MPI and Collective Communication Patterns

Chris Kauffman

Last Updated:
Tue Feb 14 01:40:56 PM CST 2023

Logistics
Reading: Grama Ch 6 + 4
» Ch 6: MPI basics

» Ch 4: Communication patterns

Assignments

» Al grading has commenced

> A2 will go up soon, feature MP| Coding

Today

» More MPI programming

» Discuss Comm. Patterns
Thursday Lecture + Mini Exam 1

» 45-min lecture, 30-min Mini-Exam 1

» Exam at Beginning or End of Lecture??

Exercise: MPI| Basics Review

» What are the two basic operations required for distributed
memory parallel programming?

» Describe some variants for these operations.

» What is a very common library for doing distributed parallel
programming?

» How do the two main operations look in that library?

» How does one compile/run programs with this library?

Answers: MPI Basics Review

» send(data,count,dest) and
receive(data,count,source) are the two essential ops for
distributed parallel programming

> send/receive can be

» blocking: wait for the partner to link up and complete the
transaction

» non-blocking: don’t wait now but check later to before
using/changing the message data

» buffered: a special area of memory is used to facilitate the
sends more efficiently

» MPI: The Message Passing Interface, common distributed
memory programming library

» Send and Receive in MPI

MPI_Send(buf, len, MPI_INT, dest, MPI_COMM_WORLD) ;
MPI_Recv(buf, len, MPI_INT, source, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
» Compile/Run
mpicc -o prog parallel-program.c
mpirun -np 8 prog

Patterns of Communication

» Common patterns exist in many algorithms
» Reasoning about algorithms easier if these are “primitives”
> “I'll broadcast to all procs here and gather all results here”
Vs
“I'll use a loop here to send this data to every processor and a
loop here for every processor to send its data to proc 0 which
needs all of it.”
» MPI provides a variety of collective communication operations
which make these single function calls
» Vendors of super-computers usually implement those functions

to run as quickly as possible on the network provided -
repeated halving/double if the network matches

» By making the function call, you get all the benefit the
network can provide in terms of speed

Broadcasting One-to-All

PO b P b Py
e ™)) Y
MPI_Beast(bfif, ..., 0, ...);
P, P P, Py

u bu bu buf
" emm) " [Omm) " [

Source: Shun Yan Cheung Notes on MPI

» Root processor wants to transmit data buffer to all processors
» Broadcast distributes to all procs

» Each proc gets same stuff in data buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Broadcast Example Code

In broadcast_demo.c

// Everyone allocates
data = (int*)malloc(sizeof(int) * num_elements);

// Root fills data by reading from file/computation
if (procid == root_proc){
for(i=0; i<num_elements; i++){
datal[i] = ix*i;
}
}

// Everyone calls broadcast, root proc sends, others receive
MPI_Bcast(data, num_elements, MPI_INT, root_proc,

MPI_COMM_WORLD) ;
// datal] now filled with same portion of root_data[] on each proc

Scatter from One To All

g B g Bosg B w

b
“f [[i | [

MPI_Scatter(sendbuf, .}, recvbuf, .., 0, ... };

recv Yo recy Py 15}
uf ‘

e

rﬁf rlffv Py
EEEE| R S|

Source: Shun Yan Cheung Notes on MPI

» Root processor has slice of data for each proc
» Scatter distributes to each proc

» Each proc gets an individualized message

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Scatter Example

In scatter_demo.c

// Root allocates/fills root_data by reading from file/computation
if (procid == root_proc){
root_data = malloc(sizeof(int) * total_elements);
for(i=0; i<total_elements; i++){
root_datal[i] = i*i;
}
}

// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

// Everyone calls scatter, root proc sends, others receive
MPI_Scatter(root_data, elements_per_proc, MPI_INT,
data, elements_per_proc, MPI_INT,
root_proc, MPI_COMM_WORLD) ;
// datal] now filled with unique portion from root_datal]

Exercise: Scatter a Matrix

Often have Matrix and Vector data in HPC / Parallel Computing

// mat vec multiply
double **mat = ...;

mat[i][j] = ...

double *vec = ...;

double *out R

for(int i=0; i<rows; i++){
for(int j=0; j<cols; j++){

out[i] = mat[i] [jl*vec[jl;

3

}

» How can one MPI_Scatter() the rows of a matrix?

» What assumptions must be true about the matrix data?

10

Answers: Scatter a Matrix

{

» Typically matrix must be allocated in one block of memory -
single malloc ()

> Allows a single MPI_Scatter() to scatter groups of rows

// allocate data for all of matrix
double *all = malloc(rows*cols * sizeof(double));

// allocate / assign row pointers within single block
double #**mat = malloc(rows * sizeof (doublex));
for(int i=0; i<rows; i++){

mat[i] = &all[i*cols];
}

mat[i] [j] = 5.5; // assign via row pointer

11

Answers: Scatter a Matrix

{
double *all = NULL;

// root reads in matrix rows

if (rank == root_proc){
all = malloc(rows*cols * sizeof (double));
fread(all, sizeof(double), rows*cols, infile);

}

// set up and perform scatter
int rows_per_proc = rows / nprocs;
int elems_per_proc = rows_per_proc * cols;

double *myrows = malloc(sizeof (double) * elems_per_proc)

MPI_Scatter(all, elements_per_proc, MPI_INT,
myrows, elements_per_proc, MPI_INT,
root_proc, MPI_COMM_WORLD) ;

12

Gather from All to One

AN I B
1
[unn]ippy] smu]

MPI_Gather(sendbuf, .}., recvbuf, .., 0, ...);

recv. Py recy P recv P, recy,

bu uf uf wf 13
e Y| | o) Yo

Source: Shun Yan Cheung Notes on MPI

» Every processor has data in send buffer
P Root processor needs all data ordered by proc_id

» Root ends with all data in a receive buffer

13

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Gather Example

// gather_demo.c
int total_elements = 16;
int elements_per_proc = total_elements / total_procs;

// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

// Each proc fills data[] with "unique" values
int x = 1;
for(i=0; i<elements_per_proc; i++){
datal[i] = x;
x *= (procid+2);
}

// datal[] now filled with unique values on each proc

// Root allocates root_data to be filled with gathered data
if (procid == root_proc){
root_data = malloc(sizeof(int) * total_elements);

}

// Everyone calls gather, root proc receives, others send

MPI_Gather(data, elements_per_proc, MPI_INT,
root_data, elements_per_proc, MPI_INT,
root_proc, MPI_COMM_WORLD) ;

// root_datal[] now contains each procs datal[] in order

14

All Gather: Everyone to Everyone

o S U g 2 ym B
H
@) [

AllGather(sendbuf, .., recvbuf, .., 0, ... };

recv P0

FECY FECY Fecy
"f\mjjj\ "f\[EED\ “f\

" e

Source: Shun Yan Cheung Notes on MPI

» Every processor has data in send buffer
» All processors need all data ordered by proc_id

» All procs end with all data in receive buffer

15

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

All-Gather Example

// allgather_demo.c
// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

// Each proc fills data[] with "unique" values
int x = 1;
for(i=0; i<elements_per_proc; i++){
datali] = x;
x *= (proc_id+2);
}

// datal[] now filled with unique values on each proc

// Everyone allocates all_data to be filled with gathered data
all_data = malloc(sizeof(int) * total_elements);

// Everyone calls all-gather, everyone sends and receives

MPI_Allgather(data, elements_per_proc, MPI_INT,
all_data, elements_per_proc, MPI_INT,
MPI_COMM_WORLD) ;

// all_datal] now contains each procs data[] in order on

// all procs

16

Reduction: All to One

N N/ B - M
i
(] (e

MPI_Reduce(sendbuf, L., recvbuf, ... MPL OP, 0, ...);

-

J F‘CV
(L1 Djjj\ \Djjj\

Source: Shun Yan Cheung Notes on MPI

-

recy E%C‘vf 7

”’“f_

» Every processor has data in send buffer
» Root processor needs all data reduced
» Reduction operation is transitive
» Several pre-defined via constants
» Common: MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD

» Root ends with reduced data in receive buffer

recy
uf‘

17

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Reduce Example

// reduce_demo.c
{ // Each proc fills data[] with unique values
int x = 1;
for(i=0; i<total_elements; i++){
datali] = x;
x *= (procid+2);
¥

// datal[] now filled with unique values on each proc

// Root allocates root_data to be filled with reduced data
if (procid == root_proc){
root_data = malloc(sizeof(int) * total_elements);

}

// Everyone calls reduce, root proc receives,

// others send and accumulate

MPI_Reduce(data, root_data, total_elements, MPI_INT,
MPI_SUM, // operation to perform on each element
root_proc, MPI_COMM_WORLD);

// root_data[] now contains each procs datal[] summed up

18

Note: Reduction’s Array Argument

» MPI_Reduce() works on a data[] argument like others

» Reduction happens for each element so that
root_proc = 0;
MPI_Reduce(data, root_data, total_elements, MPI_INT,
MPI_SUM, root_proc, MPI_COMM_WORLD) ;

// results in
PO.root_datal[0]
PO.root_datal[1]
PO.root_datal[2]

> To get a single sum, Procs should iterate on their own array
THEN MPI_Reduce() on a single vlaue

PO.data[0] + Pi.data[0] + P2.datal[0] + ...
PO.data[1] + Pi.data[1] + P2.data[1] + ...
PO.data[2] + Pi.data[2] + P2.data[2] + ...

19

Reduction for All: All-Reduce

I R LR /S
74
=] [

MPI_AlIReduce(sendbuf, .|., recvbuf, v MPI_OP. 0, ...);

-
o

-

-

'.-

recy t%c-vf

Fecy FECY
i e e

”“f_

Source: Shun Yan Cheung Notes on MPI

» Every processor has data in send buffer
» All processors need all data reduced

» All procs end with reduced data in a receive buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Allreduce Example

{ // Each proc fills data[] with unique values
int x = 1;
for(i=0; i<total_elements; i++){
datal[i] = x;
x *= (procid+2);
}

// datal[] now filled with unique values on each proc

// Everyone allocates reduced_data to be filled with reduced data
reduced_data = malloc(sizeof(int) * total_elements);

// Everyone calls reduce, everyone sends and receives

MPI_Allreduce(data, reduced_data, total_elements, MPI_INT,
MPI_SUM, // operation to perform on each element
MPI_COMM_WORLD) ;

// reduced_data[] now contains each procs datal[] summed up

In-place Reduction

» Occasionally want to do reductions in-place: send and receive
buffers are the same.

> May be useful in upcoming assignment
» Use MPI_IN_PLACE for the send buffer

{ // Everyone calls reduce, everyone sends and receives
MPI_Allreduce(MPI_IN_PLACE, // no destination buffer - use data

data, // reduction is placed here
total_elements, MPI_INT,
MPI_SUM, // op to perform on each element

MPI_COMM_WORLD) ;
// datal[] now contains each procs datal[], min elements

}

22

Summary of Communications

Operation MPI Function Synopsis
Individual
Send MPI_Send One-to-one send
Receive MPI_Recv One-to-one receive
Send/Receive MPI_Sendrecv One-to-one send/receive
Collective
Barrier MPI_Barrier All wait for stragglers
Broadcast MPI_Bcast Root to all, all data copied
Scatter MPI_Scatter Root to all, slices of data copied
Gather MPI_Gather All to root, slices ordered on Root
Reduce MPI_Reduce All to root, data reduced on Root
All-Gather MPI_Allgather All to all, data ordered
All-Reduce MPI_Allreduce All to all, data reduced
Not Discussed
Prefix MPI_Prefix All-to-all, data ordered /reduced
All-to-AllP MPI_Alltoall All-to-all, personal messages

23

Vector Versions

» Collective comm ops like MPI_Scatter assume same amount
of data to/from each processor

v

Not a safe, general assumption (e.g. len % P != 0)

» Vector! versions of each comm op exist which relax these
assumptions, allow arbitrary data counts per proc

» Provide additional arguments indicating

» counts: How many elements each proc has
> displs: Offsets elements are/will be stored in master array

Operation Equal counts Different counts
Broadcast MPI_Bcast

Scatter MPI_Scatter MPI_Scatterv
Gather MPI_Gather MPI_Gatherv
All-Gather MPI_Allgather MPI_Allgatherv
Reduce MPI_Reduce

All-Reduce MPI_Allreduce

1“Vector” here means extra array arguments, NOT hardware-level
parallelism like “Vector Instruction”

24

MPI Scatterv Example

Filled send Empty Safe to Filled

buffer receive buffer overwrite receive buffer

process A [N [TT] BN 7T (e
> 5 1

//

int
int
//

int
int
MPI

ﬁ

T T W T T
i s s e o

Bz o
e m e —_—
Empty send Empty Safe to Filled
buffer receive buffer overwrite receive buffer
Memory
Source: SKIRT Docs
PO P1 P2
counts[] = { 3, 1, 2};
displs[] = { 0, 3, 4};
PO PO PO P1 P2 P2
send[] = { 10, 20, 30, 40, 50, 60 };

*recv = malloc(counts[rank] * sizeof(int));
_Scatterv(send, counts, displs, MPI_INT,
recv, counts[rank], MPI_INT,

0, MPI_COMM_WORLD) ;
25

http://www.skirt.ugent.be/skirt/_parallelization_m_p_i.html

MPI Gatherv Example

Filled send Empty Safe to Filled
buffer receive buffer overwrite receive buffer
—_— -

>

0
Beg

[»
Filled send Empty Safe to Empty
buffer receive buffer overwrite receive buffer
Memory
Source: SKIRT Docs
int total = 6; recv = (rank!=0) 7 NULL
int counts[] = { 3, 1, 2}; malloc(total * sizeof(int));
int displs[] = { 0, 3, 4};
int send[counts[rank]]; MPI_Gatherv(
int *recv, i; send, counts[rank], MPI_INT,
for(i=0; i<counts[rank]; i++){ recv, counts, displs, MPI_INT,
send[i] = rank*(i+1); 0, MPI_COMM_WORLD);

}

http://www.skirt.ugent.be/skirt/_parallelization_m_p_i.html

Dynamic Count and Displacements for Vector Comm Ops

» Common prob: # of procs does not evenly divide data size
» Use the vector versions of collective ops

» To calculate counts and displacements and spread work
evenly, use a pattern like the below (see scatterv_demo.c)
int total_elements = 16;

int *counts = malloc(total_procs * sizeof(int));
int *displs = malloc(total_procs * sizeof(int));

// Divide total_elements as evenly as possible: lower numbered

// processors get one extra element each.

int elements_per_proc = total_elements / total_procs;

int surplus total_elements 7 total_procs;

for(i=0; i<total_procs; i++){
counts[i] = (i < surplus) 7 elements_per_proc+l : elements_per_proc;
displs[i] = (i == 0) 7 0 : displs[i-1] + counts[i-1];

}

// counts[] and displs[] now contain relevant data for a scatterv,

// gatherv, all-gatherv calls

27

Barriers

MPI_Barrier (MPI_COMM_WORLD) ;

| 2
>
>
>
>

Causes all processors to synchronize at the given line of code
Early arrivers idle while other procs catch up

To be avoided if possible as it almost always incurs idle time
Unavoidable in some select scenarios

Can be useful in debugging to introduce barriers

28

Basic Debugging Discpline

Q: How do I debug Open MPI processes in parallel?
A: This is a difficult question...
— OpenMPI FAQ on Debugging

» Commercial Parallel Debuggers exist, TotalView is popular

» For small-ish programs...
Debug Printing 4+ Valgrind + Effort 4+ Patience
will usually suffice

> mpirun -v -np 4 valgrind ./my_program argl arg?2

29

https://www.open-mpi.org/faq/?category=debugging

Exercise: MPI Collective Comm Review

af B g Mgy B g w

] e o] []

MPISgPREHsendbuf, .|, recvbuf, .., 0, ...);
ecv Py ey T ey T2 recy Py
b ’rﬁ.‘z}[m b, bif

‘D]I] ‘ ‘ O

1. Which MPI Collective Communication Operation does the
above picture represent?

2. Draw a similar picture for MPI All-Gather

3. What are common operations work with a Reduction?

4. Which collective communication operations would be useful in
the following settings:
> At the beginning of a computation, the root processor needs to
distribute rows of a matrix read from a data file to all other
processors
» After each processor finishes some computations using its own
rows, all processors need the sum of all columns in the matrix

30

Answers: MPI Collective Comm Review

1. Which MPI Collective Communication Operation does the
above picture represent?
Scatter / MPI_Scatter

2. Draw a similar picture for MPI All-Gather
See slide 15

3. What are common operations work with a Reduction?
Addition/Sum, Multiply/Product, Min, Max

4. Which collective communication operations would be useful in
the following settings:

» At the beginning of a computation, the root processor needs to
distribute rows of a matrix read from a data file to all other
processors
Scatter the rows

P After each processor finishes some computations using its own
rows, all processors need the sum of all columns in the matrix
Local sum of columns, All-Reduce on local Column sums

31

