Principles of Parallel Algorithm Design

Chris Kauffman

Last Updated:
Thu Jan 26 02:26:43 PM CST 2023

Logistics
Reading: Grama Ch 2 + 3

» Ch 2.3-5 is most important for Ch 2
> Ch 3 all

Assignment 1

» Up now, Due Thu 02-Feb
» Analysis + serial coding
» Pair-work is allowed, NOTE on this
» Office Hours Tue 10-11am, 4-5pm
» Questions?
This Week
» Finish Parallel architecture (Al: #1-2)
» Parallel Algorithm Decomposition (Al: #3,4,5,6)

Dependency Graphs

» Relation of tasks to one another
> Vertices: tasks, often labeled with time to complete
» Edges: indicate what must happen first

» Should be a DAG: Directed Acyclic Graph
(If not, you're in trouble)

Features of Dependency Graphs

Task 4 Task 3 Task 2 Task 1 Task 4 Task 3 Task 2 Task 1

() (b)

Figure 3.5 Abstractions of the task graphs of Figures 3.2 and 3.3, respectively.

» Critical Path Length = Sum of longest path
» Max. Degree of Concurrency = # of task in “widest” section
> Avg. Degree of Concurrency =

Sum of all vertices

Critical Path Length

Computing Features of Dependency Graphs

Maximum Degree
of Concurrency

> (a) 4
> (b) 4

Total Task Work

> (a) 63 (@) (b)
Figure 3.5 Abstractions of the task graphs of Figures 3.2 and 3.3, respectively.
> (b) 64
Critical Path Length Average Degree of Concurrency
> (a) 27 (leftmost path) > (a) 63 /27 =233

> (b) 34 (rightmost) > (b) 64 /34 =1.88

Exercise: Compute Features of Dependency Graph

Y
Compute 3 4
» Total Work |V
» Maximum degree of Y
concurrency 3 Lo Ho
. I
» Critical Path Length v V\
> Average Degree of 9 7
Concurrency | |
LA

Answers: Compute Features of Dependency Graph

5
Compute 2
» Total Work: 55 Y A4
» Max deg of Concur.: 4 3 2 &
» Critical Path Length: 30 H v lV
» Average Deg. of Concur.: 3 10 10
55/30 = 1.83 |
\ 4 LA
Note 9 7
Calculations are easier if each [|
task node has same “work” YY

associated; this is the case in Al 4

Makefiles

» Most build systems for programs calculate task graphs
> Makefiles describe DAGs to build projects with make

lexer.c

count_words.c

count_words.o

gcce count_words.o ...

count_words

lexer.o

Source: Luke Luo

|
v
.PHONY

count_words: count_words.o lexer.o
gcc count_words.o lexer.o -1fl \
-0 count_words

count_words.o: count_words.c
gcc -c count_words.c

lexer.o: lexer.c
gcc -c lexer.c

lexer.c: lexer.l
flex -t lexer.l > lexer.c

.PHONY: clean
clean:
rm -rf *.0 lexer.c count_words

Look up make -j 4 option: use 4
processors for concurrency

http://lukeluo.blogspot.com/2014/02/linux-from-scratch-for-cubietruck-c10.html

|dentifying Tasks for Parallel Programs

» This is the tricky part
» Several techniques surveyed in the text that we'll overview

> Two general paradigms for creating parallel programs

Parallelize a Serial Code Redesign for Parallelism

» Already have a solution to > Best serial code may not
the problem parallelize well

» Identify tasks within solution » Change the approach

» Construct a task graph and entirely to exploit parallelism
parallelize based on it » Usually harder, more special

» We'll spend most of our purpose, we will spend less
time on this as it is more time on it

common

Recursion Provides Parallelism

Algorithms which use multiple recursive calls provide easy
opportunities for parallelism

Multiple Recursive Call Algs [38]27 435] 5[z [0]

» Fibonacci calculations

» Mergesort
» Quicksort
» Graph searches

All allow for parallelizing:
recursive calls are independent,
represent independent tasks 3[27]38] 3]

which can be run in parallel BUT i i

not all provide practical benefit [2o[xo]zr]30]2]2]

Source: Wikipedia Mergesort

when run in parallel

10

https://en.wikipedia.org/wiki/Merge_sort

Reformulation As Recursive Algorithms

» Can sometimes reformulate an iterative algorithm as a recursive one:

Redesign for parallelism

» Show task graph for RECURSIVE_MIN on array
A=4{4,9,1, 7,8, 11, 2, 12}, n =8

procedure SERIAL_MIN (A, n)

begin
min = A[0];
for i :=1 ton -1 do
if (A[i] < min) then
min := A[i];
endif
endfor;

return min;
end SERIAL_MIN

Specifics of how RECURSIVE_MIN()
should share data/work among
Procs to make it parallel is
nontrivial. Dividing up the data in
A and running SERIAL_MIN() on
each is straight-forward.

procedure RECURSIVE_MIN (A, n)
begin
if (n = 1) then
min := A[0];
else
Imin :=
rmin :

RECURSIVE_MIN (A, n/2);
RECURSIVE_MIN (&(A[n/2])
n - n/2);

if (Imin < rmin) then
min := lmin;
else

min :
endelse;
endelse;

rmin;

return min;
end RECURSIVE_MIN

11

Data Decomposition: the Goto Design Technique

Identifying parallel tasks based on nature of input or output data is
often more straight-forward than an algorithmic/recursive approach

Output Partitioning Input Partitioning
» Among algorithm Output » Qutput tasks not easily
Data.. independent
» Determine if tasks to » Can build up output via
compute output are independent tasks on input
(relatively) independent » Requires a way to combine
» Parallelize by assigning tasks results from different
to Procs based on Output sections of input
that will be on the Proc > Parallelize by assigning tasks
to chunks of input then
combining

Combinations of Input/Output partitioning are common so don't

expect examples to be clearly ONLY one or the other
12

Exercise: Matrix-Vector Multiplication

» Input: matrix A, vector x Output Partitioning
> Output: vector b > What tasks are required to
A% x=h compute each element of
output b?
abc X ax + by + cz
def| |yl = |dx+ey+ f2 > What data must each
ghil |z gx + hy + iz processor hold to perform

those tasks?

13

Answers: Output Partitioning of Mat-Vec Mult

» Must perform a series of multiply adds of a row of the matrix
by the vector

» If an individual proc holds a whole matrix or whole matrix
rows, these tasks are independent

» Output vector b would be spread across the procs

14

Exercise: Matrix-Vector Multiplication

» Input: matrix A, vector x
» Qutput: vector b

m oo

o m o
Feoh 0

ax + by + cz
dx + ey + fz
gx + hy + iz

Input Partitioning

» Constraint: Processors
have little memory, can't
hold whole rows of A and all
of x

» Propose an input
partitioning: chunks of A
and x, do some
computation, combine
results to form elements of b

15

Answers: Input Partitioning for Mat-Vec Mult

A1,1:10) [A(1,11:20)[A(1,21:30)

Task 1: tmp(1,1) = A(1,1:10)*x(1:10)

Task 2: tmp(1,2) = A(1,11:20)*x(11:20)

Task 3: tmp(1,3) = A(1,21:30)*x(21:30)

Task 4: b(1) = tmp(1,1) + tmp(1,2) + tmp(1,3)

— Task 4*i+1: tmp(i,1) = A(1,1:10)*x(1:10)

i) | Task 4%i+2: tmp(i,2) = A(1,11:20)*x(11:20)
Task 4*i+3: tmp(i,3) = A(1,21:30)*x(21:30)
Task 4*i+4: b(i) = tmp(i,1) + tmp(i,2) + tmp(i,3)

A(i,1:10) |A(i,11:20) |A(i,21:30)

togite)x | (oztox | ot |
Z

> Most Tasks: multiply part of a row of A with part of x

» Some Tasks: combine partial sums to produce single element
of output b

> Note: Computing chunks of b now requires communication

16

Exercise: Item Set Frequency Calculation

Typical data mining task: count how many times items {D, E}
were bought together in a database of transactions

» Input: database + itemsets of interest

» Output: frequency of itemsets of interest

A,B,C,E, G H A,B,C
B,D,E,F, K, L D,E
Describe tasks for... £ ABRHL , CFG
e § D,E,F,H T AE
» Input partitioning § EGHK § cop
g 2
it . [} A E F K L D, K
» Qutput partitioning g scont b
» Combined partitioning g GRL GDK
D,E,F,K,L
F,G,H,L

Itemset Frequency

S o N = N o W =

17

Answers: Item Set Frequency Calculation
Output Partitioning

» Whole Database fits on each Proc
» Divide up Itemsets among Procs

» Each Proc scans whole DB counting its Itemsets

Input Partitioning

» DB spread across Procs, each has Partial DB

» Assume each Proc can hold all ltemsets

» Each Proc scans its DB portion, counts all Itemsets
>

Procs communicate to Sum all itemsets (Reduction)

Combined Partitioning

» DB and Itemsets Spread Across Procs
» Follow Input Partitioning except...
» Procs only communicate in Groups based on Itemsets

More Details in Grama 3.2

18

Exploratory Decomposition

Problem Formulations
» Graph Breadth-first and depth-first search
» Path finding in discrete environments
» Combinatorial search (15-puzzle)

» Find a good move in a game (Chess, Go)

Algorithms

» Similar to recursive decomposition
> Each step has several possibilities to explore
» Serial algorithm must try one, then unwind

» Parallel algorithm may explore multiple paths simultaneously

19

Fifteen Puzzle via Exploratory Decomposition

1 3|4 1 4
A 7

910711 9 [10] <h1

13]14[15] 12 13]14]15] 12
(a) (b)

] 3|4] 4
5 78 5 7

9 1011, 9101112

I

131141512 1311415
(c) (d)

Source: Grama Fig 3.17

Features of Exploratory Decomposition

» Data duplication may be necessary so each PE can change its
own data (puzzle state)
» Redundancy may occur: two PEs arrive at the same state
» Detect duplication requires programming/communication
» Ignoring duplication wastes PE time
» Termination is trickier: once a solution is found, must signal
to all active PEs that they can quit or move on
» Can lead to “super-linear” speedups over serial algorithms by
getting lucky on a search path

]
~ Solution
Total serial work: 2m+1 Total serial work: m
Total parallel work: | Total parallel work: 4m

(a) (h)

21

Static and Dynamic Task Generation

Static Task Generation
» All tasks known ahead of time
» Easier to plan and distribute data

» Examples abound: matrix operations, sorting (mostly), data
analysis, image processing

Dynamic task Generation

» Tasks are “discovered” during the program run

» Tougher to deal with scheduling, data distribution,
coordination and termination

» Difficulty with message passing paradigm

> Examples: game tree search, some recursive algorithms

We will focus on Static Task Generation

22

Static and Dynamic Scheduling (Mapping)

» Given tasks and dependencies, must schedule them to run on
actual processors

» Problems to solve include Load imbalance (unequal work),
Communication overhead, Data distribution as work changes

Static Mapping/Scheduling

» Specify which tasks happen on which processes ahead of time
» Usually baked into the code/algorithm
» Works well for message passing/distributed paradigm

Dynamic Mapping/Scheduling

» Figure out where tasks get run as you go
> More or less required if tasks are “discovered”

» Centralized Scheduling Schemes: manager tracks tasks in a
data structure, doles out to workers

» Distributed scheduling schemes: workers share tasks directly
23

Reducing the Overhead of Parallelism

Parallel algorithms always introduce overhead: work that doesn’t
exist in a serial computation. Reducing overhead usually comes in

three flavors.

1. Make tasks as independent as possible

2. Minimize data transfers

3. Overlap communication with computation
#1 and #2 are often in tension: why?

24

Broad Categories of Parallel Program Designs

Related to parallel Algorithm design, must also select a Program
Design / Software Architecture for how a parallel program will be
constructed. Broad categories include the following.

Data-parallel

Every processors gets data,
computes similar things, syncs
data with group, repeats;
Example: matrix multiplication

Task Graph

Explicitly account for Task
Graph, Every proc assigned some
tasks and associated data,
compute then sync, Example:
parallel quicksort (later)

Work-pool + Manager

Initial tasks go into “pool”, doled
out to workers by manager,
discover new tasks, go into pool,
distributed to workers....
Example: web server

Stream/Pipeline/Map-Reduce

Raw data goes in, compl done to
it, fed to comp2, then to comp3,
etc. Example: Frequency counts
of all documents, LU
factorization

25

Exercise: Al's Heat Problem

Left .
Boundary Right

Boundary

Initial time
t=0

» What are the tasks? How does the task graph look?

» What kind of scheduling seems like it will work?

» How should the data be distributed?

> What broad category of approach seems to fit?
Data parallel, Task graph distribution,
Work-pool/Manager-worker, Stream/Pipeline

26

Answers: Al's Heat Problem

Well, it wouldn't be much of an assignment if | gave you my
answers...

27

