
Name: ID#: X.500:

CS 4061: Practice Exam 1 SOLUTION
Spring 2021

University of Minnesota

Exam period: 30 minutes
Points available: 40

Problem 1 (10 pts): Examine the code to the
right and describe what you expect its output to be.
Explain why or why not you would expect to see any
specific ordering in the output of the program.

SOLUTION: The processes will fork out in a “line”
or “list” rather than branching in a tree. This is be-
cause each parent process falls into the if() conse-
quence and will break out of the loop so will have only
a single child. The order of output will start with the
last child in the last iteration and proceed backwards
to the original parent due to the placement of wait().
Example:

> a.out

iter 4, 13374 from 13373

iter 3, 13373 from 13372

iter 2, 13372 from 13371

iter 1, 13371 from 13370

iter 0, 13370 from 26018

#include "headers.h" // standard headers

int main(){

for(int i=0; i<5; i++){

pid_t p = fork();

if(p != 0){

wait(NULL);

printf("iter %d, %d from %d\n",

i,getpid(),getppid());

fflush(stdout);

break;

}

}

exit(0);

}

Problem 2 (10 pts): Write the function total_doubs() described and demonstrated below.
1 #include <stdio.h>

2 int total_doubs(char *fname, // file to read

3 double *total); // set to total

4 // Read doubles from the named file which contains

5 // binary doubles. Sum all the numbers in the file

6 // and set the double pointed to by total to this

7 // value. Return the count of numbers or -1 if

8 // the file could not be opened.

9

10 int main(){

11 char *fname = "nums.dat";

12 int n_doubs = -1;

13 double total = -1;

14 n_doubs = total_doubs("nums.dat", &total);

15 printf("%d nums read totaling %lf\n",

16 n_doubs, total);

17 return 0;

18 }

SOLUTION
1 #include "total_doubs.h"

2 #define BUFCOUNT 4

3 #define BUFSIZE (sizeof(double) * BUFCOUNT)

4

5 int total_doubs(char *fname, double *total){

6 int fd = open(fname, O_RDONLY);

7 if(fd == -1){

8 perror("Couldn’t open file");

9 return -1;

10 }

11 double buf[BUFCOUNT], tot = 0.0;

12 int total_bytes = 0;

13 while(1){

14 int bytes_read = read(fd, buf, BUFSIZE);

15 if(bytes_read == 0){

16 break;

17 }

18 total_bytes += bytes_read;

19 int count = bytes_read / sizeof(double);

20 for(int i=0; i<count; i++){

21 tot += buf[i];

22 }

23 }

24 close(fd);

25 *total = tot;

26 return (total_bytes / sizeof(double));

27 }

1/ 2

WRITE ON EVERY PAGE – Name:

Problem 3 (5 pts): Stan Dardin is interactively testing his implementation of commando by punching in
commands like list, output-for 2, gcc test.c by hand. He is finding that he keeps making mistakes
while entering commands causing him to have to restart the program. He is not ready to run the full tests
provided by Prof. Coffmalevolent, just the few things he knows works but the tedium is making it hard to
proceed. Suggest an easy way for Stan to enter his commands more easily using tools and syntax provided
in every Unix shell.

SOLUTION: Place the commands in a text file then use output redirection to feed the commands to com-
mando. Either of these would work:
./commando --echo < input.txt OR cat input.txt | ./commando --echo

Background: If a commando user mistypes the name
of a program like fcc rather than gcc strange out-
put might occur. The next problems address this by
making changes to commando so that it behaves like
the example to the right.

Problem 4 (15 pts): Standard output for com-
mando programs is directed into a pipe but standard
error is not. Add code to cmd start() in the tem-
plate given which directs standard error into the out-
put pipe associated with the cmd t.
Add code to the template for cmd update state()

that checks for special exit codes that signify exec
problems and sets fields of the cmd t appropriately.
Some code for this problem may be identical to what
is already in your project.

> commando

@> fcc

@>

@!!! fcc[#9620]: EXEC FAIL

@> flarb

@>

@!!! flarb[#9621]: EXEC FAIL

@> list

JOB #PID STAT STR_STAT OUTB COMMAND

0 #9620 128 EXEC FAIL 52 fcc

1 #9621 128 EXEC FAIL 52 flarb

@> output-for 0

@<<< Output for fcc[#9620] (52 bytes):

--

Cmd failed to start exec: No such file or directory

--

@> exit

>

SOLUTION
1 #define EXEC_FAIL 128

2 void cmd_start(cmd_t *cmd){

3 ... // VARIOUS SETUP

4 cmd->pid = fork();

5 ...

6 if(cmd->pid != 0){...} // PARENT

7 else{ // CHILD

8 // normal standard output redirection set up

9 ...

10 // YOUR CODE FOR STDERR REDIRECTION HERE

11 dup2(cmd->output_pipe[PWRITE], STDERR_FILENO);

12

13 // FINISHED WITH STDERR REDIRECTION

14

15 // Call to execvp(), on error, call perror()

16 // and exit with code EXEC_FAIL.

17 // YOUR CODE FOR EXEC/RETURN HERE

18

19 int ret = execvp(...);

20 if(ret == -1){

21 perror("Exec failed");

22 exit(EXEC_FAIL);

23 }

24

25 }

26 }

27

SOLUTION
1 #define EXEC_FAIL 128

2 void cmd_update_state(cmd_t *cmd, int block){

3 ... // VARIOUS SETUP

4 pid_t ret = waitpid(cmd->pid, &status, block);

5 ...

6 // CHECK IF status INDICATES CHILD HAS EXITED

7 // SET DATA ASSOCIATED WITH IT APPROPRIATELY

8 // CHECK FOR SPECIAL RETURN VALUE EXEC_FAIL

9 // AND SET THE str_status FIELD TO "EXEC FAIL"

10 // OTHERWISE SET DATA AS NORMAL IN PROJECT

11 if(..check for exit as normal..){

12 int exit_status =

13 ..use macro to set status with exit code..;

14 cmd->status = exit_status;

15 cmd->finished = 1;

16

17 if(exit_status == EXEC_FAIL){

18 snprintf(cmd->str_status, STATUS_LEN, "EXEC FAIL");

19 }

20

21 else{

22 ..set str_status as normal..;

23 }

24

25 } // FINISHED CHECKING ON EXIT

26 ... // PRINT ALERTS

27 }

28

(Note: In the actual exam, more space will be provided for answers.)

2/ 2

