
CSCI 4061: Finale

Chris Kauffman

Last Updated:
Mon May 3 03:59:13 PM CDT 2021

1

Logistics

P2: Due Tue 5/04
Tests posted, Gradescope Open,
more comments in a moment

Today
▶ Evals Reminders
▶ P2 Discussion
▶ Finale / Review

Date Event
Mon 5/03 Last Lecture

HW 13 / Lab13 Due
Univ Evals Due

Tue 5/04 Kauffman OHs
P2 Due

Thu 5/06 Kauffman OHs
P2 Late Deadline

Mon 5/10 Final Exam
9am - 11pm
4-6pm Discord Qs

Questions on anything?

2

P2 Testing: A mess in several parts
1. I’m tired and didn’t have a lot of time+energy to work on them.

Problems always occur when that’s the case.
2. Gradescope � Labs � Home Linux: old kernel bugs in sem_open()

and dl_open() which required special exceptions in Valgrind
3. I forgot to include a file on releasing and also did get the updated

zip file posted on discovering this. Thanks to those who were
patient enough to notify me of this.

4. Assuming ordering of events between programs is a Race Condition
and (almost) every test assumes sleep() can achieve this

5. May need to adjust TICKTIME parameter to be longer to get more
stability at the expense of longer test runtimes.

6. May have to submit a couple times to Gradescope to get a “good”
run if tests pass locally

I am deeply sorry that this is such a pain for everyone and I’ll be in office
hours Tue/Thu 3pm to help folks get the project done.

3

Reminder: Course Evals

Official UMN Evals

CSCI 4061 : Intro to Operating Systems
Lecture 001 : Kauffman

▶ Official UMN Evals are done online this semester
▶ Available here: https://srt.umn.edu/blue
▶ Due Mon 5/03, last day of semester

4

https://srt.umn.edu/blue

What have we done?

Unix Systems Programming
API of Unix system for files, processes, signals, IPC, threads,
sockets, memory

Glimpses of OS Internals
Process accounting, file representation, communication buffers

Concurrency and Communication
Protocols to allow distinct operators to cooperate/communicate
without deadlocking

C Programming
Memory allocation, pointers, structs, conventions for errors

Did I miss anything?

5

Further Coursework
▶ CSCI 5103 Operating Systems: Study internal design issues

associated with operating systems, handling hardware,
tradeoffs on different approaches to management, theoretical
algorithms around resource coordination.

▶ CSCI 4211 Introduction to Computer Networks: Learn
more about communication protocols, hardware/software
architecture of the Internet, operating system supports for
networks.

▶ CSCI 4271W Development of Secure Software Systems:
Focus on security issues, methods to circumvent OS/hardware
protections and how ensure safety in programs, incorporating
security features into system design.

▶ CSCI 5143 Real-Time and Embedded Systems: Small
systems often lack an OS and fancy hardware, more direct
interactions with hardware, must manage resources in your
own programs, teaches much about what the OS does as
usually less is provided in embedded systems.

6

Further Reading

▶ INTERNALS: The Design of the UNIX Operating System by
Maurice A. Bach : Step-by-step treatment of the original
design internals of the Unix OS. Lots of pictures and great
discussion of concurrency issues in the kernel.

▶ DESIGN: The Art of Unix Programming by Eric S. Raymond :
Fantastic philosophical and pragmatic discussion of how to
build systems that work especially in the Unix environment.
(free online)

▶ HUMANS: Coders at Work: Reflections on the Craft of
Programming by Peter Seibel : Fascinating interviews with
notable programmers who got the job done including AI giant
Peter Norvig, Scheme Inventor Guy Steele, original Unix
inventor Ken Thompson, and CS godfather Donald Knuth.

7

https://www.amazon.com/Design-UNIX-Operating-System/dp/0132017997
https://www.amazon.com/Design-UNIX-Operating-System/dp/0132017997
http://www.catb.org/esr/writings/taoup/html/
https://www.amazon.com/Coders-Work-Reflections-Craft-Programming/dp/1430219483
https://www.amazon.com/Coders-Work-Reflections-Craft-Programming/dp/1430219483

Final Exam

Logistics
▶ Mon 5/10

▶ 9am - 11pm on Gradescop
▶ 4-6pm Questions on Discord

▶ 5-6 “sides of paper” in 120min
▶ Midterms were 4 sides of paper in 80min

▶ Comprehensive, combination of coding, analysis, short answer
▶ Open Resource as were the midterm exams

Topics Request
Any particular topics folks would like to discuss prior to review
questions?

8

Review Problem 1
A binary file stores many mesg_t structs in it; these structs have
the definition:
typedef struct {

int kind;
char name[256];
char body[1024];

} mesg_t;

Define the following function
int print_all(char *filename, char *user_name)
// Opens the given filename which stores a sequence of binary mesg_t
// structs, scans the file for mesg_t's with a name field that matches
// the given user_name and prints their bodies. Closes the file and
// return the number of messages found for the given the user_name.

Bonus point: describe a 2nd method you could use to print the
output you have using a different I/O mechanism from the one you
coded.

9

Answers:

1 // use read() to access data in file
2 int print_all(char *filename,
3 char *user_name)
4 {
5 int fd = open(filename, O_RDONLY);
6 mesg_t msg;
7 int count = 0;
8 while(1){
9 int nbytes = read(fd, &msg,
10 sizeof(mesg_t));
11 if(nbytes==0){
12 break;
13 }
14 if(strcmp(msg.name, user_name) == 0)
15 {
16 printf("%s\n",msg.body);
17 count++;
18 }
19 }
20 close(fd);
21 return count;
22 }

1 // use mmap() to access data in file
2 int print_all(char *filename,
3 char *user_name)
4 {
5 int fd = open(filename, O_RDONLY);
6 struct stat statbuf;
7 fstat(fd, &statbuf);
8 int len = statbuf.size / sizeof(mesg_t);
9 mesg_t *mesgs =
10 mmap(NULL,statbuf.size,
11 PROT_READ, MAP_PRIVATE,
12 fd, statbuf.size);
13 int count = 0;
14 for(int i=0; i<len; i++){
15 if(strcmp(mesgs[i].name, user_name)==0)
16 {
17 printf("%s\n",mesgs[i].body);
18 count++;
19 }
20 }
21 munmap(mesgs);
22 close(fd);
23 return count;
24 }

10

Review Problem 2

We studied several different mechanisms to coordinate threads that
are provided in the PThreads library. Describe the similarities and
differences between each of the following coordination tools and
how they are best used

1. Mutex (pthread_mutex_t)
2. Spin Lock (pthread_spinlock_t)
3. Condition Variable (pthread_cond_t)

11

Answers:
1. Mutex (pthread_mutex_t): Like a semaphore, used to

lock/unlock a resource/protect a critical code region, thread that
locks moves ahead, if a thread can’t acquire a mutex, it blocks until
the thread that owns the mutex unlocks it
See: pthreads_picalc_mutex.c and odds_evens_busy.c

2. Spin Lock (pthread_spinlock_t): Similar to a mutex except
locking is done “busily”: if thread cannot immediately acquire the
spinlock, it will “spin” using 100% CPU until the spinlock is
acquired, receives lock faster at the cost of higher CPU usage
See: time_spinlock.c

3. Condition Variable (pthread_cond_t): More like a “notification
queue”, used to notify other threads that some condition has arisen
(pthread_cond_signal()), threads can block until they receive
such notification (pthread_cond_wait()), always used in
conjunction with a mutex to avoid wasteful lock/unlock cycles
See: odds_evens_two_condvars.c and produce_consumer.c

All codes are in 13-threads-code.zip associated with Threads lecture.
12

Review Problem 3
The blather server bl_server
was required to use the poll()
system call to check whether its
various input sources were ready.
The general pattern was as
follows.
// REQUIRED version
repeat {

poll() to check join/client FIFOs

if join is ready{
read join request, process it

}

for each client C{
if client C is ready{

read message from C, process it
}

}
}

A much simpler pattern of I/O
would not use poll() such as
the below.
// ALTERNATIVE version
repeat {
read join request, process it

for each client C {
read message from C, process it

}
}

Discuss the differences in
behavior between these two. Why
was the first pattern required in
Blather when it is more complex?

13

Answers:

In the ALTERNATIVE version, the top of each server loop will
read() from the join FIFO. At first this may seem to work as a
client will be able to join. However, if a client joins successfully, it
will likely send a message which will not be immediately accepted
by the server. This is likely due to the server again read()’ing
from the join FIFO which blocks until another client joins. Only
then will the server enter the loop to check for client inputs. The
REQUIRED version avoid this by using poll() which blocks only
when no input sources are available and returns immediately when
any source is ready. The specific source that is ready is indicated
in the data poll() modifies allowing the server to read() without
blocking at each step.

14

Review Problem 4
bl_server uses poll() to detect which input sources are ready
while bl_client uses multiple threads to handle its input sources.
Discuss using multiple threads in bl_server instead of poll() to
handle its various input sources. In your answer describe the
following:

1. How many threads will be required in bl_server to handle
its input sources?

2. When will threads be created and ended (canceled)?
3. What would each server thread DO (deal with joining, deal

with one client or multiple clients, etc.)?
4. What kind of coordination needs to exist between server

threads to facilitate broadcast operations (writing to multiple
client output)?

5. What kind of coordination needs to exist between server
threads for client joining and departing?

Consider carefully the shared data structures of the server in your
answer.

15

Answers:

▶ Discuss together during lecture
▶ Worth a Piazza post : discuss online

16

Conclusion

It’s been a hell of a semester.
I’m proud of all of you.
Keep up the good work.
Stay safe. Happy Hacking.

17

