
Name: ID#: X.500:

CS 4061: Practice Exam 2
Summer 2020

University of Minnesota

Exam period: 30 minutes
Points available: 40

Background: Sigblo C’Ker runs an application called
coordinated_changer which makes changes to a single file
in a safe way. According to the documentation for the code,
any number of such processes can be run and they will be
coordinated using a semaphore so no data will be lost.
While running the program Sigblo accidentally hits the
keystroke Ctrl-c and finds that coordinated_changer

closes immediately but on trying to re-run it, Sigblo finds
that he cannot get any more instances to run: all seem
to “hang” immediately on starting. Looking at the source
code for coordinated_changer, Sigblo would like to alter
it so that Ctrl-c will kill coordinated_changer safely.

1 // rough code for coordinated_changer.c

2 int main(){

3 sem_t *file_lock = sem_open(..);

4

5 perform_setup();

6

7 sem_wait(file_lock);

8 modify_file_for_a_while();

9 sem_post(file_lock);

10

11 perform_cleanup();

12 return 0;

13 }

Problem 1 (5 pts): Based on the provided source code, explain why killing one instance of coordinated_changer
at the wrong time causes all others to stall.

Problem 2 (10 pts): Advise Sigblo on what changes should be made to prevent deadlock in
coordinated_changer.

Problem 3 (5 pts): Pam Elif is writing a small database system. She would like to support multiple
client programs reading and writing the database system simultaneously so is thinking of using a shared
memory segment such as is provided by POSIX shm_open(). She also would like the database to be backed
up by a disk file which a daemon process will occasionally copy from shared memory to disk but is finding
the whole arrangement to seem overly complex.
Suggest a simpler mechanism that Pam can use which allows multiple processes to share memory that is
automatically written to disk periodically.

1/ 2



WRITE ON EVERY PAGE – Name:

Problem 4 (10 pts): Contrast FIFOs and POSIX Shared Memory as means for inter-process com-
munication. Describe at least 3 aspects that are similar or different between them (e.g. 1 similarity / 2
differences or 2 similarities / 1 difference).

Background: Below are two blocks of code associated with a recent lab/HW which demonstrated the
runner_sem1 and runner_sem2 programs. These two both attempted to accomplish the same goal but
had some differences which are explored in this problem.

1 // runner_sem1.c main loop

2 while(file_pos < size){

3 sem_wait(sem);

4 char status, command[MAXLINE];

5 sscanf(file_chars+file_pos,

6 "%c %1024[^\n]",

7 &status, command);

8

9 if(status == ’-’){

10 file_chars[file_pos] = ’R’;

11 sem_post(sem);

12 printf("%03d: %d RUN ’%s’\n",

13 line_num,getpid(),command);

14 fflush(stdout);

15 char call[1024];

16 sprintf(call,"%s > /dev/null",command);

17 system(call);

18 file_chars[file_pos] = ’D’;

19 }

20 else{

21 sem_post(sem);

22 }

23 file_pos += strlen(command)+3;

24 line_num++;

25 }

1 // runner_sem2.c main loop

2 while(file_pos < size){

3 sem_wait(sem);

4

5 char status, command[MAXLINE];

6 sscanf(file_chars+file_pos,

7 "%c %1024[^\n]",

8 &status, command);

9 if(status == ’-’){

10 file_chars[file_pos] = ’R’;

11 printf("%03d: %d RUN ’%s’\n",

12 line_num,getpid(),command);

13 fflush(stdout);

14 char call[1024];

15 sprintf(call,"%s > /dev/null",command);

16 system(call);

17 file_chars[file_pos] = ’D’;

18 }

19 sem_post(sem);

20 file_pos += strlen(command)+3;

21 line_num++;

22 }

Problem 5 (5 pts): Discuss the placement of the semaphore locking/unlocking between the two codes.
Describe what period of time each of the codes keeps the shared semaphore locked and what happens
during that time.

Problem 6 (5 pts): Based on the locking scheme above, which of the two approaches do you ex-
pect/observe is more efficient when multiple runner programs are working together? Describe which
version will result in completing jobs faster and why.

2/ 2


