
Introduction to Parallel Computing

Chris Kauffman

Last Updated:
Tue Jan 17 11:17:43 AM CST 2023

1

Logistics

Reading
Grama Ch 1

Goals
▶ Motivate: Parallel Programming
▶ Overview concepts a bit
▶ Discuss course mechanics

2

Registered or Not?

If you are not registered for the course but want to be…
▶ Come to the first week of Lecture so you don’t fall behind
▶ Write on a piece of paper the following information

1. Name, UMN Email address, Student ID Number
2. Which Lecture and Lab section you want to register for
3. 2-3 sentences about why you absolutely must take the course

this semester, consequences if you do not
▶ Give me that sheet of paper
▶ Wait and hope: very limited space + long waitlist

3

Moore’s Law
▶ Smaller transistors → closer together
▶ Smaller transistors can “flip” faster
▶ More + faster transistors on a chip → more speed
▶ Processor speed doubles every 18 months

Source wikipedia

4

http://en.wikipedia.org/wiki/Moore's_law

Aside: How Small are Transistors?

▶ Recent Intel CPUs uses a 14 nanometer manufactoring process
▶ Distance between memory units in the processor is about 28

nanometers
▶ A hard sphere radius of a hydrogen Atom is about 0.11

nanometers
▶ About 255 atoms apart - weird things start happening at that

scale, quantum things that are less than deterministic
▶ The term “X-nanometer process” is not a true standard but

the point is manufacturers continue increase Transistor
Density

5

Moore’s Law Alive and Well

Source: karlrupp / microprocessor-trend-data on Github

▶ Still get more transistors (yay!)
▶ Clock Frequency & Single CPU Speed is stalling (boo!)

6

https://github.com/karlrupp/microprocessor-trend-data

Similar Plot on Processor Speed

Source: Danowitz et al

▶ CPU speed isn’t getting faster these days
▶ Fastest Dell Speed I found was 4.8 GhZ on “Turbo” (my

laptop caps at 3.4 GhZ)
7

http://queue.acm.org/detail.cfm?id=2181798

Today’s Processors
Mini-Parallel Computer
▶ 1 CPU comes with several

“Cores” - independent
identical processing units

▶ Cores have their own ALUs,
registers, pipelines

▶ Cores share some resources
like Cache and Comm.
hardware, main memory

▶ Cores can run multiple
programs simultaneously

▶ Cores can cooperate within
on a single program to
(possibly) make that
program faster

8

Performance is Moving to Parallel

Source: There’s plenty of room at the Top: What will drive computer performance after Moore’s law? by Leiserson
et. al, Science 2020

9

https://www.science.org/doi/10.1126/science.aam9744
https://www.science.org/doi/10.1126/science.aam9744

Multitasking

multitask (verb)
To use the restroom and brush your teeth at the same time.
I was late for work today so I had to multitask!
▶ Urban Dictionary Definition 2 by sasm

Questions
▶ Do humans multitask and if so how?
▶ What kinds of things can humans multitask?
▶ Are you a good multitasker?
▶ How do humans get a big job done faster?

10

http://www.urbandictionary.com/define.php?term=multitask

Focus

Laptop use lowers student
grades, experiment shows, The
Canadian Press, 8-14-2013
The students in the first
experiment who were asked to
multitask averaged 11 per cent
lower on their quiz.
The students in the second
experiment who were surrounded
by laptops scored 17 per cent
lower.
Original Paper by Sana et al

11

http://www.cbc.ca/news/technology/story/2013/08/14/technology-laptop-grades.html
http://www.cbc.ca/news/technology/story/2013/08/14/technology-laptop-grades.html
http://www.cbc.ca/news/technology/story/2013/08/14/technology-laptop-grades.html
http://www.sciencedirect.com/science/article/pii/S0360131512002254

Computers and Multitasking

▶ How do computers multitask?
▶ Can a single CPU computer multitask?
▶ What are the advantages/disadvantages of this?
▶ What might drive one to write a parallel program?

12

Parallelism Shows Up a Lot in Computing
Low-level/hardware parallelism
▶ CPU Instructions,
▶ CPU Pipelines
▶ VLIW: Very Long Instruction Word
▶ Multi-media CPU instructions
▶ Graphics and GPU instructions
▶ Memory subsystem and I/O controller

Some of these can be controlled via assembly language choices,
others are implicit in the hardware and only indirectly controllable
by a programmer.
▶ We will touch at times on Vector Instructions that to

perform the same calculation on several pieces of data
▶ We will focus on Programmatic Parallelism: writing code

that is parallel at a higher level
13

Primary Motivation for Parallel Computing
Use multiple processors to…
▶ Speedup: solve the same size problem in less time
▶ Sizeup: solve a larger problem in the same time

14

Speedup and Sizeup Counter Examples

Speedup
▶ Two people cannot bake a

cake twice as fast as a single
person…

▶ Any similar examples of a
computing task that does
not easily break entirely into
2 equal, independent
chunks?

Sizeup
▶ Two small ovens cannot

handle a double-sized cake…
▶ Any equivalent examples of

a computing tasks?

15

Exercise: Scan for Max Serial vs Parallel
▶ Have an array of large size N with numbers in it
▶ Want to find the maximum number

Find max serially
ON CPU 0
my_max = arr[0]
for i=1 to N-1:

if my_max < arr[i]:
my_max = arr[i]

done
return my_max
▶ If you were allowed both CPU 0 and CPU 1, could you make

this go faster?
▶ State any assumptions you make about how CPU 0 & 1

interact / access data in arr[].
▶ Try writing down your instructions for CPU 0 and 1 on a piece

of paper.
16

Answers: Scan for Max
Assumption: both CPUs can access all of arr[]
ON CPU 0 # ON CPU 1
my_max = arr[0] my_max = arr[N/2]
for i=1 to N/2-1: for i=N/2+1 to N-1:

if my_max < arr[i]: if my_max < arr[i]:
my_max = arr[i] my_max = arr[i]

done done
send my_max to CPU 0

other_max = receive number
from CPU 1

if other_max > my_max:
my_max = other_max

return my_max
Final comparison steps cannot be parallelized - creates a limit
(albeit mild) on how much can be done in parallel.

17

Amdahl’s Law and the Cost of Coordination
Likely that Parallel Max version completes in around 50% of time
of the Serial Max, but not quite 2X speedup.
Amdahl’s Law
Speedup is limited by the portion of the program that can be
parallelized and the degree to which that portion can be
parallelized
▶ i.e. All algorithms will contain some serial portion that cannot

be parallelized
▶ Ensures near linear speedup will never become perfect speedup

Additional Overhead
▶ All parallel algorithms feature some communication overhead

that is not present in serial versions
▶ When parallelizing serial algorithms, often tension: splitting a

task up induces communication requirements, must balance
these carefully

18

Concurrency and Parallelism
StackOverflow Question
Concurrency vs Parallelism - What is the difference?

Accepted Answer (RichieHindle)
Concurrency is when two or more tasks can start, run, and
complete in overlapping time periods. It doesn’t necessarily mean
they’ll ever both be running at the same instant. Eg. multitasking
on a single-core machine.
Parallelism is when tasks literally run at the same time, eg. on a
multicore processor.

Implications
Concurrent ≠⇒ Parallel: A concurrent program does not need
to be run in parallel (but it often is).

Parallel =⇒ Concurrent: A parallel program must have
concurrent parts and had better deal with concurrency issues.

19

http://stackoverflow.com/questions/1050222/concurrency-vs-parallelism-what-is-the-difference

Speed to Completion Matters

By 2015 the GFS model had fallen behind
the accuracy of other global weather
models. This was most notable in the GFS
model incorrectly predicting Hurricane
Sandy turning out to sea until four days
before landfall, while the European Centre
for Medium-Range Weather Forecasts’
model predicted landfall correctly at 7
days. Much of this was suggested to be
due to limits in computational resources
within the National Weather Service. In
response, the NWS purchased new
supercomputers, increasing processing
power from 776 teraflops to 5.78 petaflops.
In 2018, the processing power was
increased again to 8.4 petaflops.
– Wikip: Global Forecast System

Source: How Hurricane Sandy sprung weather models into the
mainstream, Washington Post, 19-Oct-2022

Getting correct predictions in time for
action is important in many disciplines -
parallel computing provides the
mechanism for this.

20

https://en.wikipedia.org/wiki/Global_Forecast_System
https://www.washingtonpost.com/climate-environment/2022/10/29/superstorm-sandy-models-american-european/
https://www.washingtonpost.com/climate-environment/2022/10/29/superstorm-sandy-models-american-european/

What We Will Discuss

▶ Low latency parallel computers
▶ General hardware/network architectures of parallel computers
▶ Distributed memory parallel computers

▶ Message Passing Interface (MPI)
▶ Shared Memory parallel computers

▶ POSIX Threads and OpenMP
▶ Co-processor Parallelism

▶ GPGPU: General Purpose Graphics Processing Units
▶ CUDA for NVIDIA GPU programming

▶ Analyzing Parallel Algorithms
▶ Parallelizing Classic Algorithms like Matrix Ops, Sorting, Stats
▶ Scientific computing angle

21

General Arrangement of Topics
Weeks 1-7
▶ Basics + Theory
▶ Distributed Memory

Source: Kaminsky/Parallel Java

Source: ClusterComputer.com

Weeks 8-12
▶ Shared Memory
▶ GPGPU / CUDA

Programming

Source: Kaminsky/Parallel Java

Source: Bit-Tech AMD FX-8350 review
22

https://www.cs.rit.edu/~ark/lectures/pj04/notes.shtml
http://www.clustercompute.com/
https://www.cs.rit.edu/~ark/lectures/pj04/notes.shtml
http://www.bit-tech.net/hardware/2012/11/06/amd-fx-8350-review/1

What We Won’t Discuss

▶ General Networking (CSCI 4211/5211)
▶ Server/Client Model for Web Programming (CSCI 4131)
▶ Deep Dive into Parallel Hardware (CSCI 5204)
▶ Graphics applications for GPUs (CSCI 4611 / 5607+8)
▶ Distributed/Grid Computing (CSCI 5105 / 5751)

23

Course Mechanics

Mull over the syllabus linked to our Canvas Page
Look for
▶ Contact info
▶ GTA
▶ Textbook
▶ Weights / Grading Scheme

Schedule of topics and lecture materials:
https:
//www-users.cse.umn.edu/~kauffman/5451/schedule.html

24

https://www-users.cse.umn.edu/~kauffman/5451/schedule.html
https://www-users.cse.umn.edu/~kauffman/5451/schedule.html

Assignments and Hardware
▶ Assignments are 50% of your grade
▶ Combination of writing and programming
▶ Students work Alone or in Pairs
▶ Programming mostly in C in a Linux environment

▶ If you have never programmed in C before, begin studying it
intensively or drop the course

▶ If syntax like malloc() or int *p = &s.field; is unfamiliar,
begin reviewing intensively

▶ If unfamiliar with make and command line, get familiar quick
▶ Assignment 1 will have a C coding portion which indicates

level proficiency expected
▶ Consult me during office hours if in doubt

▶ Run Parallel codes on CSE Labs and MSI machines for eval
▶ 4 Assignments roughly on

1. Basics + Theory
2. MPI Coding + Analysis
3. Shared Memory Coding via PThreads / OpenMP
4. CUDA / GPGPU coding

25

Exams Small and Large

Mini-Exams: 3 scheduled, 30% of grade
▶ Between a quiz and a midterm exam in length
▶ 30 minutes during lecture
▶ 1 page, front and back
▶ Topics will cover stuff from lecture, assignments, readings
▶ Will work practice problems in class preceding them

Final Exam: 2 hours, 20% of grade

Open Resource Exams
Unless otherwise specified, exams are open resource: use notes,
compiler, code, slides, textbook. No googling, browsing,
communication, cheating

26

Reading For Next Time

Reading: Grama Ch 2
▶ Focus on 2.3-5, material

pertaining to distributed memory
▶ We will return to shared memory

arch later in the course
▶ Cache Coherence, PRAM models,

False Sharing, Memory Bus are all
shared memory topics

▶ Sections 2.1 and 2.2 optional,
deeper architectures

▶ Sections 2.6 and 2.7 encouraged,
deeper on networks

27

