
Architecture and Parallel Computers

Chris Kauffman

Last Updated:
Tue Jan 24 01:11:57 PM CST 2023

1

Logistics

Reading: Grama Ch 2
▶ Focus on 2.3-5, material pertaining to distributed memory

▶ We will return to shared memory arch later in the course
▶ Cache Coherence, PRAM models, False Sharing, Memory Bus

are all shared memory topics we’ll discuss later
▶ Sections 2.1 and 2.2 optional, deeper architectures
▶ Sections 2.6 and 2.7 encouraged, deeper on networks

Assignment 1
▶ Post Friday
▶ Due Thu 02-Feb
▶ Basic theory / terminology, C coding proficiency

2

SISD, SIMD, MIMD, SPAM, and other 4-letter words
▶ Traditional CPU, Single Instruction Single Data (SISD)

ADD r1, r2 # add int in r2 to r1
▶ Most computers now have cpu instructions to add multiple

PHADD mm1, mm2 # add two ints in mm2 to ints in mm1
▶ Smart compilers will select SIMD / Vector instructions

when appropriate architecture support is available
▶ Explicit hardware parallelism is good for multimedia stuff

(graphics, games, images, sound, videos)
▶ Flynn’s taxonomy of Parallel Architecture includes

I: Instruction SISD SIMD SPMD P: Program
D: Data MISD MIMD MPMD

▶ Some parallel programs exist as Multiple Program Mulitple
Data (MPMD) like client server models (client.c and
server.c are separate programs)

▶ Our focus and the most common type of parallel program:
Single Program Multiple Data (SPMD): Write one
program which processes different hunks of data in parallel

3

Distributed vs Shared Memory Architectures
Distributed Memory

Source: Kaminsky/Parallel Java

▶ Far more scalable/cost
effective

▶ Sharing information requires
explicit send/receive
commands between
processors

▶ Communication requires
more care/more expensive

Shared Memory

Source: Kaminsky/Parallel Java

▶ Convenience: no explicit
send/receive, write shared
memory address

▶ Requires coordination to
prevent corrupting memory

▶ Communication cost is low
but requires discipline

4

https://www.cs.rit.edu/~ark/lectures/pj04/notes.shtml
https://www.cs.rit.edu/~ark/lectures/pj04/notes.shtml

Modeling Distributed Memory Parallel Computers

Will spend a some time discussing networks used in parallel
computing. These have consequences for algorithms, but unless
you’re building your own machine (for like $1M) you’re stuck with
what you get. Examples:
1. We may use CSE Labs machines with MPI installed to do

Distributed programming : lacks a high-powered, dense
network interconnect

2. We may also use MSI resources for distributed/shared
computation; this is likely to be a grid or tree organization

3. If you have a chance to work on the #5 Super Computer in
the World, Summit at Oak Ridge National Labs, it is reported
to have a Fat Tree Network Architecture can be exploited in
its MPI communications

5

https://www.top500.org/system/179397/
https://www.top500.org/system/179397/
https://en.wikipedia.org/wiki/Summit_(supercomputer)

Static Networks for Distributed Machines
▶ String up a bunch of Processing Elements (PEs)
▶ Decide which PE is connected to which other PE
▶ Live with the effects on cost of communication

Communication Cost Factors
When sending a message of size m words of memory
▶ ts: Startup time, incurred once
▶ th: Per-hop time, overhead incurred for each link between

source and destination
▶ tw: Per-word transfer time between two nodes, takes tw × M

time for each link between source and destination
▶ L: number of links to traverse
▶ M : number of words being sent
▶ Typical model for communication time w/ packet routing

tcomm = ts + Lth + twM

6

Basics of Network Design : Cost vs Communication
▶ Balance number of links / connection pattern complexity
▶ VS “Distance” between PEs + Contention

Source: Grama, Sec 2.4.3 7

Grid and Torus

Source: Grama, Sec 2.4.3

▶ Common arrangement of links between PEs
▶ Each PE node connected to neighbors
▶ When wrapping around, grid becomes a torus
▶ For a 2D torus with p nodes, how many links are required?
▶ Hint: surprisingly simple, think of each processor “owning”

down and right links
▶ How many links in a 3D torus?

8

Exercise: HyperCube

▶ D-dimension
hypercube: connect
two (D − 1)
dimension
hypercubes, link
corresponding nodes

▶ How many nodes and
links in a D-dimension
hypercube?

▶ Hint: Nodes are easy,
links are tricky, try
Grama textbook…

9

Answers: HyperCube
D-dimensional Hypercube has
▶ 2D Processors
▶ 2D × D/2 links

Can show this via Proof by Induction but that’s not our focus
That’s a lot of Links
▶ Many communication patterns have excellent performance on

a hypercube
▶ Building one requires wiring processors together in a highly

complex manner1
▶ Ex: 10-dimensional hypercube with 1024 Processors each with

10 links to a unique set of other processors
▶ Hypercubes are a favorite theoretical topology and useful in

some cases for algorithm analyses but …
▶ Too expensive/complex for large-scale machines

1Academic papers that describe new network architectures sometimes
include wiring algorithms to show their complex network is actually practical to
construct in reality: example

10

https://www.osti.gov/servlets/purl/1510703

Exercise: Compare Networks on Parallel Stencil
▶ P processors
▶ Network 1: 2D-Mesh: around 2P links
▶ Network 2: log2(P) dim. Hypercube w/ (P log2(P)/2) links
▶ Discuss advantages/disadvantages of Mesh vs Hypercube

arrangement for this application
▶ Outline an algorithm, estimate cost-effectiveness of

code+hardware

Image “blurring”
▶ A large image is distributed

across the P processors
▶ Each proc holds a 2D hunk

of the image
▶ To blur the entire image,

must assign RGB values
which are average of
“neighborhood”

Stencil

11

Answers: Compare Networks on Parallel Stencil

▶ Divide image into 2D hunks
▶ PEs must communicate with other PEs that have neighboring

hunks of the image

2D Mesh
▶ Maps VERY easily onto a 2D Mesh / Grid / Torus
▶ PEs locally blur own portion of image
▶ Exchange boundary pixels with 4 neighbors except for outer

edge PEs

12

Answers: Compare Networks on Parallel Stencil

Hypercube
▶ Intuition: have many more

links than in the 2D Torus,
should be possible to place
neighboring pixel hunks on
neighboring procs

▶ Embed 2D-Mesh into a
Hypercube: discussed in
Grama 2.7.1, uses Gray
Codes for Proc Numbering
and is beyond in-class /
exam questions (perhaps an
assignment problem)

▶ After embedding Mesh in
Hypercub, use Mesh
algorithm

13

Network Embedding
▶ Some algorithms work well in a particular network
▶ When running them on another network, look for an

embedding that replicates (as much as possible) features of
the original network

▶ Embedding (informally):
▶ Assignment of PEs in network A to PEs in network B
▶ Assignment of links network A to links in network B

▶ Assignments lead to consequences
▶ Ex: PE4 and PE5 are connected by a single link in Network A

but are 2 links apart in Network B
▶ Ex: In network A, parts of links X,Y,Z are all mapped onto

Link W in network B
▶ Metrics like Dilation and Congestion evaluate the quality of

different embedding choices
▶ Previous example found it is possible embed 2D Mesh in a

Hypercube with Dilation / Congestion of 1
14

Exercise: Compare Networks on Parallel Sum
▶ P processors (assume P is a power of 2)
▶ Network 1: 2D-torus: 2P links
▶ Network 2: log2(P) dim. Hypercube w/ (P log2(P)/2) links
▶ Discuss advantages/disadvantages of torus vs hypercube

arrangement for this application
▶ Outline an algorithm, estimate cost-effectiveness of

code+hardware

Sum Array of Numbers
▶ Each proc holds a hunk of

the data array
▶ Want total sum on root PE0

at end of algorithm
▶ State your algorithm: Try

to minimize communication
at each step, exploit as
much parallelism as possible

Networks

15

Answers: Compare Networks: Parallel Sum
Goal: Get sum on Proc 0
First, each Proc sums its own chunk of numbers then…
2D Torus: N by N Square
▶ Send values UP rows then LEFT across columns

▶ 2*N Communication steps, always neighbors
▶ Many Procs Idle during communication

▶ Other Communication steps will result in multi-hop
communication with non-neighbor procs - will revisit this later

N-dimensional HyperCube
▶ Each Proc has a binary address: ex: 100110
▶ Starting with bit i = (N − 1) while i > 0

▶ Each Proc with bit i == 1 sends to i == 0
▶ Decrement i, repeat

▶ Takes N communication steps
16

Communication Patterns Later

▶ We will talk more about Parallel Sum later
▶ Parallel Sum is an example of a reduction - general

communication pattern that recurs often in Parallel
Computing

▶ Covered in more detail in Section 6.6
▶ Parallel Sum is discussed in Lecture notes by Susan Hayes

17

http://emunix.emich.edu/~haynes/612/fa09/Lectures/parallelSum.html

Characteristics of Various Networks

Several metrics described in textbook
▶ Diameter: max hops away any two procs can be
▶ Bisection width: remove N links to get 2 networks, equal size
▶ Arc Connectivity: remove N links to get 2 networks, any size
▶ Cost: can correspond to number of links

18

Dynamic Networks

▶ In a static network,
connections are fixed

▶ Dynamic networks use
switches: send data into
network with destination,
may alter a connection to
point in a different direction

▶ Akin to the internet: packet
switching network

▶ Textbook mixes concepts
somewhat: Network for
▶ Distributed PEs to

communicate
▶ PEs to share memory

19

Fat Trees

Switch

Switch Switch

Switch Switch Switch Switch

Switch Switch Switch Switch Switch Switch Switch

PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE

Switch Switch

Often used as network switches are inexpensive and widely
available while still providing good communication speeds

20

Routing: Store/Forward Packet and Packet Switching
When sending messages, intermediate nodes must decide what to
do with a message: Routing protocol/scheme

Store and Forward
▶ Accumulate the whole message (all M words), store it until it

can be forwarded to next hop
▶ Easy to build but requires large-ish internal buffers and

generally has bad performance

Standard Packet Switching
▶ Break message into chunks (packets)
▶ Use packet header to carry error-correction info, routing info
▶ Optimized for the unreliable internet: go around overloaded /

dead nodes, adjust to faster paths if found
▶ Better but incurs robustness overhead isn’t necessary present

in most reliable HPC machine networks
21

Routing: Cut-Through Communications

▶ Standard in HPC network design to optimize communication
protocol: sacrifice some robustness to improve speed

▶ Cut-through Routing is an abstract version of this
▶ Similar to packet switching: break message into chunks
▶ Send a tracer from source to destination to determine route -

all packets then follow that route
▶ Send message in flits (packets) along tracer route - reduces

latency over Store/Forward
▶ Minimize data in packet for error correction, re-routing, etc. -

reduced overhead vs Standard Packet Switching
▶ Comm time dominated by initial path determination thL and

total message size twM

22

Our Approach
Algorithm + Specific Network
Assume Cut-Through Routing,
account for hops between PEs

tcomm = ts + Lth + twM

▶ Simplified model for Comm but
reasonable enough to guide
algorithm decisions on how to
utilize specific network

▶ Minimize L between
communicating PEs in
algorithms

▶ L changes with topology: e.g.
Hypercube needs fewer
communication steps than a
Torus due to more abundant
links

Algorithm + Arbitrary Network
Will ignore network topology,
congestion, number of hops

tcomm = ts + twM

▶ Abstracted away from specific
network features which will
vary

▶ Ignores path lengths, unrealistic
but understandable when
network structure is unknown

▶ Still accounts for number and
size of communications in
algorithm

23

