
MPI and Collective Communication Patterns

Chris Kauffman

Last Updated:
Tue Feb 14 01:40:56 PM CST 2023

1

Logistics
Reading: Grama Ch 6 + 4
▶ Ch 6: MPI basics
▶ Ch 4: Communication patterns

Assignments
▶ A1 grading has commenced
▶ A2 will go up soon, feature MPI Coding

Today
▶ More MPI programming
▶ Discuss Comm. Patterns

Thursday Lecture + Mini Exam 1
▶ 45-min lecture, 30-min Mini-Exam 1
▶ Exam at Beginning or End of Lecture??

2

Exercise: MPI Basics Review

▶ What are the two basic operations required for distributed
memory parallel programming?

▶ Describe some variants for these operations.
▶ What is a very common library for doing distributed parallel

programming?
▶ How do the two main operations look in that library?
▶ How does one compile/run programs with this library?

3

Answers: MPI Basics Review
▶ send(data,count,dest) and

receive(data,count,source) are the two essential ops for
distributed parallel programming

▶ send/receive can be
▶ blocking: wait for the partner to link up and complete the

transaction
▶ non-blocking: don’t wait now but check later to before

using/changing the message data
▶ buffered: a special area of memory is used to facilitate the

sends more efficiently
▶ MPI: The Message Passing Interface, common distributed

memory programming library
▶ Send and Receive in MPI

MPI_Send(buf, len, MPI_INT, dest, MPI_COMM_WORLD);
MPI_Recv(buf, len, MPI_INT, source, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
▶ Compile/Run

mpicc -o prog parallel-program.c
mpirun -np 8 prog

4

Patterns of Communication

▶ Common patterns exist in many algorithms
▶ Reasoning about algorithms easier if these are “primitives”

▶ “I’ll broadcast to all procs here and gather all results here”
vs
“I’ll use a loop here to send this data to every processor and a
loop here for every processor to send its data to proc 0 which
needs all of it.”

▶ MPI provides a variety of collective communication operations
which make these single function calls

▶ Vendors of super-computers usually implement those functions
to run as quickly as possible on the network provided -
repeated halving/double if the network matches

▶ By making the function call, you get all the benefit the
network can provide in terms of speed

5

Broadcasting One-to-All

Source: Shun Yan Cheung Notes on MPI

▶ Root processor wants to transmit data buffer to all processors
▶ Broadcast distributes to all procs
▶ Each proc gets same stuff in data buffer

6

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Broadcast Example Code

In broadcast_demo.c
// Everyone allocates
data = (int*)malloc(sizeof(int) * num_elements);

// Root fills data by reading from file/computation
if(procid == root_proc){

for(i=0; i<num_elements; i++){
data[i] = i*i;

}
}

// Everyone calls broadcast, root proc sends, others receive
MPI_Bcast(data, num_elements, MPI_INT, root_proc,

MPI_COMM_WORLD);
// data[] now filled with same portion of root_data[] on each proc

7

Scatter from One To All

Source: Shun Yan Cheung Notes on MPI

▶ Root processor has slice of data for each proc
▶ Scatter distributes to each proc
▶ Each proc gets an individualized message

8

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Scatter Example

In scatter_demo.c
// Root allocates/fills root_data by reading from file/computation
if(procid == root_proc){

root_data = malloc(sizeof(int) * total_elements);
for(i=0; i<total_elements; i++){

root_data[i] = i*i;
}
}

// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

// Everyone calls scatter, root proc sends, others receive
MPI_Scatter(root_data, elements_per_proc, MPI_INT,

data, elements_per_proc, MPI_INT,
root_proc, MPI_COMM_WORLD);

// data[] now filled with unique portion from root_data[]

9

Exercise: Scatter a Matrix

Often have Matrix and Vector data in HPC / Parallel Computing
// mat vec multiply
double **mat = ...;
...;
mat[i][j] = ...;
double *vec = ...;
double *out = ...;
for(int i=0; i<rows; i++){

for(int j=0; j<cols; j++){
out[i] = mat[i][j]*vec[j];

}
}

▶ How can one MPI_Scatter() the rows of a matrix?
▶ What assumptions must be true about the matrix data?

10

Answers: Scatter a Matrix
▶ Typically matrix must be allocated in one block of memory -

single malloc()
▶ Allows a single MPI_Scatter() to scatter groups of rows

{
// allocate data for all of matrix
double *all = malloc(rows*cols * sizeof(double));

// allocate / assign row pointers within single block
double **mat = malloc(rows * sizeof(double*));
for(int i=0; i<rows; i++){

mat[i] = &all[i*cols];
}

mat[i][j] = 5.5; // assign via row pointer
}

11

Answers: Scatter a Matrix
{

double *all = NULL;

// root reads in matrix rows
if(rank == root_proc){

all = malloc(rows*cols * sizeof(double));
fread(all, sizeof(double), rows*cols, infile);

}

// set up and perform scatter
int rows_per_proc = rows / nprocs;
int elems_per_proc = rows_per_proc * cols;
double *myrows = malloc(sizeof(double) * elems_per_proc);
MPI_Scatter(all, elements_per_proc, MPI_INT,

myrows, elements_per_proc, MPI_INT,
root_proc, MPI_COMM_WORLD);

}
12

Gather from All to One

Source: Shun Yan Cheung Notes on MPI

▶ Every processor has data in send buffer
▶ Root processor needs all data ordered by proc_id
▶ Root ends with all data in a receive buffer

13

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Gather Example
// gather_demo.c
int total_elements = 16;
int elements_per_proc = total_elements / total_procs;

// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

// Each proc fills data[] with "unique" values
int x = 1;
for(i=0; i<elements_per_proc; i++){

data[i] = x;
x *= (procid+2);
}

// data[] now filled with unique values on each proc

// Root allocates root_data to be filled with gathered data
if(procid == root_proc){

root_data = malloc(sizeof(int) * total_elements);
}

// Everyone calls gather, root proc receives, others send
MPI_Gather(data, elements_per_proc, MPI_INT,

root_data, elements_per_proc, MPI_INT,
root_proc, MPI_COMM_WORLD);

// root_data[] now contains each procs data[] in order

14

All Gather: Everyone to Everyone

Source: Shun Yan Cheung Notes on MPI

▶ Every processor has data in send buffer
▶ All processors need all data ordered by proc_id
▶ All procs end with all data in receive buffer

15

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

All-Gather Example
// allgather_demo.c
// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

// Each proc fills data[] with "unique" values
int x = 1;
for(i=0; i<elements_per_proc; i++){

data[i] = x;
x *= (proc_id+2);

}
// data[] now filled with unique values on each proc

// Everyone allocates all_data to be filled with gathered data
all_data = malloc(sizeof(int) * total_elements);

// Everyone calls all-gather, everyone sends and receives
MPI_Allgather(data, elements_per_proc, MPI_INT,

all_data, elements_per_proc, MPI_INT,
MPI_COMM_WORLD);

// all_data[] now contains each procs data[] in order on
// all procs

16

Reduction: All to One

Source: Shun Yan Cheung Notes on MPI

▶ Every processor has data in send buffer
▶ Root processor needs all data reduced

▶ Reduction operation is transitive
▶ Several pre-defined via constants
▶ Common: MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD

▶ Root ends with reduced data in receive buffer
17

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Reduce Example
// reduce_demo.c
{ // Each proc fills data[] with unique values

int x = 1;
for(i=0; i<total_elements; i++){

data[i] = x;
x *= (procid+2);

}
// data[] now filled with unique values on each proc

// Root allocates root_data to be filled with reduced data
if(procid == root_proc){

root_data = malloc(sizeof(int) * total_elements);
}

// Everyone calls reduce, root proc receives,
// others send and accumulate
MPI_Reduce(data, root_data, total_elements, MPI_INT,

MPI_SUM, // operation to perform on each element
root_proc, MPI_COMM_WORLD);

// root_data[] now contains each procs data[] summed up
}

18

Note: Reduction’s Array Argument

▶ MPI_Reduce() works on a data[] argument like others
▶ Reduction happens for each element so that

root_proc = 0;
MPI_Reduce(data, root_data, total_elements, MPI_INT,

MPI_SUM, root_proc, MPI_COMM_WORLD);
// results in
P0.root_data[0] = P0.data[0] + P1.data[0] + P2.data[0] + ...
P0.root_data[1] = P0.data[1] + P1.data[1] + P2.data[1] + ...
P0.root_data[2] = P0.data[2] + P1.data[2] + P2.data[2] + ...
...

▶ To get a single sum, Procs should iterate on their own array
THEN MPI_Reduce() on a single vlaue

19

Reduction for All: All-Reduce

Source: Shun Yan Cheung Notes on MPI

▶ Every processor has data in send buffer
▶ All processors need all data reduced
▶ All procs end with reduced data in a receive buffer

20

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Allreduce Example

{ // Each proc fills data[] with unique values
int x = 1;
for(i=0; i<total_elements; i++){

data[i] = x;
x *= (procid+2);

}
// data[] now filled with unique values on each proc

// Everyone allocates reduced_data to be filled with reduced data
reduced_data = malloc(sizeof(int) * total_elements);

// Everyone calls reduce, everyone sends and receives
MPI_Allreduce(data, reduced_data, total_elements, MPI_INT,

MPI_SUM, // operation to perform on each element
MPI_COMM_WORLD);

// reduced_data[] now contains each procs data[] summed up
}

21

In-place Reduction

▶ Occasionally want to do reductions in-place: send and receive
buffers are the same.

▶ May be useful in upcoming assignment
▶ Use MPI_IN_PLACE for the send buffer

{ // Everyone calls reduce, everyone sends and receives
MPI_Allreduce(MPI_IN_PLACE, // no destination buffer - use data

data, // reduction is placed here
total_elements, MPI_INT,
MPI_SUM, // op to perform on each element
MPI_COMM_WORLD);

// data[] now contains each procs data[], min elements
}

22

Summary of Communications

Operation MPI Function Synopsis
Individual

Send MPI_Send One-to-one send
Receive MPI_Recv One-to-one receive
Send/Receive MPI_Sendrecv One-to-one send/receive

Collective
Barrier MPI_Barrier All wait for stragglers
Broadcast MPI_Bcast Root to all, all data copied
Scatter MPI_Scatter Root to all, slices of data copied
Gather MPI_Gather All to root, slices ordered on Root
Reduce MPI_Reduce All to root, data reduced on Root
All-Gather MPI_Allgather All to all, data ordered
All-Reduce MPI_Allreduce All to all, data reduced

Not Discussed
Prefix MPI_Prefix All-to-all, data ordered/reduced
All-to-AllP MPI_Alltoall All-to-all, personal messages

23

Vector Versions
▶ Collective comm ops like MPI_Scatter assume same amount

of data to/from each processor
▶ Not a safe, general assumption (e.g. len % P != 0)
▶ Vector1 versions of each comm op exist which relax these

assumptions, allow arbitrary data counts per proc
▶ Provide additional arguments indicating

▶ counts: How many elements each proc has
▶ displs: Offsets elements are/will be stored in master array

Operation Equal counts Different counts
Broadcast MPI_Bcast
Scatter MPI_Scatter MPI_Scatterv
Gather MPI_Gather MPI_Gatherv
All-Gather MPI_Allgather MPI_Allgatherv
Reduce MPI_Reduce
All-Reduce MPI_Allreduce

1“Vector” here means extra array arguments, NOT hardware-level
parallelism like “Vector Instruction”

24

MPI_Scatterv Example

Source: SKIRT Docs

// P0 P1 P2
int counts[] = { 3, 1, 2};
int displs[] = { 0, 3, 4};
// P0 P0 P0 P1 P2 P2
int send[] = { 10, 20, 30, 40, 50, 60 };
int *recv = malloc(counts[rank] * sizeof(int));
MPI_Scatterv(send, counts, displs, MPI_INT,

recv, counts[rank], MPI_INT,
0, MPI_COMM_WORLD);

25

http://www.skirt.ugent.be/skirt/_parallelization_m_p_i.html

MPI_Gatherv Example

Source: SKIRT Docs

int total = 6;
int counts[] = { 3, 1, 2};
int displs[] = { 0, 3, 4};
int send[counts[rank]];
int *recv, i;
for(i=0; i<counts[rank]; i++){
send[i] = rank*(i+1);

}

recv = (rank!=0) ? NULL :
malloc(total * sizeof(int));

MPI_Gatherv(
send, counts[rank], MPI_INT,
recv, counts, displs, MPI_INT,
0, MPI_COMM_WORLD);

26

http://www.skirt.ugent.be/skirt/_parallelization_m_p_i.html

Dynamic Count and Displacements for Vector Comm Ops
▶ Common prob: # of procs does not evenly divide data size
▶ Use the vector versions of collective ops
▶ To calculate counts and displacements and spread work

evenly, use a pattern like the below (see scatterv_demo.c)
int total_elements = 16;
int *counts = malloc(total_procs * sizeof(int));
int *displs = malloc(total_procs * sizeof(int));

// Divide total_elements as evenly as possible: lower numbered
// processors get one extra element each.
int elements_per_proc = total_elements / total_procs;
int surplus = total_elements % total_procs;
for(i=0; i<total_procs; i++){

counts[i] = (i < surplus) ? elements_per_proc+1 : elements_per_proc;
displs[i] = (i == 0) ? 0 : displs[i-1] + counts[i-1];

}
// counts[] and displs[] now contain relevant data for a scatterv,
// gatherv, all-gatherv calls

27

Barriers

MPI_Barrier(MPI_COMM_WORLD);

▶ Causes all processors to synchronize at the given line of code
▶ Early arrivers idle while other procs catch up
▶ To be avoided if possible as it almost always incurs idle time
▶ Unavoidable in some select scenarios
▶ Can be useful in debugging to introduce barriers

28

Basic Debugging Discpline

Q: How do I debug Open MPI processes in parallel?
A: This is a difficult question…
– OpenMPI FAQ on Debugging

▶ Commercial Parallel Debuggers exist, TotalView is popular
▶ For small-ish programs…

Debug Printing + Valgrind + Effort + Patience
will usually suffice

> mpirun -v -np 4 valgrind ./my_program arg1 arg2

29

https://www.open-mpi.org/faq/?category=debugging

Exercise: MPI Collective Comm Review

1. Which MPI Collective Communication Operation does the
above picture represent?

2. Draw a similar picture for MPI All-Gather
3. What are common operations work with a Reduction?
4. Which collective communication operations would be useful in

the following settings:
▶ At the beginning of a computation, the root processor needs to

distribute rows of a matrix read from a data file to all other
processors

▶ After each processor finishes some computations using its own
rows, all processors need the sum of all columns in the matrix

30

Answers: MPI Collective Comm Review
1. Which MPI Collective Communication Operation does the

above picture represent?
Scatter / MPI_Scatter

2. Draw a similar picture for MPI All-Gather
See slide 15

3. What are common operations work with a Reduction?
Addition/Sum, Multiply/Product, Min, Max

4. Which collective communication operations would be useful in
the following settings:
▶ At the beginning of a computation, the root processor needs to

distribute rows of a matrix read from a data file to all other
processors
Scatter the rows

▶ After each processor finishes some computations using its own
rows, all processors need the sum of all columns in the matrix
Local sum of columns, All-Reduce on local Column sums

31

