThinkingThinking

Eating! Thinking

Source: Introduction to RTOS Part 10 - Deadlock and
Starvation | Digi-Key Electronics 30

https://www.youtube.com/watch?v=hRsWi4HIENc&ab_channel=Digi-Key
https://www.youtube.com/watch?v=hRsWi4HIENc&ab_channel=Digi-Key

Exercise: Coding Dining Philosophers

Central philosopher algorithm is
▶ Think for a while
▶ Get adjacent chopsticks
▶ Eat for a while
▶ Replace Chopsticks
▶ Repeat

Questions:
1. What can be used to model

“chopsticks”?
2. How does one avoid

deadlock? Deadlocked Table

31

Answers: Coding Dining Philosophers
1. Model chopsticks with semaphores: only one process can

acquire them at a time; the other blocks.
2. All philosophers get right chopstick (lower number) first

EXCEPT last philosopher: go left first
▶ Breaks the cycle that would create deadlock

See philosphers_posix.c for demonstration code

Blocked

BlockedOne in
Hand

Blocked Blocked

Blocked

BlockedEating!

Blocked Blocked

*Left first

32

