
MPI Basics

Chris Kauffman

Last Updated:
Tue Feb 7 01:45:04 PM CST 2023

1

Logistics

Reading: Grama Ch 6 + 4
▶ Ch 6: MPI basics
▶ Ch 4: Communication

patterns

Assignments
▶ A1 Due Soon

▶ On-time by Thu 02-Feb
▶ Late through Sat 04-Feb

▶ Questions?
▶ A2 up next week:

MPI Programming

Today
▶ Primitives for Distributed

Memory Computing
▶ MPI Programming

Next Week
▶ Comm Patterns
▶ Thu 09-Feb: Mini-Exam 1

2

Generic Send and Receive

▶ Distributed memory machines require explicit sharing of data
▶ Minimum required functionality is:

send(void *sendbuf, int nelems, int dest)
receive(void *recvbuf, int nelems, int source)

▶ Referred to as a “point-to-point” communication
▶ Sample Use
1 // P0 runs // P1 runs
2 a = 100; receive(&a, 1, 0)
3 send(&a, 1, 1); printf("%d\n", a);
4 a=50;
▶ Proc 0 sends a single integer to Proc 1
▶ Proc 0 then changes that integer
▶ Proc 1 receives and prints the integer

3

More typical appearance
▶ Typically write this as a single program which every processor

runs: Single Program, Multiple Data (SPMD)
▶ Assume availability of a function giving logical Proc Number
▶ Branching on proc number to take different actions

1 void exchange(){
2 int a = 100;
3 int my_proc = get_processor_number();
4 if(my_proc == 0){
5 send(&a, 1, 1); // send data 100 to Proc 1
6 a=50;
7 }
8 else if(my_proc == 1){
9 receive(&a, 1, 0); // receive data from Proc 0

10 printf("%d\n", a);
11 }
12 }

4

Flavors Send/Receive

▶ Hardware+OS may
support copying
message into a “buffer”
space to make allowing
program to proceed
faster

▶ Functions usually
available to do both
blocking send() and
send_nonblocking()
with hardware support
BUT without
OS/hardware support
they are the same

5

Blocked and Unbuffered

Blocking/Unbuffered: no extra buffer available to hold pending
sends/receives so must wait until message is sent to proceed
Blocked processors are idle, do no work, which cuts into speedup

6

Ordering of Send Receive

1 P0 P1
2
3 send(&a, 1, 1); send(&a, 1, 0);
4 receive(&b, 1, 1); receive(&b, 1, 0);
Assuming send/receive blocked/unbuffered, what’s wrong with
the above code?

7

Blocking with Buffers

Hardware buffer support, sender
and receiver have a memory
minion

No buffer support: sender
interrupts receiver

8

The Danger Continues

1 P0 P1
2
3 receive(&a, 1, 1); receive(&a, 1, 0);
4 send(&b, 1, 1); send(&b, 1, 0);

▶ receive() always blocks until message is obtained
▶ Does the above code work even in the buffered setting?

9

Non-blocking Communication

▶ Takes a bit more work on the programming side
▶ Must explicitly ensure that transaction completes with

function calls
▶ isend(data,dest,status): send w/o waiting
▶ ireceive(data,dest,status): receive w/o waiting
▶ wait(status): wait until a message has been sent or

received before moving one
10

MPI: Message Passing Interface
▶ Standardized library of functions for C/C++/Fortran
▶ Communicate between processors in a distributed memory

machine first appearing around 1992
▶ MPI Version 1.x universally deployed, Version 2.x less so
▶ Open source implementations: MPICH, Open MPI
▶ Proprietary: Intel, Platform, IBM, Platform, Cray
▶ Typically vendor configures MPI for particular architecture /

network of a large-scale machine

11

MPI In a Nutshell: 6 Essential Functions
// Initialize and Terminate MPI
int MPI_Init(int *argc, char ***argv) ;
int MPI_Finalize() ;

// Get total number of processors
int MPI_Comm_size(MPI_Comm comm, int *size);

// Get logical proc number of calling process
int MPI_Comm_rank(MPI_Comm comm, int *rank);

// Send a message to dest processor
int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm);

// Receive a message from source processor
int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,
MPI_Status *status);

12

MPI Hello World
1 // mpi_hello.c: C Example of hello world with MPI. Compile and run as
2 // > mpicc -o mpi_hello mpi_hello.c
3 // > mpirun ./mpi_hello # use number of processors equal to total machine procs
4 // > mpirun -np 2 mpi_hello # use 2 processors
5 // > mpirun -np 8 mpi_hello # use 8 processors
6
7 #include <stdio.h>
8 #include <mpi.h>
9

10 int main (int argc, char *argv[]){
11 int rank; // the id of this processor
12 int size; // the number of processors being used
13
14 MPI_Init (&argc, &argv); // starts MPI
15 MPI_Comm_rank (MPI_COMM_WORLD, &rank); // get current process id
16 MPI_Comm_size (MPI_COMM_WORLD, &size); // get number of processes
17
18 // Say hello from this proc
19 printf("Proc %d of %d says 'Hello world'\n", rank, size);
20
21 MPI_Finalize();
22 return 0;
23 }

13

Compilation and Running

▶ Demo using openmpi
implementation

▶ mpirun for
interactive running

▶ mpirun -np 4
progr sets number of
“processors” to 4

>> cd 04-mpi-code/
>> mpicc -o mpi_hello mpi_hello.c
>> ./mpi_hello
...
Proc 0 of 1 says 'Hello world'

>> mpirun -np 2 mpi_hello
...
Proc 0 of 2 says 'Hello world'
Proc 1 of 2 says 'Hello world'

>> mpirun mpi_hello
...
Proc 2 of 4 says 'Hello world'
Proc 0 of 4 says 'Hello world'
Proc 1 of 4 says 'Hello world'
Proc 3 of 4 says 'Hello world'

14

MPI Implementations and OpenMPI Warnings
▶ Several Implementations of MPI:

▶ OpenMPI and MPICH are free, open source, widely available
▶ HPC Vendors like IBM and Cray provide their own tailored

MPI versions
▶ Recent Versions of OpenMPI can complain a LOT about

various items missing
▶ The many machines with MPI are not configured perfectly

leading to additional errors
▶ Example: --mca btl_base_warn_component_unused 0 to

warn about missing HPC network components during mpirun
▶ Example: --mca opal_warn_on_missing_libcuda 0 if not

intending to use GPU libraries
▶ Exact nature of warnings/errors varies a lot, look at messages

which often dictate how to disable them
▶ Provided mpiopts.sh script can be sourced to set suppress

common errors
15

https://www.open-mpi.org/
https://www.mpich.org/

Warning Suppression in OpenMPI

>> mpicc mpi_hello_plus.c

>> mpirun -np 2 a.out
--
The library attempted to open the following supporting CUDA libraries,
but each of them failed. CUDA-aware support is disabled.
libcuda.so.1: cannot open shared object file: No such file or directory
libcuda.dylib: cannot open shared object file: No such file or directory
/usr/lib64/libcuda.so.1: cannot open shared object file: No such file or directory
/usr/lib64/libcuda.dylib: cannot open shared object file: No such file or directory
If you are not interested in CUDA-aware support, then run with
--mca opal_warn_on_missing_libcuda 0 to suppress this message. If you are interested
in CUDA-aware support, then try setting LD_LIBRARY_PATH to the location
of libcuda.so.1 to get passed this issue.
--
P0000 [val]: Hello world from process 0 of 2
P0001 [val]: Hello world from process 1 of 2
[val:558294] 1 more process has sent help message help-mpi-common-cuda.txt / dlopen failed
[val:558294] Set MCA parameter "orte_base_help_aggregate" to 0 to see all help / error messages

>> source mpiopts.sh

>> mpirun $MPIOPTS -np 2 a.out
P0001 [val]: Hello world from process 1 of 2
P0000 [val]: Hello world from process 0 of 2

16

MPI Oversubscribing
Default OpenMPI config uses all processors on a single machine,
fails for larger requests unless --oversubscribe
>> mpirun -np 2 a.out
...
P0001 [val]: Hello world from process 1 of 2
P0000 [val]: Hello world from process 0 of 2

>> mpirun -np 8 a.out
--
There are not enough slots available in the system to satisfy the 8
slots that were requested by the application:

a.out

Either request fewer slots for your application, or make more slots
available for use.
...
Alternatively, you can use the --oversubscribe option to ignore the
number of available slots when deciding the number of processes to
launch.
--

>> source mpiopts.sh
>> echo $MPIOPTS
--mca opal_warn_on_missing_libcuda 0 --oversubscribe
^^^^^^^^^^^^^^^

>> mpirun $MPIOPTS -np 16 a.out
P0009 [val]: Hello world from process 9 of 16
...
P0014 [val]: Hello world from process 14 of 16
P0012 [val]: Hello world from process 12 of 16

17

Hostfiles

▶ For simple cluster configurations, can pass a hostfile to
mpirun to indicate host names of other machines in cluster

▶ Simplest form of hostfile is a list of symbolic or IP addresses
for machines to recruit for the run

▶ CSE Labs CUDA cluster1 has the following machines which
can be used for experimentation
cuda01.cselabs.umn.edu
cuda02.cselabs.umn.edu
cuda03.cselabs.umn.edu
cuda04.cselabs.umn.edu
cuda05.cselabs.umn.edu

▶ 40 physical cores per machine

1CUDA cluster is present to support this class, thus MPI is set up for it. We
will also use it later for GPU programming.
https://cse.umn.edu/cseit/classrooms-labs#cs

18

https://cse.umn.edu/cseit/classrooms-labs#cs

Extended Example on CUDA cluster 1/2
log in to lab machines
>> ssh cuda01.cselabs.umn.edu
...
csel-cuda-01>> cat hostfile-cuda-full.txt
cuda01.cselabs.umn.edu
cuda02.cselabs.umn.edu
cuda03.cselabs.umn.edu
cuda04.cselabs.umn.edu
cuda05.cselabs.umn.edu

compile + run mpi program
csel-cuda-01>> mpicc mpi_hello_plus.c
csel-cuda-01>> mpirun -hostfile hostfile-cuda-full.txt -np 32 ./a.out
No protocol specified
No protocol specified
P0023 [csel-cuda-01]: Hello world from process 23 of 32
P0024 [csel-cuda-01]: Hello world from process 24 of 32
...
P0002 [csel-cuda-01]: Hello world from process 2 of 32
P0013 [csel-cuda-01]: Hello world from process 13 of 32

40 processors per machine
csel-cuda-01>> mpirun -hostfile hostfile-cuda-full.txt -np 64 ./a.out
...
P0011 [csel-cuda-01]: Hello world from process 11 of 64
P0020 [csel-cuda-01]: Hello world from process 20 of 64
..
P0039 [csel-cuda-01]: Hello world from process 39 of 64
P0041 [csel-cuda-02]: Hello world from process 41 of 64
P0045 [csel-cuda-02]: Hello world from process 45 of 64
P0046 [csel-cuda-02]: Hello world from process 46 of 64
...

19

Extended Example on CUDA cluster 2/2
utilize whole cluster
csel-cuda-01>> mpirun -hostfile hostfile-cuda-full.txt -np 200 ./a.out
...
P0003 [csel-cuda-01]: Hello world from process 3 of 200
...
P0089 [csel-cuda-03]: Hello world from process 89 of 200
...
P0190 [csel-cuda-05]: Hello world from process 190 of 200
P0123 [csel-cuda-04]: Hello world from process 123 of 200
...
P0077 [csel-cuda-02]: Hello world from process 77 of 200

200 processors total in CUDA cluster; going over this errors out
csel-cuda-01 [04-mpi-code]% mpirun -hostfile hostfile-cuda-full.txt -np 201 ./a.out
--
There are not enough slots available in the system to satisfy the 201
slots that were requested by the application:

./a.out

Either request fewer slots for your application, or make more slots
available for use.

A "slot" is the Open MPI term for an allocatable unit where we can
launch a process. The number of slots available are defined by the
environment in which Open MPI processes are run:

1. Hostfile, via "slots=N" clauses (N defaults to number of
processor cores if not provided)

2. The --host command line parameter, via a ":N" suffix on the
hostname (N defaults to 1 if not provided)

3. Resource manager (e.g., SLURM, PBS/Torque, LSF, etc.)
4. If none of a hostfile, the --host command line parameter, or an

RM is present, Open MPI defaults to the number of processor cores
...

20

Distributed Memory (MPI) Systems at UMN
CUDA Cluster
▶ csel-cuda01.cselabs.umn.edu to

csel-cuda05.cselabs.umn.edu
▶ Have OpenMPI installed, honor hostfile
▶ Hostfile in 04-mpi-code.zip as hostfile-cuda-full.txt
▶ Good for experimentation but not a true HPC system
▶ Requires setting up SSH keys / Known Hosts2

MSI Systems
▶ Will use MSI to evaluate scalability of program performance

for A2
▶ Usually no need to use a hostfile as MPI jobs are run in batch

and number of nodes is requested as part of job
▶ Requires use of job scheduling system SLURM, discuss later

2See Accessing Unix/Linux Programming Environments Section 3 for
instructions on setting up keys for password/Duo free login to CSE Labs 21

https://www-users.cse.umn.edu/~kauffman/tutorials/unix-environment.html#ssh-keys

MPI Send and Recieve

Most basic functionality is point-to-point message transfer via
MPI_Send() / MPI_Recv()

1 int count = 5;
2 int a[count]={10,20,30,40,50};
3 int b[count];
4 int partner = 1;
5 int tag = 1;
6
7 // Send contents of a to partner proc with tag=1
8 MPI_Send(a, count, MPI_INT, partner, tag, MPI_COMM_WORLD);
9

10 // Receive message into b from partner proc
11 MPI_Recv(b, count, MPI_INT, partner, tag, MPI_COMM_WORLD,
12 MPI_STATUS_IGNORE); // ignore status of receipt

▶ Analyze the program send_receive_test.c
▶ Compare with send_bugs.c which demos stall problems
▶ Note MPI_ANY_SOURCE may be used for recv’s source

22

Tags Make Messages Unique
int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {

MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}
else if (myrank == 1) {

MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

▶ Tags must be honored on receive
▶ Above code may deadlock if not buffered due to the

misordering of tags
▶ Mostly we will use tag=1 for simplicity
▶ Alternatively MPI_ANY_TAG, possible to query what tag was

received later on (though we won’t have cause to do this)

23

MPI Data Types Supported
// Sends a message.
int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm);

// Receives a message.
int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,
MPI_Status *status);

▶ Buffer is always untyped (void* buf)
▶ To strive for slightly better safety, MPI has standard datatypes

MPI_CHAR signed char
MPI_INT signed int
MPI_LONG signed long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_BYTE Last two used for sending
MPI_PACKED structure arrays

Unsigned types also available
24

Exercise: Heat Transfer in MPI

▶ Discuss conversion of the following A1 code to an MPI version
▶ How is data in H divided up?
▶ Is communication required?
▶ How would one arrange MPI_Send / MPI_Recv calls?
▶ How much data needs to be transferred and between who?
▶ When the computation is finished, how can all data be

displayed?
// Simulate the temperature changes for internal cells
for(t=0; t<max_time-1; t++){

for(p=1; p<width-1; p++){
double left_diff = H[t][p] - H[t][p-1];
double right_diff = H[t][p] - H[t][p+1];
double delta = -k*(left_diff + right_diff);
H[t+1][p] = H[t][p] + delta;

}
}

25

Some Patterns that occur in the problem

▶ Pair exchange of items: made easier with MPI_sendrecv
▶ Collecting final output for display: MPI_Gather

▶ Previewed here
▶ Discussed in following lectures

26

Exchange: Sendrecv for exchanging data between pairs
{

double send[10], recv[10]; int partner;
if(procid % 2 == 1){ // odd procs send left, receive left

partner = procid-1;
MPI_Send(send, 10, MPI_DOUBLE, partner, 1, MPI_COMM_WORLD);
MPI_Recv(recv, 10, MPI_DOUBLE, partner, 1, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
}
else{ // even procs receive right, send right

partner = procid+1;
MPI_Recv(recv, 10, MPI_DOUBLE, partner, 1, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
MPI_Send(send, 10, MPI_DOUBLE, partner, 1, MPI_COMM_WORLD);

}
}
{ // Sendrecv simplifies this pattern

double send[10], recv[10]; int partner;
partner = (procid % 2 == 1) ? procid-1 : procid+1;
MPI_Sendrecv(send, 10, MPI_DOUBLE, partner, 1,

recv, 10, MPI_DOUBLE, partner, 1,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

} 27

Take Care: Pair exchange can hang

{
double send[10], recv[10]; int partner;
partner = (procid % 2 == 1) ? procid-1 : procid+1;
MPI_Sendrecv(send, 10, MPI_DOUBLE, partner, 1,

recv, 10, MPI_DOUBLE, partner, 1,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

▶ With 9 processors, logic is broken
▶ Proc 8 will wait to communicate with a partner that doesn’t exist
▶ Program never terminates

28

Gather Preview

Source: Shun Yan Cheung Notes on MPI

▶ Every processor has computed columns
▶ One processor (usually procid 0) needs to gather all of the

data for printing / saving
▶ Everyone calls MPI_Gather()

29

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

MPI_Gather Sample

Use of Gather
// Preamble for any code
MPI_Comm comm = MPI_COMM_WORLD;
int sendarray[100];
int procid, total_procs, *rbuf;
...;
// Only proc 0 needs space for to
// receive entirety of data
if(procid == 0) {
rbuf = malloc(total_procs*100*

sizeof(int));
}

// Everyone calls gather
// proc 0 gets all data eventually
MPI_Gather(sendarray, 100, MPI_INT,

rbuf, 100, MPI_INT,
0, comm);

Equivalent Non-Gather Code
if(rank == 0){

for(i=0; i<100; i++){
rbuf[i] = sendarray[i];

}
for(i=1; i<total_procs; i++){

int *rloc = &rbuf[i*100];
MPI_Recv(rloc, 100,

MPI_INT, i,
tag, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

}
}
else{

MPI_Send(sendarray, 100,
MPI_INT, 0,
tag, MPI_COMM_WORLD);

}

30

Collective Communication Patterns Next

▶ gather is an example of a class of Collective
Communication Patterns

▶ Will study more of these in subsequent lectures
▶ Using built-in collective comm. patterns simplifies programs
▶ MPI implementation typically uses the most efficient

underlying communications for a particular network

31

Sending Structs
Sending structs can be done via the MPI_BYTE type
{ // from send_structs.c

typedef struct {
double x;
int a, b;

} dint_t;
dint_t mine[10] = { {.x=1.23, .a=5, .b=7}, {.x=...}, ...}
...;
// calculate data sizes "manually" just as is done in a malloc()
MPI_Send(mine, 10*sizeof(dint_t), MPI_BYTE,

partner, 1, MPI_COMM_WORLD);
}
▶ Simple and effective if all compute nodes use the same

binary layout
▶ MPI also provides a (complex) method for situations where

struct layout differs between nodes
▶ Must Dictate # of struct fields, types, and ordering into a

MPI_Datatype and use MPI_Type_create_struct()
▶ Likely hurts performance if struct layout differs so will not

discuss in detail
32

Non-blocking Send / Receive

BLOCKING NON-BLOCKING
MPI_Send(...) MPI_Isend(..., &request)
MPI_Recv(...) MPI_Irecv(..., &request)
SYCNRONIZE MPI_Wait(&request, ...)

▶ Non-blocking calls trigger send/receive to be initiated but do
not block process(or) to completion

▶ MPI_Request struct tracks whether operation has completed
▶ Block via MPI_wait() until send/recv completes
▶ Prior to blocking, unsafe to alter/use data in buffers
▶ Can pair MPI_ISend() / MPI_Recv() and vice versa

33

Faux Example of MPI_Isend() / MPI_IRecv()
1 int data_a[100] = {...};
2 int data_b[100] = {...};
3 int partner = ...;
4 int tag = ...;
5
6 ...; // compute data_a[]
7
8 MPI_Request request;
9 MPI_Isend(data_a, 100, MPI_INT, partner, tag, MPI_COMM_WORLD, &request);

10
11 ...; // unsafe to alter data_a[] so compute data_b[]
12
13 MPI_Wait(&request, MPI_STATUS_IGNORE); // block until data_a[] has been sent
14 // now safe to alter data_a[]
15 for(int i=0; i<100; i++){ // more computations on data_a[]
16 data_a[i]++;
17 }
18 ...;
19 MPI_Irecv(data_a, 100, MPI_INT, partner, tag, MPI_COMM_WORLD, &request);
20
21 ...; // unsafe to do anything with data_a[], compute on data_b[]
22
23 MPI_Wait(&request, MPI_STATUS_IGNORE); // block until data_a[] has been sent
24 // now safe to alter data_a[]
25 for(int i=0; i<100; i++){ // more computations on data_a[]
26 data_a[i]++;
27 } 34

