
CSCI 4061: Sockets and Network Programming

Chris Kauffman

Last Updated:
Thu Apr 29 09:49:13 AM CDT 2021

1

Logistics

Reading
Stevens/Rago Ch 16

Goals
▶ Finish up Threads
▶ Sockets Basics
▶ Servers and Clients

Project 2
▶ Tests tomorrow
▶ Questions?

Date Event
Mon 4/26 Threads/Sockets

Wed 4/28 Sockets
Mon 5/03 Lecture: Review

Lab: Review
P2 Due

Mon 5/10 Final Exam
10am - 10pm CST
4-6pm Questions

Questions on anything?

2

Reminder: Course Evals

CSCI 4061 : Intro to Operating Systems
Lecture 001 : Kauffman

▶ Official UMN Evals are done online this semester
▶ Available here: https://srt.umn.edu/blue
▶ Due Mon 5/03/2021, last day of spring semester

3

https://srt.umn.edu/blue

Overview
▶ Computer Networks are their own topic/course, we won’t go

into great detail
▶ Communication programs usually require (1) understanding of

OS concepts and (2) Network Protocols: how to talk and
what to say when working across a connection

▶ We will demonstrate a few facilities that combine these 2
concepts

▶ All of you are aware that Computers are NOT isolated
anymore: constantly talking to each other across a variety of
connection types

▶ Up against several technical challenges when discussing
Network Programming

1. Concepts in network programming are advancing rapidly
2. Examples that worked in the recent past may not work now
3. Previous techniques/protocols are quickly supplanted by new

(hopefully better) ones
4

Goals

▶ Give a few examples of the Unix interface to network
programming via sockets and ports to set up simple
server-client

▶ Relate abstraction to previous I/O experience
▶ Touch on a few network-specific details, underlying details
▶ Leave the full she-bang to CSCI 4211 (Intro Networking)

5

Aging Networks Makes Network Programming a Mess

▶ Due to Internet technology advancing, network programming
has changed so there are MANY historical relics

▶ Network is a physical connection but many protocols for
communication exist over the same network to fulfill different
needs

▶ There are a LOT of network functions, some of them are
deprecated or obsolete: don’t handle newest
protocols/electronics
▶ gethostbyname() simple, only works with IPv4
▶ getaddrinfo() complex, works with IPv6

6

Networks are Aging

Source: www.ipv6now.hk

Source: XKCD #865 7

https://www.ipv6now.hk/en/WhatisIPv6_Comic.php
https://xkcd.com/865/

Immediate Limitations

▶ Most networked computing
resources use Firewalls to
block most communications

▶ Firewall prevents internal
programs from connecting
to outside programs through
unauthorized ports

▶ Makes programming
examples a little tough but
can do local examples using
address 127.0.0.1 which is
IPv4 for “home”

▶ Would need to run your own
machine to open up ports to
the whole web

Historically true, but these days
“There’s no place like ::1”

is more accurate.

8

Sockets

▶ An abstraction like files, a number referring to OS internal
data structures

▶ Allow for communication with the outside world
▶ Sockets represent end-to-end connection: two parties involved
▶ Sockets are two-way: can read or write from them (like files)

▶ Writes send data over the network to other party
▶ Reads block a process until data is received over network from

other party
▶ Sockets give a two-way “stream” of data like FIFOs: CAN’T

lseek() for either reads or writes

9

Addresses

To communicate over the network, must use functions to translate
addresses from plain text like “google.com” to binary IP addresses.

char *hostname = "127.0.0.1"; // or "google.com"
struct addrinfo *servinfo;
int ret = getaddrinfo(hostname, PORT, NULL, &servinfo);
if(ret != 0){

printf("getaddrinfo failed: %s\n",
gai_strerror(ret));

exit(1);
}

Note that the address 127.0.0.1 is IPv4 for “this computer” and
will be used a lot in examples

10

addrinfo struct

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

▶ Notice the last field - what kind of data structure is
addrinfo?

▶ getaddrinfo(hostname, PORT, NULL, &servinfo);
may return multiple addresses which can all be tried to get
the connection

11

Socket Creation / Connection

struct addrinfo *servinfo; // filled by getaddrinfo()
int sockfd = socket(servinfo->ai_family,

servinfo->ai_socktype,
servinfo->ai_protocol);

▶ Allocates OS internal data structures for 2-way
communication

▶ Does not connect socket for communication yet

int ret = connect(sockfd,
servinfo->ai_addr,
servinfo->ai_addrlen);

▶ Connects socket to given address to allow data send/receive
▶ Server on other side must be listening

12

If all goes well…

printf("Sending 'hello' to server\n");
char *msg = "hello";
write(sockfd, msg, strlen(msg));

char buf[MAXDATASIZE];
int nread = read(sockfd, buf, MAXDATASIZE-1);
buf[nread] = '\0';
printf("client: received '%s'\n",buf);

How dull: it’s just another fd to read() / write()

Alternatively

int nwrite = send(sockfd, msg, strlen(msg), 0);
int nread = recv(sockfd, buf, MAXDATASIZE-1, 0);

allows additional sending / receiving options over the socket.

13

Experiment with simple_client.c

▶ Requires simple_server.c to be running (discussed later)
▶ Client connects to server on local computer and receives a

hello world

14

read() / recv() and write() / send()

▶ Socket file descriptors can be treated just as others so that
standard I/O calls like read() / write() / select() work
for them

▶ Thus Network communication via sockets has an identical
interface to other files

▶ Alternatively can use recv() to get data from a socket fd
Allows options like
MSG_PEEK Peeks at an incoming message. The data

is treated as unread and the next recv()
or similar function shall still return
this data.

▶ Alternatively use send() to put data into a socket fd
Sample options
MSG_DONTWAIT Enables nonblocking operation

15

Exercise: Servers and Sockets

▶ Have discussed the client side of sockets:
▶ get address
▶ make socket
▶ connect socket and address
▶ read() / write()

▶ Server side has a few more tricks to it
▶ Multiple clients must connect using the same address, e.g.

www.google.com PORT 80
▶ What kind of problems might this present?
▶ How might one solve this with a system design?

16

Answer: Servers and Sockets

▶ Servers use one socket to listen for connections
▶ All incoming clients initially establish a connection through

that socket with a known port #
▶ When a client connects, a second server socket is created

which is specific to the client
▶ Communication between server and client continues on the

second separate socket
▶ Sound like anything familiar?

17

Server Setup

// INITIAL SETUP

// fd of socket on which the server will listen
int listen_fd = socket(serv_addr->ai_family,

serv_addr->ai_socktype,
serv_addr->ai_protocol);

// bind the socket to the server address given
// allows listening for connections later on
ret = bind(listen_fd,

serv_addr->ai_addr,
serv_addr->ai_addrlen);

18

Server Main Loop
// MAIN LOOP
listen(listen_fd, BACKLOG);

while(1){
// block until a client tries to connect
// accept a connection from the open port from a
// client produces a new file descriptor for
// socket created to communicate with the client
// and fills in client address info
int client_fd = accept(listen_fd,

client_addr,
&client_addr_size);

read(client_fd, ...);
write(client_fd, ...);

}

19

Sockets On server Side

Source: Learning Java, 4th Edition by Patrick Niemeyer, Daniel Leuck

▶ Each call to accept() creates another socket associated
specifically with a peer

▶ Typically done on by server in client/server architecture
▶ Single server Port stays open and accepts new connections

20

https://www.safaribooksonline.com/library/view/learning-java-4th/9781449372477/ch13s01.html

Socket Identification
Based on: SO: How does the socket API accept() function work?
Sockets are uniquely identified by a quartet of information:

| Local Address : Port | Peer Address : Port |

Example
▶ Server at 192.168.1.1 Port 80, accepting connections
▶ Client 1 10.0.0.1 Port 1234, connects to server
▶ Client 2 15.3.7.9 Port 5678, connects to server

SERVER KERNEL SOCKET TABLE
| Local (Server) | Peer (Clients) |
|------------------+-----------------|
| 192.168.1.1 : 80 | 10.0.0.1 : 1234 |
| 192.168.1.1 : 80 | 15.3.7.9 : 5678 |

CLIENT 1 KERNAL SOCKET TABLE CLIENT 2 KERNEL SOCKET TABLE
Local (Client1)	Peer (Server)		Local (Client2)	Peer (Server)
-----------------+------------------		-----------------+------------------		
10.0.0.1 : 1234	192.168.1.1 : 80		15.3.7.9 : 5678	192.168.1.1 : 80

21

https://stackoverflow.com/questions/489036/how-does-the-socket-api-accept-function-work

Handy Network Commands
Kernel tracks all sockets/connections, can report on command line
1 ## I have an ssh connection to apollo, show find evidence of this
2
3 ## ss: "socket statistics" show open ports with quartet and stats
4 > ss -tuna
5 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
6
7 tcp ESTAB 0 0 10.0.0.187:44354 128.101.38.191:22
8 ... ^^
9

10 ## getent: lookup addresses by name/number
11 > getent hosts 128.101.38.191
12 128.101.38.191 csel-apollo.cselabs.umn.edu
13
14 > getent hosts apollo.cselabs.umn.edu
15 128.101.38.191 csel-apollo.cselabs.umn.edu apollo.cselabs.umn.edu
16
17 ## lsof: list open files, -i for internet files
18 > lsof -i
19 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
20 chromium 22900 kauffman 99u IPv4 9369301 0t0 UDP *:mdns
21 chromium 22900 kauffman 191u IPv6 9462076 0t0 TCP phaedrus:46126->
22 ... ord37s07-in-x0a.1e100.net:https (ESTABLISHED)
23 ssh 30563 kauffman 3u IPv4 9420568 0t0 TCP phaedrus:44354->
24 csel-apollo.cselabs.umn.edu:ssh (ESTABLISHED)
25 simple_s 43254 kauffman 3u IPv6 793630 0t0 TCP *:12344 (LISTEN)
26 ...

22

Exercise: Pause Server

▶ Server listens for 4 client connections
▶ Does not respond to any client until 4 have connected
▶ When 4 connected, issues Server shutting down message

to all
▶ Closes connections and shuts down

Frame the server code for this using the system calls

getaddrinfo()	look up address
socket()	create a socket
bind()	bind socket to address
listen()	listen for connections
accept()	accept connections

Include control and data structures required

23

Answers: Pause Server
See pause_server.c

getaddrinfo(NULL, PORT, &hints, &serv_addr);
int listen_fd = socket(serv_addr->ai_family, serv_addr->ai_socktype,

serv_addr->ai_protocol);

bind(listen_fd, serv_addr->ai_addr, serv_addr->ai_addrlen);

listen(listen_fd, BACKLOG);

#define MAX_CLIENTS 4
int client_fds[MAX_CLIENTS];

for(int i=0; i<MAX_CLIENTS; i++){
client_fds[i]= accept(listen_fd, client_addr, &client_addr_size);

}

for(int i=0; i<MAX_CLIENTS; i++){
int client_fd = client_fds[i];
char *msg = "Server shutting down.";
write(client_fd, msg, strlen(msg));
close(client_fd);

}
close(listen_fd);

24

Service vs Port
▶ Recall that port is part of a client/server setup

#define PORT "80"
getaddrinfo(hostname, PORT, NULL, &serv_addr);

▶ Not a string by accident: may substitute a service
#define SERVICE "http"
getaddrinfo(hostname, SERVICE, NULL, &serv_addr);

▶ Known Service/Port association is stored in /etc/services/
> cat /etc/services
... # Transport Protocol (low level)
ftp 21/tcp
ssh 22/tcp # Transfer Control Protocol
ssh 22/udp # User Datagram Protocol
ssh 22/sctp # Stream Control Transmission Protocol
telnet 23/tcp
...
http 80/tcp
http 80/udp
www 80/tcp
www 80/udp
...
doom 666/tcp
...
git 9418/tcp
...

25

Unix Domain Sockets

Remember FIFOs? Remember how they can only send
data in one direction, just like a Pipes? Wouldn’t it be
grand if you could send data in both directions like you
can with a socket?
▶ Beej, from Beej’s Guide to Unix IPC

▶ Can create a socket which is local to a Unix host
▶ Like FIFO, has a location on the file system such as

/tmp/blather/serv1.sock
▶ Server establishes socket location, clients must know about it
▶ Allows listen() / accept() to spin up new sockets per

client
▶ Is bi-directional / full duplex : a single socket is good for

two-way communication (FIFOs are one-directional)

26

http://beej.us/guide/bgipc/output/html/multipage/unixsock.html

Unix Domain Sockets Demo
▶ Same call sequence for client/server except no getaddrinfo()
▶ Instead use same local file name to find the local Unix socket

unix_client.c
1 int client_sockfd =
2 socket(AF_UNIX, SOCK_STREAM, 0);
3
4 char *sockfile = "the.sock";
5 struct sockaddr_un addr = {
6 .sun_family = AF_UNIX,
7 .sun_path = "",
8 };
9 strcpy(addr.sun_path, sockfile);
10
11 // local, no getaddrinfo() req'd
12
13 connect(client_sockfd,
14 (struct sockaddr*)&addr,
15 sizeof(addr));

unix_server_single.c
1 int connect_sockfd =
2 socket(AF_UNIX, SOCK_STREAM, 0);
3
4 char *sockfile = "the.sock";
5 struct sockaddr_un addr = {
6 .sun_family = AF_UNIX,
7 .sun_path = "",
8 };
9 strcpy(addr.sun_path, sockfile);
10
11 // local, no getaddrinfo() req'd
12
13 bind(connect_sockfd,
14 (struct sockaddr*)&addr,
15 sizeof(addr));
16
17 listen(connect_sockfd, BACKLOG);
18
19 accept(connect_sockfd, NULL, NULL);

27

